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High entropy alloys (HEAs) are a novel class of emer-
ging materials with great potential to be applied in a 
wide range of engineering applications due to their 
unique comprehensive properties and structures (1, 
2). Differing from conventional alloys, HEAs usually 
contain five or more principal elements in equiato-
mic or near-equiatomic ratios which causes an incre-
ase in the mixing entropy (ΔSmix) of the alloys (3). Ac-
cordingly, HEAs are more likely to form simple solid 
solution structures such as face-centered cubic (FCC), 
body-centered cubic (BCC), and hexagonal close-pac-
ked (HCP) because of the reduced Gibbs free energy 
(4–6).

FCC-type HEAs have received much attention as 
compared to conventional alloys due to their exceptio-
nal properties such as fracture toughness at cryogenic 
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temperatures (7), and remarkable ductility (8). The well-
known equiatomic CoCrFeNi HEA with a single FCC 
crystal structure is the starting point of numerous stu-
dies in the field of alloy development. The reported yi-
eld strength and ultimate tensile strength of the as-cast 
CoCrFeNi HEA are 160 MPa and 718 MPa, respectively 
(9). In addition, this HEA shows an excellent elongation 
to failure of over 50 % suggesting outstanding uniform 
deformation along with high strain hardening ability (9). 
This feature provides a great base for further strengthe-
ning the ductile HEAs. However, recent research indica-
tes that a HEA matrix alone, particularly the single-pha-
se FCC structure, is insufficiently robust for engineering 
applications at ambient and increased temperatures (10). 
Thus, the development of the mechanical properties of 
single-phase FCC CoCrFeNi HEAs has received great 
attention over the past decade (11). The main strategies 
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The CoCrFeNi high entropy alloy (HEA) with face-centered cubic (FCC) crystal struc-
ture exhibits excellent ductility values even at cryogenic temperatures. However, since 

this HEA is relatively weak in strength, it may not meet the requirements of industrial 
applications in terms of strength-ductility trade-off. Therefore, the systematic addition 
of yttrium (Y) into CoCrFeNi HEA was investigated in the present study to increase the 
strength by solid solution and second phase strengthening. The HEAs were produced by 
vacuum arc melting, suction casting, and subsequent homogenization at 1150 °C for 24 h. 
The structural development of the HEAs was investigated by using the X-ray diffraction 
(XRD) technique which revealed the formation of a solid solution phase and CaCu5-type 
hexagonal structure (HS) second phase. The corresponding microstructure of the HEAs 
was examined under a scanning electron microscope (SEM) revealing the transformation 
of the microstructure from elongated grains to nearly equiaxed grains with the increase of Y 
content from 2 at. % to 4 at. %. The mechanical properties of the HEAs were investigated 
by using hardness and compression tests. The results exhibited a dramatic increase in the 
hardness from 143 (±2) HV to 335 (±7) HV and in the yield strength from 130 MPa to 
1025 MPa with 4 at. % Y addition. Our study has revealed that the addition of rare earth 
Y element results in further development in the strength of the CoCrFeNi for potential 
engineering applications.
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In the present study, CoCrFeNi, (CoCrFeNi)98Y2, 
(CoCrFeNi)96Y4 HEAs were produced by vacuum arc mel-
ting to investigate the development of the mechanical pro-
perties due to the solid solution strengthening of solute Y 
atoms in the FCC crystal structure and formation of second 
phases. The formations of the phases were investigated ex-
perimentally by XRD, SEM, and EDS analyses along with 
the mechanical properties and interpreted thermodynami-
cally.

MATERIAL AND METHODS

The CoCrFeNi, (CoCrFeNi)98Y2, (CoCrFeNi)96Y4 HEAs 
with the nominal compositions provided in Table 1 were 
produced by vacuum arc melting technique under argon 
atmosphere. For convenience, they are referred to as base, 
2Y, and 4Y, respectively. The elemental Co, Cr, Fe, Ni, and 
Y chunks, each with purities higher than 99.9 wt. % were 
used to obtain the metal mixtures based on the nominal 
compositions. A total of 3 grams of metal chunk mixtures 
for each composition were charged into Edmund Buhler 
MAM-1 copper hearth arc-melter to produce ingots. The 
HEA ingots were flipped and re-melted at least 3 times to 
achieve the chemical homogeneity in the microstructure. 
Finally, the alloys were suction cast into a water-cooled 
cylindrical copper mold with a diameter of 4 mm. The 
suction-casted HEAs were homogenized at 1150 °C for 
24 h in a tube furnace with a controlled atmosphere.

