SYNTHESIS AND NON-AQUEUS MEDIUM TITRATIONS OF SOME NEW 3-ALKYL(ARYL)-4-[2-(4-METHOXYBENZOXY)- 3-METHOXY]-BENZYLIDENAMINO-4,5-DIHYDRO-1H-1,2,4-TRIAZOL-5-ONES

Muzaffer ALKAN ${ }^{1}$, Abdurrahman GÜRBÜZ ${ }^{\mathbf{2}}$, Haydar YÜKSEK ${ }^{\mathbf{3}}$, Özlem Gürsoy Kol ${ }^{3}$, Zafer OCAK ${ }^{1}$
${ }^{1}$ Education Faculty, Kafkas University, 36100-Kars/Turkey;
${ }^{2}$ Atatürk MYO, Kafkas University, 36100-Kars/Turkey;
${ }^{3}$ Dept. of Chemistry, Kafkas University, 36100-Kars/Turkey

Abstract

In this study, seven new 3-alkyl(aryl)-4-[2-(4-methoxybenzoxy)-3-methoxy]-benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-ones were synthesized from the reactions of 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones with 3-methoxy-2-(4-methoxybenzoxy)-benzaldehyde, which was obtained from the reaction of 2-hydroxy-3-methoxybenzaldehyde with p-methoxybenzoyl chloride by using triethylamine. The new compounds synthesized were characterized by using ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{CNMR}$ and UV spectral data. In addition, to investigate the effects of solvents and molecular structure upon acidity, the prepared 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones were titrated potentiometrically with tetrabutylammonium hydroxide in four non-aqueous solvents, including acetone, isopropyl alcohol, DMSO and N, N-dimethylformamide. The halfneutralization potential values and the corresponding $\mathrm{p} K_{\mathrm{a}}$ values were determined for all cases.

Keywords: 3-alkyl(aryl)-4-[2-(4-methoxybenzoxy)-3-methoxy]-benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-ones, potentiometric titration

Introduction

Recently, several articles reporting the synthesis of some N -arylidenamino-4,5-dihydro- $1 \mathrm{H}-1,2,4$-triazol-5-one derivatives have been published [1-12]. On the other hand, it is known that 1,2,4-triazole and 4,5-dihydro-1H-1,2,4-triazol-5-one rings have weak acidic properties, so some 1,2,4-triazole and 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives were titrated potentiometrically with tetrabutylammonium hydroxide (TBAH) in non-aqueous solvents, and the $\mathrm{p} K_{\mathrm{a}}$ values of the compounds were determined [1,2,4-9, 13-15].

Synthesis

In presence of triethylamine, 2-hydroxy-3-meyhoxybenzaldehyde was reacted with pmethoxybenzoylchloride and 3-methoxy-2-(4-methoxybenzoxy)-benzaldehyde compound (2) was obtained. Then, this compound was reacted with 7 new 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-one (1) compounds. As a result, 7 new Schiff Bases (3) were
obtained according to following reaction. Physical data of the new compounds synthesized are compiled in Table 1. IR, UV and NMR spectral data are presented in Tables 2-4.

$\mathbf{1 , 3}$	\mathbf{R}
\mathbf{a}	CH_{3}
\mathbf{b}	$\mathrm{CH}_{2} \mathrm{CH}_{3}$
\mathbf{c}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
\mathbf{d}	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
\mathbf{e}	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{3}\left(p_{-}\right)$
\mathbf{g}	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Cl}\left(p_{-}\right)$
\mathbf{i}	$\mathrm{C}_{6} \mathrm{H}_{5}$

Table 1. Physical Data of the Compounds 3a-g

Compd.	Yield $(\%)$	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	Crystallized from	Formula	m.w.
3a	98.9	231	Ethanol	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}_{4}$	382,38
3b	98.5	213	Ethanol	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{4}$	396,40
3c	97.6	180	Ethanol	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{4}$	410,43
3d	96.1	173	Ethanol	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{4}$	458,47
3e	85.6	193	Ethanol	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{4}$	472,50
3f	86.4	185	Ethanol	$\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~N}_{4} \mathrm{Cl}$	492,92
$\mathbf{3 g}$	87.8	232	Ethanol	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{4}$	444,45

Table 2. IR Data $\left(\mathrm{cm}^{-1}\right)$ and UV Data of the Compounds 3a-g

