

RESEARCH ARTICLE

Chemical Composition of *Heracleum platytaenium* Boiss. (Apiaceae) essential oil from Turkey

Ceyda Sibel Kılıç^{1*}, Betül Demirci², Maksut Coşkun¹, Kemal Hüsnü Can Başer³

¹ Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, 06100 Ankara, TURKEY

² Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, TURKEY

³ Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia, N. Cyprus, Mersin 10, TURKEY

*Corresponding author. Email: erdurak@pharmacy.ankara.edu.tr

Abstract

Heracleum platytaenium Boiss. is a monocarpic and strongly aromatic plant that is endemic for Turkey. Many studies on activities, constituents and composition of the essential oil of different parts of this species and other *Heracleum* species have been conducted. However, as far as we are concerned, the essential oil composition of the roots has not been investigated. In this study, we investigated the essential oil composition of the roots of *H. playtaenium* and identified *p*-cymene (33.9%), terpinolene (14.3%), γ -terpinene (7.1%), elemicine (3.1%) and myristicine (2.9%) as the major constituents.

Key words: Heracleum platytaenium, Apiaceae, essential oil, GC, GC-MS

Introduction

Heracleum L. belongs to the family Apiaceae and is represented by 23 taxa in Turkey and 7 of these species are endemics (Guner, 2012). The genus has a widespread distribution throughout Europe, therefore some of the species are considered to be invasive (Bahadori et al., 2016). Some species of the genus are being used in traditional medicine in our country and also throughout the world. Heracleum species are reported to be used as antipyretic, analgesic, diaphoretic, antiseptic, carminative and digestive agents, for the treatment of rheumatic disease, hypertension, epilepsy and diarrhea, lumbago, gastralgia and injuries from falls, contusions and strains (Akcin et al., 2013) and as wound healing (Tetik et al., 2013). One Heracleum species (H. candicans) is used as a source for xanthotoxin – a substance used in the composition of suntan lotions for its antileucodermal properties (Guleri et al., 2011) furanocoumarins and essential oil obtained from H. crenatifolium is reported to have anticonvulsant activity (Tosun et al., 2008). Some Heracleum species are reported to be used as flavoring, spices, carminative and antiseptic, digestive and analgesic in Iranian folk medicine (Sefidkon et al., 2002; Hajhashemi et al., 2009; Torbati et al., 2014; Amanpour et al., 2016); as a carminative herbal drug in Thai folk medicine (Kuljanabhagavad et al., 2010) and for inflammatory condition, as antiarthritic and nerve tonic in Indian folk medicine (Purushothaman and Ravi, 2013). Heracleum platytaenium is known with the names havlan, havlanotu, hometi, kekrer, romati, yabanlahanası (Kızılarslan and Özhatay, 2012) and yavşan otu (Bayrak Özbucak et al., 2007) in Turkish. In addition to its traditional usage as medicine, the species is also used for culinary purposes; e.g. the stems and stalks of the plant are consumed as pickles around İzmit (Kızılarslan and Özhatay, 2012); the stems of the plant are first pickled and then eaten as raw or as cooked with olive oil in the Black Sea region of Turkey (Bayrak Ozbucak et al., 2006) and leaves of the plant are coked as meal or eaten as fresh in salads around Nigde (Ozdemir and Alpınar, 2010-2011). Since this species (Koçak et Buruk et al., 2006) and different Heracleum species are also reported to have antiviral (Tkachenko, 2006), antibacterial and antifungal activities (Benli, et al., 2007; Ergene et al.,

2009; Kuljanabhagavad et al., 2010; Özçakmak, 2012; Jagannath et al., 2012; Miladinovic, et al., 2013), this species is tested against different strains of bacteria and fungi and the essential oil of the plant was determined to have inhibitory and toxic effect against a fungus called *Penicillium verrucosum* which was isolated from kashar cheese (Özçakmak, 2012), and against *Paenibacillus larvae* (Özkırım et al., 2012).

Though essential oils of different parts of various *Heracleum* species have been studied previously, studies of the composition of the roots are scarce. In this study, we isolated the essential oil of the roots and analyzed it by means of GC and GC-MS and reported the results.

Materials and Methods

Plant material

The plant was collected from the below mentioned locality and identified by Prof. Dr. Hayri Duman (Gazi University, Faculty of Science, Department of Biology) and the voucher specimen is kept in AEF (Herbarium of Ankara University Faculty of Pharmacy).

