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Abstract

In this paper, the adjoint curve is defined by using the alternative moving frame of a
unit speed space curve in 3-dimensional Euclidean space. The relationships between
Frenet vectors and alternative moving frame vectors of the curve are used to offer various
characterizations. Besides, ruled surfaces are constructed with the curve and its adjoint
curve, and their properties are examined. In the last section, there are examples of the
curves and surfaces defined in the previous sections.

1. Introduction

In differential geometry, the theory of curves in the 3-dimensional Euclidean space E3 is one of the leading fields of study. In
terms of curves, the most interesting curves in recent years are helices and slant helices[1, 2]. However, curves associated
with a given curve are also widely studied. Among these curves, the most studied are Bertrand curve pairs, Mannheim curve
pairs and involute-evolute curve pairs [3, 4]. In addition to the aforementioned pairs of curves, there are associated curves that
have gained a lot of popularity. We can list some of them as the principal normal-direction curve, binormal-direction curve,
principal-donor curve and binormal-donor curve, which were defined by Choi and Kim in 2012 with the help of integral curves
[5]. With the adjoint curves discussed in 2019, a new definition of binormal-direction curves has been introduced. Also in this
study, characterizations of adjoint curves and ruled and tube surfaces associated with adjoint curves were studied [6]. The
W -direction curves in Macit and Düldül’s paper are another reference for integral curves. Here, the relationships between a
curve and the integral curve of the vector W of this curve are given. The relationships between the curvatures of the associated
curves are explained and the characterizations of the curves are studied [7].
The curves are generally characterized by a moving Frenet frame. However, it may not be possible to obtain characterizations
by using this frame or it is difficult to characterize them in some cases. For this reason, it will be useful to examine the curves
with the help of another moving frame. In 2016, Yaylı et al. defined an alternative moving frame on the curve in their study
[8]. The ruled surfaces introduced by Monge is one of the most frequently studied topics in differential geometry. The ruled
surfaces have application areas especially in kinematics, computer-aided geometric design, architecture and many other fields.
Any ruled surface occurs as a result of the continuous movement of a line along a curve. The ruled surfaces have been studied
in differential geometry in different spaces, different dimensions and different frames [9]-[14].
In this study, a new definition is given to the W-direction curve of a curve in an alternative moving frame. This curve, which is
direction curve considered with an alternative moving frame, is defined and characterized as W−adjoint curve in E3. The
significant relationships are founded between alternative moving frame apparatus and Frenet frame apparatus of curve pairs
occuring. Then, the ruled surfaces associated with these direction curves are studied. The ruled surfaces obtained by different
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variations of the associated curves of the base curve and the direction curve are given. Moreover, Maple software is applied to
model the data in this paper.

2. Preliminaries

In this section, let’s remember the basic concepts in differential geometry:
A curve α is defined by coordinate neighborhood (I,α) in En, where I ⊆ R is an open interval and α : I→ En (t→ α (t)) is
differentiable function. A curve whose velocity vector at each point is nonzero is called a regular curve. That is, α ′ (s) 6= 0 for
∀s ∈ I.
Let’s the curve α be given with neighborhood (I,α). If ‖α ′ (s)‖= 1, for ∀s ∈ I. α is called a unit speed curve according to
(I,α). In this case, the parameter s ∈ I of the curve is called the arc length parameter.
The orthonormal basis vectors T,N,B, also known as the Frenet frame or TNB frame, correspond to each point of a unit
speed curve in three-dimensional Euclidean space. Here, T = α

′
is the unit tangent vector field, N = α ′′

‖α
′′‖ is the principal

normal vector field, and B = T ×N is the binormal vector field. Furthermore, the Frenet formulas T
′
(s) = κ(s)N(s),

N
′
(s) =−κ(s)T (s)+ τ(s)B(s), and B

′
(s) =−τ(s)N(s), where κ(s)> 0 and τ(s) are curvature and torsion at the point α(s),

respectively. In terms of the Frenet-Serret apparatus, the Darboux vector w can be expressed as w = τT +κB. Here, we can
write

κ = ‖w‖cosφ ,τ = ‖w‖sinφ ,

where φ is the angle between B and w. If the unit vector in the direction w is W , W = τ

‖w‖T + κ

‖w‖B, where ‖w‖=
√

κ2 + τ2 ≥ 0
[15].
In Euclidean 3-space, the alternative moving frame along the curve α is given by {N,C,N×C =W}. Here, the unit principal

normal vector, the derivative of the principal normal vector, and the Darboux vector, respectively, are N, C = N
′

‖N′‖ and

W = τT+κB√
κ2+τ2

. The following equations produce the derivative vectors of these vectors:

N
′
(s) = f (s)C (s) ,

C
′
(s) =− f (s)N(s)+g(s)W (s),

W
′
(s) =−g(s)C (s) ,

where

f = κ

√
1+
(

τ

κ

)2

and

g =
κ2

κ2 + τ2

(
τ

κ

)′
are the first and second curvature of the curve α(s) with respect to alternative moving frame, respectively [8].
A curve is called a general helix or cylindrical helix if its tangent makes a constant angle with a fixed line in space. A curve is
a general helix if and only if the ratio of curvature to torsion is constant [15].