Compd.	$V_{(\text {(NH) }}$	$v_{\text {(C=O) }}$	$v_{(\mathrm{C}=\mathrm{N})}$	$v_{\text {(COO) }}$	$V_{\text {substituted benzenoid ring }}$	$\begin{aligned} & \lambda_{\max }, \mathrm{nm} \\ & \left(\varepsilon \times 10^{-3}\right) \end{aligned}$
3 a	3165	1716, 1695	1600	1256	835	304 (11.07), 260 (25.36), 216 (19.56)
3b	3166	1720, 1695	1602	1259	836	$\begin{gathered} 303 \text { (16.80), } 258 \text { (28.66), } 226 \text { (21.27), } \\ 214 \text { (19.76) } \end{gathered}$
3c	3198	1735, 1708	1603	1253	812	$\begin{gathered} 304 \text { (18.86), } 254 \text { (28.82), } 232 \text { (23.03), } \\ 214(19.70) \end{gathered}$
3d	3161	1745, 1705	1605, 1586	1250	821; 756 and 698	304 (9.87), 260 (23.83), 216 (19.73)
3 e	3163	1738, 1700	1606, 1578	1254	844	296 (28.25), 256 (29.00), 214 (19.65)
3 f	3165	1743, 1705	1605, 1575	1254	844, 820	$\begin{gathered} 304 \text { (18.87), } 256 \text { (28.79), } 232 \text { (23.52), } \\ 214(19.68) \end{gathered}$
3g	3155	1739, 1704	1604, 1576	1257	801; 763 and 688	$\begin{gathered} 304(11.86), 258(31.55), 280(28.39), \\ 216(23.73) \end{gathered}$

Table 3. ${ }^{1}$ H NMR Data of the Compounds 3a-g (DMSO- $d_{6}, \delta / \mathrm{ppm}$)