Collection locality: *Heracleum platytaenium*: A7: Trabzon: Maçka-Torul arası, Maçka çıkışında yol kenarları, 3/7/2006 (AEF: 23756)

Isolation of the essential oils

Air dried roots (50g) were subjected hydrodistillation for 3 h using a Clevenger apparatus. Essential oil, obtained with a yield of 4% was dried over anhydrous sodium sulfate and stored in a sealed vial at +4°C in the dark until analyzed and tested.

GC and GC/MS analyses

GC-MS analysis

The GC-MS analysis was carried out with an Agilent 5975 GC-MSD system. Innowax FSC column (60 m x 0.25 mm, 0.25 μ m film thickness) was used with helium as carrier gas (0.8 ml/min). GC oven temperature was kept at 60°C for 10 min and programmed to 220°C at a rate of 4°C/min, and kept constant at 220°C for 10 min and then programmed to 240°C at a rate of 1°C/min. Split ratio was adjusted at 40:1. The injector temperature was set at 250°C. Mass spectra were recorded at 70 eV. Mass range was from *m/z* 35 to 450.

GC analysis

The GC analysis was carried out using an Agilent 6890N GC system. FID detector temperature was 300°C. To obtain the same elution order with GC-MS, simultaneous auto-injection was done on a duplicate of the same column applying the same operational conditions. Relative percentage amounts of the separated compounds were calculated from FID chromatograms.

Identification of the volatile compounds

Identification of the essential oil components were carried out by comparison of their relative retention times with those of authentic samples or by comparison of their relative retention index (RRI) to series of *n*-alkanes. Computer matching against commercial (Wiley GC/MS Library, Adams Library, MassFinder 3 Library), and inhouse "Başer Library of Essential Oil Constituents" built up by genuine compounds and components of known oils, as well as MS literature data (Joulain and Koenig, 1998; ESO 2000, 1999) was used for the identification.

Results and Discussion

Analysis of the essential oil resulted in the characterization of 70 components, corresponding to the 89.4% of the total oil. The composition of the essential oil is given in Table 1 with major components in written in bold.

Table1. Composition of the Essential Oil of *Heracleum platytaenium* roots

RRI	Compounds	%
1032	α-Pinene	2.5
1035	α-Thujene	2.6
1076	Camphene	0.5
1093	Hexanal	0.2
1118	β-Pinene	0.3
1132	Sabinene	1.2
1159	δ -3-Carene	0.1
1174	Myrcene	1.2
1176	α-Phellandrene	tr
1188	α-Terpinene	0.2
1194	Heptanal	0.4
1203	Limonene	2.6
1218	β -Phellandrene	tr
1244	2-Pentyl furan	0.3
1246	(Z)-β-Ocimene	0.2
1255	γ-Terpinene	7.1
1266	(<i>E</i>)-β-Ocimene	0.3
1280	<i>p</i> -Cymene	33.9
1290	Terpinolene	14.3
1296	Octanal	1.3
1483	Octyl acetate	0.1
1492	Cyclosativene	0.1
1497	α-Copaene	0.3
1548	(E)-2-Nonenal	0.2
1562	Octanol	0.3
1591	Bornyl acetate	0.2
1595	Isothymol methyl ether	tr
1596	α-Guaiene	0.2
1597	β-Copaene	0.3
1604	Thymol methyl ether (= <i>methyl thymol</i>)	0.3
1611	Terpinen-4-ol	0.2
1614	Carvacrol methyl ether (=methyl carvacrol)	1.1
1655	(E)-2-Decenal	0.7
1683	<i>trans</i> -Verbenol	tr
1704	γ-Muurolene	tr
1709	α –Terpinyl acetate	tr

1726	Germacrene D	tr
1730	δ-Guaiene	0.4
1740	α-Muurolene	0.4
1758	(<i>E,E</i>)-α-Farnesene	0.1
1763	Naphthalene	0.2
1771	γ-Bisabolene	0.3
1773	δ-Cadinene	0.8
1779	(<i>E,Z</i>)-2,4-Decadienal	0.5
1827	(<i>E,E</i>)-2,4-Decadienal	0.8
1864	<i>p</i> -Cymen-8-ol	0.7
1868	(E)-Geranyl acetone	tr
1878	2,5-Dimethoxy-p-cymene	0.4
1900	<i>epi</i> -Cubebol	tr
1941	α-Calacorene	0.3
1957	Cubebol	0.4
2008	Caryophyllene oxide	0.3
2050	(E)-Nerolidol	0.4
2071	Humulene epoxide-II	0.5
2080	Cubenol	tr
2088	1- <i>epi</i> -Cubenol	tr
2144	Spathulenol	1.0
2187	T-Cadinol	0.6
2209	T-Muurolol	tr
2219	δ-Cadinol (= α -muurolol)	0.5
2239	Carvacrol	0.3
2245	Elemicine	3.1
2247	<i>trans</i> -α-Bergamotol	tr
2255	α-Cadinol	tr
2257	β-Eudesmol	tr
2296	Myristicine	2.9
2384	Hexadecanol	0.5
2822	Pentadecanoic acid	tr
2931	Hexadecanoic acid	0.8
	Total	89.4