The structural characterizations of the HEAs were 
conducted by using a Panalytical Empyrean X-ray diffracto-
meter with Cu-Kα radiation source (λ=1.5406 Å). The X-ray 
diffraction (XRD) characterization was conducted with a 
scanning rate of 1°/min between 35-100° values.

The relative intensity ratio (RIR) method is used to 
determine the percentages of the hexagonal structure (HS) 
phases based on the XRD analyses as shown in the follo-
wing equation (29, 30):

( )

( ) HS

hkl FCCFCC HS

HS hkl FCC

IV R
V I R

= ⋅ (1)

where v and I are the volume fraction and intensity of 
the most intense (hkl) peak, respectively. R-value of any 
phase a is given by (29–31):

to enhance the mechanical properties of the HEAs inclu-
de severe plastic deformation (12), tuning the composition 
of the main alloy (13–15), solid solution hardening by the 
addition of solute atoms (16), and second-phase hardening 
(17–19). It is widely known that adding additional alloying 
elements, such as Al, Mn, and Cu at low concentrations to 
the base CoCrFeNi alloy destabilizes the single FCC phase 
and promotes phase (20, 21). For instance, Wang et al. (22) 
reported that the presence of Al in Al0.3CoCrFeNi HEA pro-
duced by the magnetic levitation induction technique and 
subsequent annealing at 800 °C resulted in the formation of 
a B2 phase. The formation of the B2 phase in the FCC mat-
rix caused outstanding mechanical properties of ~870 MPa 
yield strength and ~1060 MPa tensile strength as well as the 
ductility of ~26 %. In addition, Chen et al. (23) produced 
(CoCrFeNi)100-x(ZrC)x (x = 0-8, at. %) HEAs by arc-melting 
and investigated the strengthening mechanisms. They sho-
wed that the amounts of Laves and ZrC phases were inc-
reased with the increasing amounts of Zr and C additions, 
resulting in an improvement of the yield strength from 154 
MPa to 374 MPa owing to the second phase strengthening 
mechanism.

The rare earth (RE) elements, often known as "indust-
rial vitamins" due to their exceptional physical and chemical 
qualities, play a significant role in enhancing the quality of 
products and raising manufacturing performance. Because 
of their beneficial effects on molten steel purification and 
inclusion modification, additions of RE elements into steels 
have been a popular strategy for tailoring microstructure 
and improving mechanical performance (24–26). In additi-
on, Y addition caused a substantial increase in the hardness 
of Fe-Al and Ni-Al-based superalloys (27, 28). 

Similarly, it is shown in the literature that the mechani-
cal properties of the HEAs could be enhanced by the addi-
tion of RE elements such as Y and Zr. For instance, Polat et 
al. (18) produced 1 and 4 at. % Y added CoCrFeNi HEAs by 
mechanical alloying followed by annealing and investigated 
the mechanical properties. They showed that an increase in 
the Y content caused a dramatic rise in the hardness from 
215 to 435 HV after annealing at 1100 °C. Similarly, Tekin 
et al. (17) studied the effect of 1 and 4 at. % Zr addition into 
CoCrFeNi HEAs by mechanical alloying and subsequent 
annealing at 1100 °C. They reported a systematic increase 
in the hardness from 315 to 347 HV with the addition of 1 
and 4 at. % Zr, respectively. These results demonstrate that 
the mechanical properties of HEAs could be further enhan-
ced by the addition of RE elements synthesized by mechani-
cal alloying. However, an inspection of the literature shows 
a lack of studies that utilized RE elements to increase the 
mechanical properties of the CoCrFeNi HEAs by melting 
techniques.