Compd.	CH_{3}	CH_{2}	OCH_{3}	$\mathrm{OCH}_{3}(p-)$	CH_{2}	Aromatic H	$\mathrm{N}=\mathrm{CH}$	NH
3 a	2.14 (s)	-	3.80 (s)	3.89 (s)	-	$\begin{gathered} 7.14(\mathrm{~d}, 2 \mathrm{H} ; J=8.85 \mathrm{~Hz}), 7.33(\mathrm{~d}, 1 \mathrm{H} ; J=8.24 \\ \mathrm{Hz}), 7.40(\mathrm{t}, 1 \mathrm{H} ; J=7.97 \mathrm{~Hz}), 7.58(\mathrm{~d}, 1 \mathrm{H} ; \\ J=7.83 \mathrm{~Hz}), 8.11(\mathrm{~d}, 2 \mathrm{H} ; J=8.85 \mathrm{~Hz}) \end{gathered}$	9.89 (s)	11.76 (s)
3 b	$\begin{gathered} 1.11(\mathrm{t} ; \\ J=7.47 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 2.51(\mathrm{q} \\ J=7.38 \mathrm{~Hz}) \end{gathered}$	3.80 (s)	3.89 (s)	-	$\begin{gathered} 7.15(\mathrm{~d}, 2 \mathrm{H} ; J=8.81 \mathrm{~Hz}), 7.34(\mathrm{~d}, 1 \mathrm{H} ; J=8.13 \\ \mathrm{Hz}), 7.41(\mathrm{t}, 1 \mathrm{H} ; J=7.97 \mathrm{~Hz}), 7.56(\mathrm{~d}, 1 \mathrm{H} ; \\ J=7.80 \mathrm{~Hz}), 8.10(\mathrm{~d}, 2 \mathrm{H} ; J=8.81 \mathrm{~Hz} \end{gathered}$	9.87 (s)	11.78 (s)
3 c	$\begin{gathered} 0.88(\mathrm{t} ; \\ J=7.44 \mathrm{~Hz}) \end{gathered}$	$\begin{aligned} & 1.60(\mathrm{sext} ; \\ & J=7.40 \mathrm{~Hz}) \end{aligned}$	3.80 (s)	3.88 (s)	$\begin{aligned} & 2.48(\mathrm{sext} ; \\ & J=7.34 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} 7.13(\mathrm{~d}, 2 \mathrm{H} ; J=8.93 \mathrm{~Hz}), 7.31(\mathrm{~d}, 1 \mathrm{H} ; J=8.33 \\ \mathrm{Hz}), 7.39(\mathrm{t}, 1 \mathrm{H} ; J=7.98 \mathrm{~Hz}), 7.55(\mathrm{~d}, 1 \mathrm{H} ; \\ J=7.91 \mathrm{~Hz}), 8.12(\mathrm{~d}, 2 \mathrm{H} ; J=8.88 \mathrm{~Hz} \end{gathered}$	9.90 (s)	$\begin{gathered} 11.80 \\ (\mathrm{~s}) \end{gathered}$
3 d	-	-	3.79 (s)	3.87 (s)	3.95 (s)	$\begin{gathered} 7.12(\mathrm{~d}, 2 \mathrm{H} ; J=8.93 \mathrm{~Hz}), 7.23-7.33(\mathrm{~m}, 6 \mathrm{H}), \\ 7.40(\mathrm{t}, 1 \mathrm{H} ; J=7.97 \mathrm{~Hz}), 7.53(\mathrm{~d}, 1 \mathrm{H} ; J=7.88 \\ \mathrm{Hz}), 8.10(\mathrm{~d}, 2 \mathrm{H} ; J=8.90 \mathrm{~Hz} \end{gathered}$	9.87 (s)	$\begin{gathered} 11.90 \\ (\mathrm{~s}) \end{gathered}$
3 e	2.25 (s)	-	3.79 (s)	3.87 (s)	3.89 (s)	$\begin{gathered} 7.09-7.16(\mathrm{~d}, 6 \mathrm{H}), 7.32(\mathrm{~d}, 1 \mathrm{H} ; J=8.29 \mathrm{~Hz}), \\ 7.40(\mathrm{t}, 1 \mathrm{H} ; J=7.99 \mathrm{~Hz}), 7.54(\mathrm{~d}, 1 \mathrm{H} ; J=7.90 \\ \mathrm{Hz}), 8.09(\mathrm{~d}, 2 \mathrm{H} ; J=8.88 \mathrm{~Hz} \end{gathered}$	9.85 (s)	11.72 (s)
3 f	-	-	3.80 (s)	3.87 (s)	3.95 (s)	$\begin{gathered} 7.12(\mathrm{~d}, 2 \mathrm{H} ; J=8.90 \mathrm{~Hz}), 7.28-7.41(\mathrm{~m}, 6 \mathrm{H}) \\ 7.52(\mathrm{~d}, 1 \mathrm{H} ; J=7.88 \mathrm{~Hz}), 8.10(\mathrm{~d}, 2 \mathrm{H} ; J=8.87 \\ \mathrm{Hz} \end{gathered}$	9.88 (s)	$\begin{gathered} 11.73 \\ (\mathrm{~s}) \end{gathered}$
3 g	-	-	3.80 (s)	3.89 (s)	-	$\begin{gathered} 7.12(\mathrm{~d}, 2 \mathrm{H} ; J=8.81 \mathrm{~Hz}), 7.34(\mathrm{~d}, 1 \mathrm{H} ; J=7.59 \\ \mathrm{Hz}), 7.40(\mathrm{t}, 1 \mathrm{H} ; J=7.90 \mathrm{~Hz}), 7.51-7.53(\mathrm{~m}, \\ 4 \mathrm{H}), 7.86-7.88(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{~d}, 2 \mathrm{H} ; J=8.78 \\ \mathrm{Hz} \end{gathered}$	9.89 (s)	$\begin{gathered} 12.20 \\ (\mathrm{~s}) \end{gathered}$

Investigation of ${ }^{1} \mathrm{H}$ NMR values of 3 type compounds, while data of aliphatic protons are between $\delta 0.80-2.10$, protons of OCH_{3} groups are approximately $\delta 3,80$. Spectrum data of $\mathrm{N}=\mathrm{CH}$ groups are near $\delta 9,80$. On the other hand, Signals of NH protons are between δ 11,90-12,30. Chemical shift values of all synthesized Schiff Bases are between 7,00-8,90 Hz.