RRI Relative retention indices calculated against *n*-alkanes; % calculated from FID data; tr Trace (< 0.1 %)

As it can be seen from the Table 1.; p-cymene (33.9%), terpinolene (14.3%), γ -terpinene (7.1%), elemicine (3.1%) and myristicine (2.9%) were identified as the major constituents of the essential oil of the roots of *H. platytaenium*. When we compare these results with the literature, we can see that myristicin was found to be present in two other species as the major component, however with a percentage much higher than the one we have in our study [(2.9%) vs. 95.15% for *H. anisactis*, and 96.87% for *H. transcaucasicum*,].

Species	Used part	Compound	%	Ref.
H. anisactis	Roots	Myristicin	95.15	Torbati et.al. (2014)
H. candolleanum	Rhizomes	α-pinene	18.9	George et al. (2001)
		bornylene	18.6	
		octyl acetate	11.9	
H. hemsleyanum	Radix	(1S)-6-6,dimethyl-2- methylenebicyclo[3,1,1]heptane	12.60	Zhang et al. (2005)
		8-isopropenyl-1,5-dimethyl- cyclodeca-15-diene	10.42	
H. persicum	Roots	Viridiflorol	23.05	Mojab and Nickavar (2003).
H. sprengelianum	Rhizomes	1,8-cineole	23.10	Karuppusamy and
		β-pinene	21.84	Muthuraja (2011)
		β-phellandrene	15.19	
H. transcaucasicum	Roots	Myristicin	96.87	Torbati et.al., (2014)

Table 2. Composition of the Essential Oil of roots of other Heracleum spp. found in the literature

When we searched the literature for the components of essential oils obtained from other parts of *Heracleum* spp., we have seen that myristicin was present in the aerial parts of *H. anisactis* and *H. transcaucasicum* species (2.9% vs. 93.54% and 70.12%, respectively) (Torbati et.al., 2013). Our other major compounds were found to be present in different *Heracleum* species are as follows:

p-cymene (33.9%) was present in the essential oil of the fruits of *H. persicum* (37.3%), (Scheffer et al., 1984) and the stem of *H. rechingeri* (4.5%) (Habibi et al., 2010);

terpinolene (14.3%) was present in the fruits of *H. antasiaticum* (10.75%) (Ibadullaeva, 2000), in the leaves of *H. persicum* (9.86%) (Mojab et al., 2002), in the stems of *H. persicum* (11.3%) (Sefidkon et al., 2004), in the aerial parts of *H. thomsonii* (22.24%) (Guleria et al., 2011);

 γ -Terpinene (7.1%) was present in the fruits of *H. persicum* (27.8%) (Scheffer et al., 1984), in the flowers of *H. persicum* (17.8%), (Sefidkon et al., 2002); in the stems of *H. persicum* (7.1%) (Sefidkon et al., 2004), in the stems of *H. rechingeri* (8.8%) (Habibi et al., 2010);

elemicine (23.1%) was not found to be present in the *Heracleum* species according to our literature search.

Though the major compounds that we have found in the essential oil of *H. platytaenium* roots may be present in different parts of some other *Heracleum* species (major components of the volatile oil isolated from different parts of various *Heracleum* species is given in Table. 3 for further information), we can not conclude that these can be considered as chemotaxonomic markers for the genus. In order to make this assumption, essential oils of all *Heracleum* species should be analyzed and compared since the studies on the composition of the roots of *Heracleum* species are scarce in the literature. However, we can conclude that elemicine has been found to be present for the first time in a *Heracleum* species, though with no chemotaxonomic value.

ACKNOWLEDGEMENT

The authors would like to thank Prof. Dr. Hayri Duman (Gazi University, faculty of Science, Department of Biology) for the identification of the species.

REFERENCES

Akcin, A., Seyis, F., Aytas Akcin, T., Tanriverdi Cayci, Y., Coban, A.Y. (2013). Chemical composition and antimicrobial activity of the essential oil of endemic *Heracleum platytaenium* Boiss. from Turkey, J Essen. Oil Res., 16(2), pp 166-171. 2013.

Amanpour, A., Kelebek, H., Selli, S., Aroma components of Iranian dried *Heracleum persicum* fruit (golpar) using solventassisted flavor evaporation technique, Journal of Food and Nutrition Research, 55: 141-147, 2016.