Definition 2.1. Let α be a unit speed curve in E3 with non-zero torsion and the Frenet frame of α be {Tα ,Nα ,Bα}. The
adjoint curve of α is defined as [6]

β (s) =
∫ s

s0

Bα (s)ds.

Theorem 2.2. If α is a curve with arc length parameter s, then the arc length parameter of adjoint curve of α is also s [6].

Theorem 2.3. Let α be a curve with arc length s and β be the adjoint curve of α . If the Frenet vectors of α and β are
{Tα ,Nα ,Bα} and

{
Tβ ,Nβ ,Bβ

}
, the curvature and torsion are κα , τα and κβ , τβ respectively, then the following relations

hold [6]:

Tβ = Bα

Nβ =−Nα

Bβ = Tα

and

κβ = τα

τβ = κα .
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Corollary 2.4. If a is a general helix parametrized by arc length parameter s, then the adjoint curve β of α is a general helix.

Definition 2.5. Let α be a Frenet curve in E3 and W be the unit Darboux vector field of α . We call an integral curve of W (s)
the W-direction curve of α . Namely, if β (s) is the W-direction curve of α , then

W (s) = β
′(s),

where W = τT+κB√
κ2+τ2

[7].

Theorem 2.6. Let α be a Frenet curve in E3 with the curvature κ and the torsion τ , and β be W-direction curve of α . If α is
not a general helix, then the curvature κβ and the torsion τβ of β are given by [7]

κβ =
|τκ ′− τ ′κ|

κ2 + τ2

τβ =
√

κ2 + τ2.

Theorem 2.7. Let β be the W-direction curve of a nonplanar curve α . Then α is a general helix if and only if β is a straight
line [7].

Definition 2.8. A ruled surface in E3 may therefore be represented in the form

ϕ (α,d) : I×E→ E3,(s,v)→ ϕ (α,d)(s,v) = α (s)+ vd (s)

such that α : I→ E3,d : I→ E3\{0} are differentiable transformations. Here, α is called base curve and d is called the
director curve [16].

The distribution parameter of a ruled surface parameterized by

ϕ(s,v) = α (s)+ vX (s) ,

where α is the base curve and X is the director curve, is the function DX defined by

DX =
det(α ′,X ,X ′)

‖X ′‖2 .

A developable ruled surface is characterized by DX = 0 [15].

Definition 2.9. Let α(s) be a curve with arc length in E3 and {N,C,W} be the alternative moving frame of α . The C−ruled
surface can be given by the following parameterization as [17]

ϕ (s,v) = α (s)+ vC (s) ,

and the W−ruled surface can be given by the following parameterization as [18]

ϕ (s,v) = α (s)+ vW (s) .

3. W−adjoint curve

Let α be a unit speed curve in E3 with non-zero torsion and the alternative moving frame of α be {Nα ,Cα ,Wα}. The
W−adjoint curve of α can be write as

β (s) =
∫ s

s0

Wα (s)ds, (3.1)

where Cα (s) = N
′
α (s)∥∥∥N′α (s)

∥∥∥ , Wα(s) =
τα (s)Tα (s)+κα (s)Bα (s)√

(κα (s))2+(τα (s))2
. We know that {Tα ,Nα ,Bα} is Frenet frame of α and κα , τα are curvature

and torsion of α , respectively. The derivative vectors of {Nα ,Cα ,Wα} can also be given as:

N
′
α(s) = fα(s)Cα (s)

C
′
α (s) =− fα(s)Nα(s)+gα(s)Wα(s),

W
′
α(s) =−gα(s)Cα (s) , (3.2)

where

fα(s) =
√

κα(s)2 + τα(s)2,

gα(s) =
κα(s)2√

(κα(s))2 +(τα(s))2

(
τα(s)
κα(s)

)′
. (3.3)
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Theorem 3.1. If α is a curve with arc length parameter s, then the arc length parameter of W−adjoint curve of α is also s.

Proof. By differentiating both sides of (3.1), we have

d
ds

β (s) =Wα(s).

Here, if we take the norm of both sides and we use ‖Wα(s)‖= 1, we obtain ‖β ′(s)‖= 1. This means that β is a unit speed
curve and

Tβ (s) =Wα(s), (3.4)

where Tβ (s) is unit tangent vector of β .