Table 1. The nominal compositions of the base, 2Y, and 4Y HEAs.

Compositions (at. %)

HEA Co Cr Fe Ni Y

Base 25 25 25 25 -

2Y 24.5 24.5 24.5 24.5 2

4Y 24 24 24 24 4
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α α α

α
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⋅ ⋅
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where M, LP, F, and V are the multiplicity factor, Lorentz-
polarization factor, structure factor, and volume of the 
unit cell, respectively.

The HEAs were etched by using a fresh aqua regia so-
lution (a mixture of nitric acid and hydrochloric acid with a 
molar ratio of 1:3) for 1-2 min. The microstructural charac-
terization and energy dispersive spectroscopy (EDS) were 
performed by using Hitachi SU1510 scanning electron mic-
roscope (SEM) with the Oxford Instruments x-act detector.

Hardness tests were conducted to determine the relati-
onship between microstructure and mechanical properties 
of the HEAs as a function of Y content. The micro Vickers 
tests were carried out on the cylindrical 4 mm HEAs by 
using a load of 4.903 N (0.5 kgf) and a dwell duration of 10 
sec at room temperature. At least 5 measurements were ta-
ken from each sample and their average was used for the 
corresponding hardness values. The compression tests were 
performed at room temperature using an INSTRON 5582 
universal testing machine with a 10-ton capacity at a stra-
in rate of 10-4 s-1 according to ASTM E9-09 standard. The 
samples were prepared by adjusting their height to be 1.5-2 
times the diameter. To ensure the reliability of the test re-
sults, three samples were tested for each sample set.

RESULTS AND DISCUSSION

Structural and Microstructural Evolution of the 
HEAs

Fig. 1 shows the XRD patterns of the HEAs after homo-
genization at 1150 °C for 24 h. It should be noted that the 
homogenization duration and temperature were deter-
mined based on previous studies and ~0.7Tm, respecti-
vely, where Tm represents the theoretical melting points 
of the HEAs calculated through thermo-physical calcula-
tions (32, 33). The FCC phase is present in all the alloys, 
as seen by the (111), (200), (220), and (311) reflections of 
the FCC crystal structure. The base HEA consists of only 
these reflections in the XRD pattern, while additional 
reflections corresponding to a simple hexagonal structu-
re (HS) were detected with Y additions. The formation 
of the HS could be attributed to the reaction between Y 
and Ni to form a CaCu5 type Ni-Y rich phase with the P6/
mmm space group, which agrees well with the previous 
reports indicated by Zhang et al. (26) and Zhou et al. (34). 
Due to the limited solubility of Y in Ni with a value of 
0.4 at. % cause the formation of intermetallic compounds 
instead of the solid solution formation (35). In addition, 
the large negative enthalpy of mixing (ΔHmix) value of -31 

kJ/mol for the Ni-Y pair (Table 2) triggers the reaction 
between these elements as compared to the remaining 
elements in the HEAs (18). Xu et al. (36) showed that 
ΔHmix plays a critical role in the formation of the solid 
solution or intermetallic phases. The large negative va-
lues of ∆Hmix cause the increase in the bonding strength 
between the element pairs owing to their proper chemi-
cal reaction (37).

The increasing Y content from 2 at. % to 4 at. % raised 
the peak intensities of the HS phase suggesting the increase 
in the HS phase. In addition, the increasing Y content cau-
sed a shift towards a lower angle, as can be seen clearly in 
(311) reflection (Fig. 1) of the FCC phase. The decrease in
the angles of the peak positions could be attributed to the
increase in the lattice parameter of the HEAs due to the
increase in the atomic radius of Y. That is, the increasing
dissolution of the Y element in the HEAs causes a lattice
distortion in the HEAs as pointed out by Zhang et al. (26).

The SEM images of the 2Y and 4Y HEAs are provided 
in Fig. 2. As can be deduced from the figure, the increasing 
Y content changes the shape of the etched region from elon-
gated grains to nearly equiaxed grains.  That is, the further 
addition of the Y element from 2 at. % to 4 at. % into the HEA 
results in the dendritic microstructure due to the increasing 
segregation into interdendritic regions. The frontal segrega-

Table 2. Enthalpy of mixing (ΔHmix, kJ/mol) values for the atom pairs 
in the HEAs (38).