Ashraf, M., Bhatty, M.K. (1978) Studies on the essential oils of Pakistan species of the family Umbellifeare. Part XVII. *Heracleum candicans* (Eng. Cowparsnip. var. morchar) seed oil, Pakistan Journal of Scientific and Industrial Research, 21(2), pp. 70-72.

Bahadori, M.B., Dinparast, L., Zengin, G. (2006). The genus *Heracleum*: A comprehensive review on its phytochemistry, pharmacology and ethnobotanical values as a useful herb, Comprehensive Reviews in Food Science and Food Safety, 15(6), pp. 1018-1039.

Baser, K.H.C., Kürkçüoğlu, M., Aytaç, Z. (1998). Composition of the essential oil of *Heracleum argaeum* Boiss. et bal., JEO J Essent. Oil Res., 10, pp. 561-562.

Başer, K.H.C., Kürkçüoğlu, M., Adıgüzel, N., Aytaç, Z., Joulain, D., Laurent, R. (2000). Composition of the essential oil of *Heracleum paphlagonicum* Czeczott, J Essent. Oil Res. 12(3), pp. 385-386.

Bayrak Ozbucak, T., Kutbay, H.G., Ergen Akcin, O. (2006). The contribution of wild edible plants to human nutrition in the black sea region of Turkey, Ethnobotanical Leaflets, 10, pp. 98-103.

Bayrak Özbucak, T., Ergen Akçin, Ö., Yalçın, S. (2007). Nutrition contents of some wild edible plants in Central Black Sea region of Turkey, Inernational Journal and Engineering Sciences, 1, pp. 11-13.

Benli, M., Güney, K., Bingöl, Ü., Geven, F., Yiğit, N. (2007). Antimicrobal activity of some endemic plant species from Turkey, African Journal of Biotechnology, 6(15), pp. 1774-1778.

Buruk, K., Sokmen, A., Aydin, F., Erturk, M. (2006). Antimocrobial activity of some endemic plants growing in the Eastern Black Sea region, Turkey, Fitoterapia, 77(5), pp. 388-391.

Davis, P.H. (ed.). (1972). Flora of Turkey and the East Aegean Islands, Volume 4, pp. 488-500.

Davis, P.H. (ed.) (1988). Flora of Turkey and the East Aegean Islands, Volume 10, pp. 144.

Davis, P.H. (ed.) (2000). Flora of Turkey and the East Aegean Islands, Volume 11, pp. 153-154.

Ergene, A., Tn, S., Mirici, S., Güler, P., Yildirim, S. (2009). Antimicrobial activity of *Heracleum antasiaticum*, Acta Horticulturae, 826, pp. 267-270.

ESO2000. (1999). *The Complete Database of Essential Oils*, Boelens Aroma Chemical Information Service, The Netherlands.

Firuzi, O., Asadollahi, M., Gholai, M., Javidnia, K. (2010). Composition and biological activities of essential oils from four *Heracleum* species, Food Chemistry, 122, pp. 117-122.

George, V., Chacko, S., Sethuraman, M.G., (2001). Chemical composition of the essential oil from the rhizomes of *Heracleum candolleanum*, J Essent. Oil Res., 13, pp. 80-81.

Guleria, S., Saini, R., Jaitak, V., Kaul, V.K., Lal, B., Rahi, P., Gulati, A., Singh, B. (2011). Composition and antimicrobial activity of the essential oil of *Heracleum thomsonii* Clarke from the cold dessert of the western Himalayas, Natural product Research, 25(13), pp. 1250-1260.

Habibi, Z., Eshaghi, R., Mohammadi, M., Yousefi, M. (2010). Chemical composition and antibacterial activity of essential oil of *Heracleum rechingeri* Manden from Iran, Nat Prod Res, 24(11), pp. 1013-1017.

Hajhashemi, V., Sajjadi, S.E., Heshmati, M. (2009). Anti-inflammatory and analgesic properties of *Heracleum persicum* essential oil and hydroalcoholic extract in animal models, Journal of Ethnopharmacology, 124, pp. 475-480.

Ibadullaeva, S.D. (2000). Essential oil of *Heracleum antasiaticum*, Chemistry of Natural Compound, 36(2), pp. 218.

İscan, G., Ozek, T., Ozek, G., Duran, A., Baser, K.H.C. (2004). Essential oils of three species of *Heracleum* anticandidal activity, Chemistry of Natural Compounds, 40(6), pp. 544-547.