Theorem 3.2. Let α be a curve with arc length s and β be the W−adjoint curve of α . If the alternative moving frame
vectors of α and β are {Nα ,Cα ,Wα} and

{
Nβ ,Cβ ,Wβ

}
, curvatures according to the alternative moving frame of α and β are

{ fα ,gα} and
{

fβ ,gβ

}
respectively, then the following relations hold:

Nβ =−Cα , (3.5)

Wβ =
fαWα +gα Nα√

fα
2 +gα

2
, (3.6)

and

Cβ =
fα Nα −gαWα√

fα
2 +gα

2
. (3.7)

Proof. If we take derivative both sides of (3.4) and divide by their norms, we get

Nβ (s) =
W
′
α(s)∥∥W ′
α(s)

∥∥ .
Considering (3.2), we have (3.5). We know that we can write

Wβ =
τβ Tβ +κβ Bβ√

κβ
2 + τβ

2
. (3.8)

Now let’s write Wβ in terms of alternative moving frame apparatus of α . In that case from (3.4), (3.5) and the equation
Bβ = Tβ ×Nβ , we obtain Bβ =Wα × (−Cα) and

Bβ = Nα . (3.9)

If we take derivative both sides of (3.4) and we use (3.2), we obtain T
′

β
=−gαCα . In last equation, if we take the norm of both

sides, we get
∥∥∥T

′
β

∥∥∥= gα . This means that

κβ = gα . (3.10)

If we take derivative both sides of (3.9) and we use Frenet and alternative moving frame formulae, we have

−τβ Nβ = fαCα .

From (3.5), we get

τβ = fα . (3.11)

Hence, if we use (3.4), (3.9), (3.10) and (3.11) in (3.8), we obtain (3.6).
On the other hand, it is known that

Cβ =
−κβ Tβ + τβ Bβ√

κβ
2 + τβ

2
. (3.12)

If we use (3.4), (3.9), (3.10) and (3.11) in (3.12), we get (3.7).
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Theorem 3.3. The relationships between alternative moving frame curvatures { fα ,gα} and
{

fβ ,gβ

}
with respect to α and β

are

fβ =
√

fα
2 +gα

2 (3.13)

and

gβ =
g2

α√
(gα)2 +( fα)2

(
fα

gα

)′
. (3.14)

Proof. The relationships between the curvatures with respect to Frenet frame and alternative moving frame of the unit speed
curve β are

fβ =
√

κ2
β
+ τ2

β
, (3.15)

gβ =
κ2

β√
(κβ )2 +(τβ )2

(
τβ

κβ

)′
. (3.16)

If we use (3.10), (3.11) in the equations (3.15) and (3.16), we easily get (3.13) and (3.14).

Theorem 3.4. Let α be a nonplanar curve with arc length s in E3. α is a helix if and only if gα = 0, where gα is second
curvature with respect to alternative moving frame of α .

Proof. It is known that if α is helix, τα

κα
= c (c = constant). Here, if we take derivative of both sides we have(

τα

κα

)′
= 0.

Considering (3.3), we write gα = 0.

Conversely, if gα = 0, from (3.3) we get κ2
α√

(κα )2+(τα )2

(
τα

κα

)′
= 0. Since α is a nonplanar curve, κ 6= 0 and τ 6= 0. Then we

can say τα

κα
= c (c = constant). Thus, α is a helix.

Theorem 3.5. Let α be a curve with arc length s in E3 and β be W-adjoint curve of α . β is helix if and only if the ratio fα
gα

is
constant.

Proof. If β is helix,
τβ

κβ
= c. From (3.10) ve (3.11), we obtain

fα

gα

= c. (3.17)

Conversely, given by (3.17). From (3.10) and (3.11), we have
τβ

κβ
= c. Hence, β is a helix. This completes the proof.

4. Ruled surfaces associated with W−adjoint curve

4.1. Ruled surface with base curve α and director curve β

We examine ruled surface created by a curve and W−adjoint curve of this curve under this heading. Let α be a curve with arc
length s and β be W−adjoint curve of α . The ruled surface with the base curve α and the director curve β can be defined by

φ (s,v) = α (s)+ vβ (s) . (4.1)

Theorem 4.1. Let α be a curve with arc length s and β be W−adjoint curve of α . Given by
{

Tβ ,Nβ ,Bβ

}
is the Frenet frame

of β and {Nα ,Cα ,Wα} is alternative moving frame of α . Distribution parameter of the ruled surface given by (4.1) is

Dφ =
κα√

κ2
α + τ2

α

〈
β ,Bβ

〉
, (4.2)

where β is position vector of the curve β .
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Proof. If we calculate distribution parameter of the ruled surface given by (4.1), we have

Dφ =
det
(

dα

ds ,β ,
dβ

ds

)
∥∥∥ dβ

ds

∥∥∥2 .

From (3.4), we get

Dφ =
det(Tα ,β ,Wα)∥∥Tβ

∥∥2 .