Co Cr Fe Ni Y

Co 0 -1 0

Cr

-4

0 -7

-22 

11

Fe

-1

0 -1

Ni

-2

0

Y

-31

0

Figure 1. XRD patterns of the base, 2Y, and 4Y HEAs.
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tion of the solute atoms in the solid-liquid interface causes 
a compositional change at the interface resulting in the for-
mation of primary dendrites upon the solidification (39).

The SEM image and EDS line scanning provided in Fig. 
3 show the compositional distribution between the matrix 
and second phase in the microstructure of the etched 4Y 
HEA. It should be noted that since the microstructure con-
sists of dual phases of FCC and HS as shown with the XRD 
analyses (Fig. 1), the second phase could be indexed as HS. 
The EDS data provided in Fig. 3b shows that the FCC pha-

se is responsible for the almost homogeneously distributed 
areas of Co, Cr, and Fe with average values of around 27 at. 
%. In addition, the FCC matrix includes the homogeneously 
distributed Ni content with a value of ~17.5 at. %. This va-
lue is well below the nominal composition of the 4Y HEA 
having 24 at. % Ni in it. On the other hand, as can be seen 
in Fig. 3b, the Ni content reaches to a value of 40 at. % in 
the interdendritic regions, while the Co, Cr, and Fe elements 
deplete in this region. This suggests the segregation of the 
Ni element into the interdendritic region along with Y. In 
addition, the depletion of both Ni and Y elements could be 
seen in the grain boundary (GB) (Fig. 3a) of the FCC and 
HS phases.

It should be noted that although an increasing amount 
of Y could be expected in the interdendritic regions, the 
etching process decreases their amount. Therefore, detailed 
EDS analyses were conducted on the unetched 4Y HEA to 
reveal the exact elemental distribution of the FCC (matrix) 
and HS (segregated phase) as shown in Fig. 4. These results 
suggest the similar elemental distribution of Co, Cr, and Fe 
within the FCC matrix consistent with the EDS line scan-
ning results. However, the compositions of Ni and Y ele-
ments in the HS phase reach values of 41.3 and 17.5 at. %, 
respectively, which is in line with the XRD results indicating 
the formation of the HS phase.

The Evolution of Mechanical Properties

The influence of the Y addition on the mechanical pro-
perties was investigated with the correlation of the HS 
phase formed in the microstructure. The hardness values 
and compression properties of the HEAs including yield 
stress (σ0.2), fracture/peak stress (σp), and compressive 
strain to fracture (ε), are provided in Fig. 5 and summari-
zed in Table 3. As seen in Fig. 5a, the amount of HS phase 
in the FCC matrix of the HEAs increased from 0 to 34 vol. 
% with the addition of 4 at. % Y, and the corresponding 

Figure 2. SEM images of 2Y HEA a) low magnification, b) high mag-
nification. SEM images of 4Y HEA a) low magnification, b) high mag-
nification.

Figure 3. a) SEM image b) Corresponding EDS line scanning of etched 
4Y HEA.

Figure 4. Mapping and point EDS analyses of unetched 4Y HEA.
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hardness values were raised from 143 (±2) HV to 335 (±7) 
HV. In addition, the increasing Y content from 0 at. % to 
4 at. % caused a dramatic increase in the yield strength 
from 130 MPa to 1025 MPa. On the other hand, the inc-
rease in the Y content from 2 at. % to 4 at. % decreased the 
compressive strain from 32 % to a value of around 16.5 
%. It should be noted that the base HEA demonstrated 
high ductility and high strain hardening; its strength inc-
reased over 1960 MPa and it showed no signs of cracking 
up to compressive deformation of 50 %. Nevertheless, as 
can be deduced from the results, the formation of the 
HS phases plays a critical role in the improvement of the 
mechanical properties of the HEAs. These findings are in 
agreement with previous studies (26, 40, 41). The incre-
ased mechanical properties with the addition of alloying 
elements are generally divided into two categories; solid-
solution strengthening and second-phase strengthening 
(14, 42, 43). Firstly, as explained in XRD analysis results 
(Fig. 1), the addition of Y causes a shift in the positions of 
the FCC reflections towards the lower angles due to the 
dissolution of Y in the matrix. This suggests a lattice dis-
tortion in the FCC crystal structure, and hence, an inc-