İşcan, G., Demirci, F., Kürkçüoğlu, M., Kıvanç, M., Başer, K.H.C. (2003). The bioactive essential oil of *Heracleum sphondylium* L. subsp. *ternatum* (Velen.) Brummitt, Z. Naturforssch. 58(3-4), pp. 195-200.

Jagannath, N., Ramakrishnaiah, H., Krishna, V., Gowda, P.J., (2012). Chemical composition and antimicrobial activity of essential oil of *Heracleum rigens*, Nat prod. Commun., 7(7), pp. 943-946.

Joulain, D., Koenig, W.A. (1998). The Atlas of Spectra Data of Sesquiterpene Hydrocarbons, EB-Verlag, Hamburg.

Karimi, A.G., Ito, M. (2012). Sedative effect of vapor inhalation of essential oil from *Heracleum afghanicum* Kitamura seeds, The Journal of Essential Oil Research, 24(6), pp. 571-577.

Karuppusamy, S., Muthuraja, G. (2011). Chemical Composition and Antioxidant Activity of Heracleum sprengelianum (Wight and Arnott) Essential Oils Growing Wild in Peninsular India, Iranian Journal of Pharmaceutical Research, 10 (4), pp. 769-775.

Kızılarslan, Ç., Özhatay, N. (2012). An ethnobotanical study of the useful and edible plants of İzmit, Marmara Pharmaceutical Journal, 16, pp. 134-140.

Koenig, D., Joulain, D., Hochmuth, D.H. (2004). Terpenoids and Related Constituents of Essential Oils.

Kuljanabhagavad, T., Sriubolmas, N., Ruangrungs. (2010). Chemical composition and antimicrobial activity of the essential oil from *Heracleum siamicum*, J Health Res, 24(2), pp. 55-60.

Kürkçüoğlu, M., Özek, T., Baser, K.H.C., Malyer, H. (1995). Composition of the essential oil of *Heracleum platytaenium* Boiss. from Turkey, J Essent. Oil Res. 7, pp. 69-70.

Maimone, M., Manukyan, A., Tranchida, P.Q., Steinhaus, M., Odour-active compounds in the traditional Armenian soup seasoning herb *Heracleum transcaucasicum*, Eur Food Res Technol, doi: 10.1007/s00217-016-2815-9, 2016.

MassFinder 3. Hochmuth DH (ed). (2004). *Convenient and Rapid Analysis of GCMS*, incorporating W.A. Hamburg, Germany.

McLafferty, F.W., Stauffer, D B. (1989). The Wiley/NBS Registry of Mass Spectral Data, J Wiley and Sons: New York.

Miladinovic, D.L., Ilic, B.S., Mihajilov-Krstev, T.M., Nikolic, D.M., Cvetkovic, O.G., Markovic, M.S., Miladinovic, L.C. (2013). Antibacterial activity of the essential oil of *Heracleum sibiricum*, Nat Prod Commun. 8(9), pp. 1309-1311.

Mojab, F., Rustaiyan, A., Jasbi, A.R. (2002). Essential oils of *Heracleum persicum* Desf. ex. Fischer leaves, DARU, 10(1), pp. 6-8.

Mojab, F., Nickavar, B. (2003). Composition of the essential oil of the root of *Heracleum persicum* from Iran, Iranian Journal of Pharmaceutical Sciences, 2(4), pp. 245-247.

Ozdemir, E., Alpınar, K. (2010-2011). The wild edible plants of western Nigde Aladaglar Mountains (Central Turkey), Journal of Pharmacy of İstanbul University, 41, pp. 66-74.

Ozek, T., Demirci, B., Baser, K.H.C. (2002). Comparative study of the essential oils of *Heracleum sphondylium* ssp. *ternatum* obtained by micro-and hydro-distillation methods, Chemistry of Natural Compounds, 38(1), pp. 48-50.

Özçakmak, S. (2012). The effects of *Heracleum platytaenium* Boiss essential oil on the growth of ochratoxigenix *Penicillium verrucosum* (D-99756) isolated from Kashar Cheese, Journal of Applied Botany and Food Quality, 85, pp. 97-99.

Özek, T., Özek, G., Başer, K.H.C., Duran, A. (2005). Comparison of the essential oils of three endemic Turkish *Heracleum* species obtained by different isolation techniques, J Essent. Oil Res., 17, pp. 605-610.

Özkırım, A., Keskin, N., Kürkçüoğlu, M., Başer, K.H.C. (2012). Evaluation of some essential oils as alternative antibiotics against American foulbrood agent *Paenibacillus larvae* on honey bees *Apis mellifera* L., The Journal of Essential Oil Research, 24(5), pp. 465-470.