Table 4. ${ }^{13} \mathrm{C}$ NMR Data of the Compounds 3a-g (DMSO- $d_{6}, \delta / \mathrm{ppm}$)

Compd.	COO	$\begin{gathered} \text { Triazole- } \\ \mathrm{C}_{5} \\ \hline \end{gathered}$	$\mathrm{N}=\mathrm{CH}$	TriazoleC_{5}	Aromatic C	Aliphatic C
3 a	164.42	152.11	148.64	144.66	$\begin{aligned} & 163.42,151.62,139.72,132.68 \text { (2C), } 127.78 \text {, } \\ & 127.43,120.69,118.42,115.69,114.85 \text { (2C) } \end{aligned}$	$\begin{gathered} 56.62\left(\mathrm{OCH}_{3}\right), 56.13\left(\mathrm{OCH}_{3}-\right. \\ p), 11.36\left(\mathrm{CH}_{3}\right) \end{gathered}$
3 b	164.41	152.14	148.86	148.40	$\begin{aligned} & 163.93,151.77,139.69,132.66(2 \mathrm{C}), 127.79 \text {, } \\ & 127.43,120.75,118.63,115.72,114.83(2 \mathrm{C}) \end{aligned}$	$\begin{aligned} & 56.65\left(\mathrm{OCH}_{3}\right), 56.13\left(\mathrm{OCH}_{3}-\right. \\ & p), 18.80\left(\mathrm{CH}_{2}\right), 10.36\left(\mathrm{CH}_{3}\right) \end{aligned}$
3 c	164.42	152.15	148.89	147.28	$\begin{aligned} & 163.93,151.74,139.71,132.67(2 \mathrm{C}), 127.82, \\ & 127.42,120.70,118.58,115.65,114.82(2 \mathrm{C}) \end{aligned}$	$\begin{gathered} 56.60\left(\mathrm{OCH}_{3}\right), 56.10\left(\mathrm{OCH}_{3}-\right. \\ p), 26.97\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 19.17 \\ \left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 13.80\left(\mathrm{CH}_{3}\right) \end{gathered}$
3 d	164.46	152.11	148.44	146.62	$\begin{gathered} \text { 163.93, 151.63, 139.90, 132.67 (2C), 127.76, } \\ 127.48,120.63,118.13,115.80,114.88(2 \mathrm{C}) ; \mathrm{C}- \\ 3 \text { linked arom. C: }[136.11,129.24(2 \mathrm{C}), 128.87 \\ (2 \mathrm{C}), 127.17] \end{gathered}$	$\begin{gathered} 56.66\left(\mathrm{OCH}_{3}\right), 56.13\left(\mathrm{OCH}_{3}-\right. \\ p), 31.35\left(\mathrm{CH}_{2}\right) \end{gathered}$
3 e	164.44	152.09	148.33	146.77	$\begin{gathered} 163.93,151.62,139.87,132.67(2 \mathrm{C}), 127.76, \\ 127.49,120.59,118.08,115.76,114.88(2 \mathrm{C}) ; \mathrm{C}- \\ 3 \text { linked arom. C: }[136.23,132.99,129.44(2 \mathrm{C}), \\ 129.11(2 \mathrm{C})] \end{gathered}$	$\begin{aligned} & 56.65\left(\mathrm{OCH}_{3}\right), 56.13\left(\mathrm{OCH}_{3}-\right. \\ & \text { p), } 30.95\left(\mathrm{CH}_{2}\right), 21.07\left(\mathrm{CH}_{3}\right) \end{aligned}$
3 f	164.45	152.13	148.63	146.27	$\begin{gathered} 163.93,151.62,139.14,132.66(2 \mathrm{C}), 127.74, \\ 127.45,120.66,118.23,115.82,114.86(2 \mathrm{C}) ; \mathrm{C}- \\ 3 \text { linked arom. C: }[135.05,131,93,131.15(2 \mathrm{C}), \\ 128.79(2 \mathrm{C})] \end{gathered}$	$\begin{gathered} 56.66\left(\mathrm{OCH}_{3}\right), 56.11\left(\mathrm{OCH}_{3}-\right. \\ p), 30.62\left(\mathrm{CH}_{2}\right) \end{gathered}$
3 g	164.41	152.17	150.99	140.07	$\begin{gathered} 163.91,151.76,140.17,132.66(2 \mathrm{C}), 127.71,127.57, \\ 120.67,117.98,116.01,114.84(2 \mathrm{C}) ; \mathrm{C}-3 \text { linked } \\ \text { arom. C: }[130.55,128.92(2 \mathrm{C}), 128.47(2 \mathrm{C}), 127.01] \end{gathered}$	$56.71\left(\mathrm{OCH}_{3}\right), 56.15\left(\mathrm{OCH}_{3}-p\right)$

${ }^{13} \mathrm{C}$ NMR data of 3a-i compounds are coherent with ${ }^{1} \mathrm{H}$ NMR values. Signals belonging to OCH_{3} carbons are contain standart value which is $\delta 56,00$. Aliphatic CH_{3} and CH_{2} groups are also contain coherence values. Signals of aromatic carbons are between $\delta 113,00-151,00$. Triazoles C-3 carbon's signal values are between $\delta 144,00-147,00$. C-5 carbons of triazol rings gives signal at $\delta 153,00 . \mathrm{N}=\mathrm{CH}$ signals of all of the compounds are $\delta 148,00$. These data are similar to literature values.