Dφ = det

(
Tα ,β ,

τα Tα +κα Bα√
κ2

α + τ2
α

)

Dφ =
τα√

κ2
α + τ2

α

det(Tα ,β ,Tα)+
κα√

κ2
α + τ2

α

det(Tα,β ,Bα)

Since det(Tα,β ,Tα) = 0, we can write

Dφ =
κα√

κ2
α + τ2

α

det(Tα,β ,Bα) .

Using determinant and mixed product properties, we have

Dφ =
κα√

κ2
α + τ2

α

〈β ,Nα〉 . (4.3)

If we substitute the equation (3.9) in (4.3), we have (4.2).

Corollary 4.2. The ruled surface given by (4.1) is developable if and only if the position vector β and the binormal vector of
β are orthogonal. In this case Dφ = 0.

Proof. The ruled surface is developable if and only if Dφ = 0. Then, let us consider the equation (4.2). Since κα 6= 0,〈
β ,Bβ

〉
= 0. Then, surface given by (4.1) is developable.

4.2. Ruled surface with base curve β and director curve α

Let α be a curve with arc length s and β be W−adjoint curve of α . The ruled surface with the base curve β and the director
curve α can be defined by

ψ (s,v) = β (s)+ vα (s) . (4.4)

Theorem 4.3. Let α be a curve with arc length s and β be W−adjoint curve of α . Given by
{

Tβ ,Nβ ,Bβ

}
is the Frenet frame

of β and {Nα ,Cα ,Wα} is alternative moving frame of α . Distribution parameter of the ruled surface given by (4.4) is

Dψ =− κα√
κ2

α + τ2
α

〈α,Nα〉 ,

where α is position vector of the curve α .

Corollary 4.4. The ruled surface given by (4.4) is developable if and only if the position vector α and the normal vector of α

are orthogonal.

5. Applications

Example 5.1. Let us consider the curve α(s) with arc length s in E3 given by

α(s) = (− 1
12

cos(4s)− 1
3

cos(2s),
1

12
sin(4s)+

1
3

sin(2s),−2
√

2
3

cos(s))

(see Figure 5.1 and Figure 5.3). W−adjoint curve of α is

β (s) = (−1
9

sin(3s),
1
9

cos(3s),−2
√

2
3

s)

(see Figure 5.2 and Figure 5.3).
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Figure 5.1: The curve α(s)

Figure 5.2: W−Adjoint curve of α(s)

Figure 5.3: The curves α(s) and β (s)
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Example 5.2. Let’s exemplify the ruled surfaces associated with the α and W−adjoint curve of α that we took in Example
5.1. First, let’s write the ruled surface with base curve is α and director curve is W−adjoint curve of α

φα (s,v) = (− 1
12

cos(4s)− 1
3

cos(2s),
1

12
sin(4s)+

1
3

sin(2s),−2
√

2
3

cos(s))+ v(−1
9

sin(3s),
1
9

cos(3s),−2
√

2
3

s)

(see Figure 5.4). On the other hand, the ruled surface with the base curve W and the director curve α is

φ (s,v) = (−1
9

sin(3s),
1
9

cos(3s),−2
√

2
3

s)+ v(− 1
12

cos(4s)− 1
3

cos(2s),
1

12
sin(4s)+

1
3

sin(2s),−2
√

2
3

cos(s))

(see Figure 5.5).

Figure 5.4: φ (s,v) = α (s)+ vβ (s)

Figure 5.5: φ (s,v) = β (s)+ vα (s)

6. Conclusion

In this study, the curve β is defined as the W -adjoint curve of the curve α with respect to alternative moving frame. The
relationships are established between the alternative moving frame vectors of the curves α and β . In addition, connections
between the curvatures defined in the alternative moving frame are constructed. The results relating to the helix curve are
collected at this point. The ruled surfaces created with the curves α and β are obtained.It is found under which conditions the
acquired ruled surfaces may be developable. In the last section, it is reinforced with examples.
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[3] M. Babaarslan, Y. A. Tandoğan, Y. Yaylı, A note on Bertrand curves and constant slope surfaces according to Darboux frame, J. Adv. Math. Stud., 5

(2012), 87-96.
[4] A. T. Ali, New special curves and their spherical indicatrices, Glob. J. Adv. Res. Class. Mod. Geom., 1 (2012), 28-38.
[5] J. H. Choi, Y. H. Kim, Associated curves of a Frenet curve and their applications, Appl. Math. Comput., 218 (2012), 9116-9124.
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[10] E. Damar, N. Yüksel, A. T. Vanlı, The ruled surfaces according to type-2 Bishop frame in E3, Int. Math. Forum, 12(3) (2017), 133-143.
[11] F. Güler, The timelike ruled surfaces according to type-2 Bishop frame in Minkowski 3-space, J. Sci. Arts, 18 (243) (2018), 323-330.
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