Papageorgiou, V.P., Ochir, G., Moti, O., Argyriadou, N., Dunkel, H. (1985). Composition of the essential oil from *heracleum dissectum*, Journal of Natural Products, 48(5), pp. 851-853.

Purushothaman, D.N., Ravi, S. (2013). GC-MS analysis of essential oil obtained from *Heracleum candolleanum* (Wight et Arn), Journal of Pharmacy Research, 6, pp. 155-157.

Scheffer, J.J.C., Hiltunen, R., Aynehchi, Y., von Schantz, M., Baerheim Svendsen, A. (1984). Composition of essential oil of *Heracleum persicum* fruits, Planta Medica, 50(1), pp. 56-60.

Sefidkon, F., Dabiri, M., Mohammad, N. (2002). Analysis of the oil of *Heracleum persicum* L. (Leaves and flowers), J Essent. Oil Res. 14, pp. 295-297.

Sefidkon, F., Dabiri, M., Mohammad, N. (2004). Analysis of the oil of *Heracleum persicum* L. (seeds and stems), J Essent. Oil Res. 16, pp. 296-298.

St-Gelais, A., Collin, G., Pichette, A. (2017). Aromas from Quebec. V. Essential oils from the fruits and stems of *Heracleum maximum* Bartram and their unsaturated aliphatic acetates, J Essent. Oil Res., 29(2), pp. 125-136.

Tetik, F., Civelek, S., Cakilcioglu, U. (2013). Traditional uses of some medicinal plants in Malatya (Turkey), Journal of Ethnopharmacology, 146(1), pp. 331-346.

Tkachenko, K.G. (1993). The essential oil of the flowers of *Heracleum* L. species, J Essent. Oil Res 5, pp. 687-689.

Tkachenko, K.G. (1994). Composition of the essential oils of *Heracleum stevenii* Manden, J Essent. Oil Res 6, pp. 535-537.

Tkachenko, K.G., Zenkevich, I.G. (1993). Constituents of essential oils from fruit of some *Heracleum antiasiaticum* Manden. Grown in Russia, J Essent. Oil Res 5, pp. 227-228.

Tkachenko, K.G. (2006). Antiviral activity of the essential oils of some *Heracleum* L. species, Journal of Herbs, Spices and Medicinal Plants, 3, pp. 1-12.

Torbati, M., Nazemiyehi H., Lotfipour, F., Asnaashari, S., Nemati, M., Fathiazad, F. (2013). Composition and antibacterial activity of *Heracleum transcaucasicum* and *Heracleum anisactis* aerial parts essential oil, Advanced Pharmaceutical Bulletin, 3(2), pp. 415-418.

Torbati, M., Nazemiyeh, H., Lotfipour, F., Nemati, M., Asnaashari, S., Fathiazad, F. (2014). Chemical composition and in vitro antioxidant and antibacterial activity of *Heracleum transcaucasicum* and *Heracleum anisactis* roots essential oil, Bioimpacts, 4(2), pp. 69-74.

Tosun, F., Akyüz Kızılay, Ç., Erol, K., Kılıç, F.S., Kürkçüoğlu, M., Başer, K.H.C. (2008). Anticonvulsant activity of furanocoumarins and the essential oil obtained from the fruits of *Heracleum crenatifolium*, Food Chemistry, 107, pp. 990-993.

Zhang, C., Zhang, B., Yang, X. (2005). GC-MS analysis of essential oil from the radix of *Heracleum hemsleyanum* Diels., Zongtao Yanjiu Yu Xinxi, 7(12), pp. 9-12.

Table 3. Composition of volatile oils obtained from different parts of different *Heracleum* species

Species name	Organ	Major compounds (%)		Reference
H. afghanicum	Fruits	Hexyl butyrate	34.3	Karimi and Ito, 2012
		Octyl acetate	21.1	
H. anisactis	Aerial	Myristicin	93.5	Torbati et.al., 2013