Experimental

Apparatus

A Jenway 3040-model ion analyzer was used for potentiometric titrations. An Ingold pH electrode was preferred becauseof the advantage.

Reagents

All chemicals used were of analytical reagent grade or similar. Tetra-nbutylammonium hydroxide (TBAH), isopropyl alcohol, tert-butyl alcohol, acetone, N,Ndimethylformamide and dimethyl sulfoxide (DMSO) (Merck Darmstadt, Germany)) were used throughout the work without further purification.

Procedure

For each compound that would be titrated, the 0.001 M solution was separately prepared in each non-aqueous solvent. The 0.05 M solution of TBAH in isopropyl alcohol, which is widely used in the titration of acids, was used as titrant. The mV values, that were obtained in pH -meter, were recorded. Finally, the half-neutralization potential values and the corresponding pKa values were determined by drawing the mL (TBAH)-mV graphic.

Results and Discussion

There have been several studies about the potentiometric titrations of some new 3-alkyl(aryl)-4-[2-(3-methoxy-4-methoxybenzoxy)-benzylidenamino-4,5-dihydro-lH-1,2,4-triazol-5-ones with tetrabutylammonium hydroxide (TBAH) in the non-aqueous solvents such as isopropyl alcohol, methyl alcohol, tert-butyl alcohol and acetone, and the pKa values were found between 2.71-18.99.

As an example, the potentiometric titration values of 0.001 M some 3 -alkyl(aryl)-4-[2-(3- methoxy-4-methoxybenzoxy)-benzylidenamino-4,5-dihydro-lH-1,2,4-triazol-5-ones solutions titrated with 0.05 N TBAH in isopropyl alcohol, tert-butyl alcohol, N,Ndimethylformamide and acetone are presented in Table I; and the graphics formed (3a, 3e) from the potentiometric titrations are given in Figure 2.

Figure 1 . Potentiometric Titration Graps of 3a-g Compounds

When the dielectric permittivity of solvents is taken into consideration, the acidic arrangement may be expected as follows: N,N-dimethylformamide ($\mathrm{s}=37$) > acetone $(\mathrm{s}=20.7)$ > isopropyl alcohol $(\mathrm{s}=19.4)>$ tert-butyl alcohol $(\mathrm{s}=12)$. The experimental and theoretical acidic arrangement, along with the error for each compound, these compounds (except for compound 3a in acetone) show the weakest acidic properties in foursolvents.

Table 4. The half neutralization potentials (HNP) and the corresponding $\mathrm{p} K_{\mathrm{a}}$ values of compounds $\mathbf{3 a - g}$ in solvents at $25^{\circ} \mathrm{C}$

COMPOUND		DMF		acetone		tert-butylalcohol		isopropyl alcohol	
		$\mathrm{pK}{ }_{\text {a }}$	HNP	pK a	HNP	pK_{a}	HNP	$\mathrm{pK} \mathrm{a}_{\text {a }}$	HNP
CH_{3}	3 a	17.94	-429	-	-	12.16	-242	18.99	-478
$\mathrm{CH}_{2} \mathrm{CH}_{3}$	3 b	15,24	-324	13,67	-318	16,36	-368	18,37	-442
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	3 c	18.04	-433	14,40	-351	8,68	-67	11,5	-203
$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	3 d	17,33	-411	11,98	-189		-531	18.41	-452
$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}(\mathrm{p}-)$	3 e	17,41	-419	13,39	-274	-	-712	16,96	-432
$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}(\mathrm{p}$-)	3 g	18.35	-448	16,82	-405	-	-695	18,26	-442,5
$\mathrm{C}_{6} \mathrm{H}_{5}$	$3 i$	18.89	-472	2,71	283	11,41	-168	12,95	-231

Typical S-shaped curves were not obtained from the compounds (for compound 3a in acetone) in solvents. Therefore, the HNP values and the $\mathrm{p} K_{\mathrm{a}}$, values were not determined clearly.