rease in the mechanical properties (44) due to the much 
larger atomic radius of Y as compared to the elements 
in the matrix (45). Secondly, the formation of the second 
phase causes a dramatic increase in the mechanical pro-
perties of the HEAs as reported in the previous studies 
(14, 32, 42). In the present study, the addition of excess Y 
into base HEA resulted in the formation of the HS phase 
in the microstructure. This causes an additional contri-
bution to the increase of the mechanical properties due 
to the hard nature of the HS phase. The decrease in the 
available slip systems in the HS phases compared to the 
FCC results in the production of more brittle but stron-
ger alloys (26). Therefore, the increasing amount of the 
HS phases up to 34 vol. % along with the solid solution 
strengthening has a vital contribution to the mechanical 
properties of the investigated HEAs.

The compression test results showed that Y addition 
caused the change in the failure mechanism of the HEAs. 
Therefore, the fracture morphology of the 4Y HEA was 
investigated under SEM to reveal the effect of Y on the 
fracture mode as shown in Fig. 6. As can be seen, although 
there are some river lines and smooth facets indicating the 
appearance of transgranular fractures, the intergranular 
dominated fracture was observed in the HEA due to the 
formation of hard and brittle HS phase in the intergrain re-
gions resulting in the weakness of the intergrain regions (27, 
46). In addition, the formation of tear edges in the fracture 
surface of the HEA shows relatively ductile behavior of the 
corresponding regions, which is consistent with what has 
been found in previous studies (32, 47). That is, combined 
with the above-mentioned results, it can be inferred that a 

Figure 5. a) Hardness and amount of the HS phase in the HEAs as a function of composition, b) Compressive stress-strain curves of the HEAs.

Table 3. Hardness and compressive properties of the base, 2Y and 4Y 
HEAs, and the amount of HS phase in the HEAs. *The base HEA de-
monstrated no fracture over the compressive strain value of 50 % and the 
compressive stress was continuously raised.

HEA Amount 
of HS (%)

Hardness 
(HV)

σ0.2 
(MPa)

σp 
(MPa) ε (%)

Base 0 143 (±2) 130 >1960* >50*

2Y 25 243 (±3) 562 1650 31.5

4Y 34 335 (±7) 1025 1538 16.5

Figure 6. SEM images showing the fracture surface of the 4Y HEA after compression tests a) 1000x, b) 5000x.
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mixed mode of fracture indicating quasi-cleavage fracture 
was observed in 4Y HEA.

CONCLUSION

In the present study, The CoCrFeNi, (CoCrFeNi)98Y2, 
(CoCrFeNi)96Y4 HEAs were produced by vacuum arc mel-
ting and subsequent homogenization at 1150 °C for 24 h. 
The effect of Y addition on the structural, microstruc-
tural, and mechanical properties was investigated. The 
following conclusions could be drawn:

•	 The systematic addition of 2 at. and 4 at. % Y into
CoCrFeNi HEA caused the dissolution of Y in the FCC 
crystal structure and the formation of CaCu5-type HS se-
cond phase. 

• The increasing Y content from 2 at. % to 4 at. %
resulted in the transformation of the microstructure from 
an elongated shape to nearly equiaxed grains.

• The EDS analyses revealed the segregation of the
Ni and Y atoms into intergrain regions.

• The hardness of CoCrFeNi HEA was increased
from 143 (±2) HV to 335 (±7) HV with the addition of 4 at. % 
Y.

• The compressive yield strength, fracture stress,
and strain of 1025 MPa, 1538 MPa, and 16.5 %, respectively, 
were achieved with the addition of 4 at. % Y. 

• The strength-ductility trade-off of CoCrFeNi
HEA could be enhanced by the addition of Y for the poten-
tial engineering application.
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