	- ··		40.4	
H. anisactis	Fruits	Octyl acetate	48.1	Radjabian et al., 2014
H. anisactis	Roots	Myristicin	95.2	Torbati et.al., 2014
H. antiasiaticum	Flower	Octyl-4-methylvalerate	86.0	Tkachenko and Zenkevich 1993
		Octyl acetate	5.9	
H. antasiaticum	Fruits	Ethlycaprylate	29.8	Ibadullaeva, 2000
		Octyl acetate	17.4	
		terpinolene	10.8	
H. argaeum	Fruits	Hexyl butyrate	39.1	Başer et al., 1998
H. candicans	Fruits	Bornyl acetate	21.5	Ashraf and Bhatty, 1978
		Amyl acetate	19.6	
		Octvl acetate	6.0	
H candolleanum	Rhizomes	a-ninene	18.9	George et al 2001
n. candoncanam	Rinzonies	bornylene	18.5	George et all, 2001
		octul acotato	11.0	
H candollognum	Fruite	Mothyl cinnamato	22.4	Pruchothaman and Pavi 2012
n. canaoneanam	FILILS		22.4	Prusilotilalilali allu Ravi, 2015
		n-nexyl nexanoate	21.7	
			11.8	
H. crenatifolium	Fruits	Octyl acetate	93.7	Iscan et al., 2004
H. crenatifolium	Fruits	Octyl acetate	93.7	Ozek et al., 2005
H. crenatifolium	Fruits	Octyl acetate	88.4	Tosun et al., 2008
H. dissectum	Aerial	α-pinene	22.2	Papageorgiou et al., 1985
		myrcene	10.9	
		kessan	8.8	
		humulene	8.3	
H. dulce	Fruits	Octyl acetate	40.0	Tkachenko, 1993
		Octyl butyrate	26.0	
			20.0	
H aoraanicum	Fruits	Hexyl butanoate	20.0	Radiabian et al. 2014
n. gorganicani	FILITS	Octul acatata	10.4	Raujabian et al., 2014
11	E		18.4	The shareha 1002
H. granalflorum	Fruits	Octyl acetate	39.0	Tkachenko, 1993
		Octyl hexanoate	13.0	
		Hexyl butyrate	5.7	
H. hemsleyanum	Radix	(1 <i>S</i>)-6-6,dimethyl-2-	12.6	Zhang et al., 2005
		methylenebicyclo[3,1,1]heptane		
		8-isopropenyl-1,5-dimethyl-cyclodeca-	10.4	
		15-diene		
H. leskovii	Fruits	Octyl acetate	65.0	Tkachenko, 1993
		Octyl butyrate	9.3	
		Octyl octanoate	6.1	
H. nanum	Fruits	Octyl acetate	41.0	Tkachenko, 1993
		Octyl butyrate	20.0	
		Hexyl butyrate	7.4	
H. manteaazzianum	Fruits	Octvl butvrate	32.0	Tkachenko, 1993
		Octyl acetate	18.0	
H. maximum	Fruit	Octyl acetate	65.6	St-Gelais et al 2016
	1 are	Octyl butyrate	7 9	
	Stom	Limonene	/5.2	
	Stem	sahinana	45.2	
	E au side a		9.5	The share to 1002
H. moellendorfil	Fruits	Octyl acetate	51.0	Tkachenko, 1993
		Octyl butyrate	13.4	
		Octyl octanoate	10.2	
		octanal	6.0	
H. paphlagonicum	Fruits	Octyl acetate	31.5	Başer et al., 2000
		Hexyl butyrate	17.0	
		Octyl hexanoate	10.2	
H. pastinacifolium	Aerial	Myristicin	53.6	Firuzi et al., 2010
		(Z)-trans-α-bergamotene	10.6	
H. pastinacifolium	Fruits	Octyl acetate	59.5	Radjabian et al., 2014
H. persicum	Fruit	<i>p</i> -cymene	37.3	Scheffer et al., 1984
		γ-terpinene	27.8	