As known, the acidity of a compound changes in relation to some factors. The most important two factors of them are the solvent effects and molecular structure [16-20]. It is seen from the Table 4 that the molecular structure of titrated compounds affect the HNP values and the corresponding $\mathrm{p} K_{\mathrm{a}}$ values: that is, the HNP values and corresponding $\mathrm{p} K_{\mathrm{a}}$ values are connected to the substituents linked to C-3 into some new 3-alkyl(aryl)-4-[2-(3-methoxy-4-methoxybenzoxy)-benzylidenamino-4,5-dihydro-lH-1,2,4-triazol-5-ones ring for the same solvent.

Acknowledgements

This work was supported by the Turkish Scientific and Technological Council (Project Number: TBAG 107T633).

References

1. Yüksek, H., Küçük, M., Alkan, M., Bahçeci, Ş., Kolaylı, S., Ocak, Z., Ocak, U., Şahinbaş, E. and Ocak, M., Asian J. Chem. 2006, 18, 539-550.
2. Yüksek, H., Kolaylı, S., Küçük, M., Yüksek, M. O., Ocak, U., Şahinbaş, E., Sivrikaya, E. and Ocak, M., Indian J. Chem. 2006, 45B, 715-718.
3. Bahçeci, Ş., Yüksek, H., Ocak, Z., Azaklı, A., Alkan, M. and Ozdemir., M. Collect. Czech. Chem. Comтип. 2002, 67, 1215-1222.
4. Bahçeci, Ş., Yüksek, H., Ocak, Z., Köksal, C. and Ozdemir, M., Acta Chim. Slov. 2002, 49, 783-794.
5. Yüksek, H., Üçüncü, O., Alkan, M., Ocak, Z., Bahçeci, Ş. and Özdemir, M., Molecules, 2005, 10, 961970.
6. Yüksek, H., Ocak, Z., Özdemir, M., Ocak, M., Bekar, M. and Aksoy, M., Indian J. Heterocyl. Chem. 2003, 13, 49-52.
7. Yüksek, H., Bahçeci, Ş., Ocak, Z., Alkan, M., Ermiş, B., Mutlu, T., Ocak, M. and Özdemir, M., Indian J. Heterocy. Chem., 2004, 13, 369-372.
8. Yüksek, H., Bahçeci, Ş., Ocak, Z., Özdemir, M., Ocak, M., Ermiş, B. and Mutlu, T., Asian J. Chem. 2005, 17, 195-201.
9. Yüksek, H., Gürsoy, Ö., Çakmak, İ. and Alkan, M., Magn. Reson. Chem. 2005, 43, 585-587
10. Yüksek, H., Çakmak, İ., Sadi, S. and Alkan, M., Int. J. Mol. Sci. 2005, 6, 219-229.
11. Ikizler, A.A. and Yüksek, H., Org. Prep. Proceed. Int. 1993, 25, 99-105.
12. Ikizler, A. A., Şentürk, H. B. and Ikizler, A., Doğa-Tr. J. Chem. 1991, 15, 345-354; [Chem. Abstr. 1992, $116,173458 x]$.
13. Ikizler, A.A., Ikizler, A., Şentürk, H.B. and Serdar, M., Doğa-Tr. Kimya D. 1988, 12, 57-66; [Chem. Abstr. 1988, 109, 238277q].
14. Yüksek, H., Alkan, M., Ocak, Z., Bahçeci, Ş., Ocak, M. And Özdemir, M., Indian J. Chem. 2004, 43B, 1527-1531.
15. Yüksek, H., Ocak, Z., Alkan, M., Bahçeci, Ş. and Özdemir, M., Molecules 2004, 9, 232-240.
16. İkizler, A. A., Şentürk, H. B. and İkizler, A., Doğa-Tr J. Of Chem., 1991, 15, 345.
17. Erdoğan, ., Aslan, A., Demirbaş, A. And Yaylı, N., Modelling. Measurement \& Control C, AMSE Press, 1994, 46-49.
18. Fritz, J. S., Acid-Base Titrations in Nonaqueous Solvents, Allyn and Bacon Inc., Boston, 1973.
19. Gündüz, T., Kalitatif Analiz Ders Kitabı, Ankara Üniversitesi, Fen Fakültesi Yayınları, Ankara, 1975.
20. Gündüz, T., Susuz Ortam Reaksiyonları, Gazi Büro Kitabevi Tic. Ltd. Şti, Ankara, 1998.