		α-pinene	13.8	
		β-pinene	5.8	
H. persicum	Leaves	B-springene	37.7	Mojab et al., 2002
		Spathulenol	23.8	
		α-farnesene	22.0	
		zingiberene	21.5	
		α-bergamotene	20.3	
		α- caryophyllene	19.9	
		trans-anethole	15.6	
		cis-anethole	14.4	
		stragole	12.7	
			9.9	
H. persicum	Leaves (at	(E)-anethole	47.5	Setidkon et al., 2002
	nowering)	1-(4-methoxy phenyi)-2-propanone	18.1	
		anisaidenyde		
		(E) susstitution	8.9	
	Flowers	(E)-anethole	38.6	
		y-terpinene	17.8	
	Deete	Myrcene Viridificatel	13.5	Maiah and Niekawan 2002
H. persicum	ROOTS		23.1	Nojab and Nickavar, 2003.
H. persicum	Stem	(E)-anethole	60.2	Sefidkon et al., 2004
		Terpinolene	11.3	
	Caral	y-terpinene	7.1	
	Seed	Hexyl butyrate	35.5	Seficition et al., 2004
		Octyl acetate	27	
11	E multa	Hexyl isobutyrate	3.2	
H. persicum	Fruits	Hexyl butyrate	56.5	Hajnashemi et al., 2009
11	A	Octyl acetate	16.5	Financia et al. 2010
H. persicum	Aerial	(E)-anethole	25.0	Firuzi et al., 2010
		Octyl-2-metnyl butanoate	14.2	
	[muite	Hexyl butanoate	10.0	Dediction at al. 2014
H. persicum	Fruits		20.5	Radjablah et al., 2014
H nersicum	Fruits	Hexyl butyrate	65.6	Amanpour et al 2016
in persieum	i i ditto	Octyl acetate	18.2	
H. platvtaenium	Fruits	Octvl acetate	72.3-76.7	Kürkcüoğlu et al., 1995
F		Octyl butyrate	11.3-16.7	30
H. platytaenium	Fruits	Carvacrol	29.9	Akcin et al., 2013
		Thymol	29.4	
		Octyl octanoate	26.9	
		Octyl hexanoate	24.4	
		Decanol	23.6	
H. platytaenium	Fruits	Octyl acetate	87.6	İscan et al., 2004
H. platytaenium	Fruits	Octyl acetate	87.6	Özek et al., 2005
H. rawianum	Fruits	Octyl acetate	75.4	Radjabian et al., 2014
H. rechingeri	Aerial	Hexyl butanoate	29.7	Firuzi et al., 2010
		Octyl butanoate	10.1	
	Flower	Elemicin	39.5	
		Octyl acetate	25.1	
		(E)-caryophyllene	10.0	
H. rechingeri		(<i>E</i>)-β-ocimene	5.2	
	Fruit	Octyl acetate	95.3	Habibi et al., 2010
	Stem	Elemicin	37.7	
		Octyl acetate	26.5	
		γ-terpinene	8.8	
		(E)-caryophyllene	6.6	
		<i>p</i> -cymene	4.5	
H. rechingeri	Fruits	Hexyl butanoate	38.4	Radjabian et al., 2014
		Octyl acetate	13.9	
H. rigens	Fruits	Bornyl acetate	51.2	Jagannath et al., 2012
		α-pinene	22.6	

		limonene	9.6	
H. siamicum	Fruits	n-octyl acetate	65.3	Kuljanabhagavad et al., 2010
		o-cymene	10.4	
		limonene	7.5	
		δ-2-carene	6.9	
H. sibiricum	Aerial	Octvl butanoate	36.8	Miladinovic et al., 2013
		Hexyl butanoate	16.1	
		1-octanol	13.6	
		Octvl bexanoate	8 1	
H sphondylium	Fruits		37.7	İscan et al. 2004
n. sphonaynam	Traits	Octyl batylate	31.6	130411 Ct al., 2004
H sphondulium ssn	Fruito	Octanol	20.2	Ozok at al. 2002
H. Sphondynum SSp.	FILLS		39.2	02ek et al., 2002
ternatum			27.4	
			10.6	i
H. sphondylium ssp.	Seeds	1-octanol	50.3	Işcan et al., 2003
ternatum		Octyl butyrate	24.6	
H. sphondylium ssp.	Fruits	Octyl butyrate	37.7	Ozek et al., 2005
ternatum		Octyl acetate	31.6	
H. sphondylium ssp.	Fruits	Octyl acetate	54.9-60.2	Maggi et al., 2014
ternatum		Octyl butyrate	10.113.4	
H. sprengelianum	Leaves	1,8-cineole	21.2	Karuppusamy and Muthuraja,
		β-pinene	16.2	2011
		β-phellandrene	11.4	
	Seeds	β-pinene	22.3	
		1,8-cineole	20.3	
		β-phellandrene	12.4	
	Rhizomes	1.8-cineole	23.1	
		β-pinene	21.9	
		β-phellandrene	15.2	
	Buds	Octvl acetate	49.0	
		Octvl hexanoate	8.2	
	Flowers		73.0	
	riowers	Myrcene	5.0	
	Stome		28.0	
H stevenii	Sterns	Octyl acetale	20.0	Tkachenko 1994
		Octyl nexanoata	22.0	
	Lagyas		10.4	
	Leaves	Octyl acetale	35.0	
		Octyl octanoate	15.0	
		Octyl 4-metnylvalerate	12.0	
	Roots	Octyl acetate	35.0	
		limonene	20.0	
		Octyl octanoate	18.0	
		Uctyl hexanoate	12.0	
H. transcaucasicum	Aerial	Elemicin	41.1	Firuzi et al., 2010
H. transcaucasicum	Aerial	Myristicin	70.1	Torbati et.al., 2013
		<i>n</i> -octanol	14.3	
H. transcaucasicum	Roots	Myristicin	96.9	Torbati et.al., 2014
H. thomsonii	Aerial	Neryl acetate	36.2	Guleria et al., 2011
		Terpinolene	22.2	
		limonene	4.3	