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Abstract: This Monte Carlo simulation study aimed to investigate confirmatory 

factor analysis (CFA) estimation methods under different conditions, such as 

sample size, distribution of indicators, test length, average factor loading, and 

factor structure. Binary data were generated to compare the performance of 

maximum likelihood (ML), mean and variance adjusted unweighted least squares 

(ULSMV), mean and variance adjusted weighted least squares (WLSMV), and 

Bayesian estimators. As a result of the study, it was revealed that increased average 

factor loading and sample size had a positive effect on the performance of the 

estimation methods. According to the research findings, it can be said that the 

methods are sufficient to estimate average factor loading and interfactor 

correlations, regardless of the estimation methods, in most of the conditions where 

the average factor loading is 0.7. In small sample sizes particularly, the interfactor 

correlation was underestimated for skewed indicator conditions. According to the 

findings of the study, although there is not the most accurate method in all 

conditions, it can be recommended to use ULSMV method because it performs 

adequately in more conditions. 

1. INTRODUCTION 

Most researchers conducting research in social, behavioral, and educational sciences usually 

work on psychological attributes. Psychological attributes, also named as constructs, are 

theoretical concepts. Psychological constructs cannot be directly observed: the degree to which 

a construct characterizes an individual can only be predicted by observing the behaviors of the 

individual (Crocker & Algina, 2008). To analyze the relationships among observed variables 

and latent constructs, researchers widely use structural equation modeling techniques (Byrne, 

2016; Raykov & Marcoulides, 2006). The use of confirmatory factor analysis (CFA) is also 

widely accepted as one of the structural equation models to examine the construct validity of 

the hypothesis (AERA et al., 2014).  

When the scale development and adaptation studies in the literature are examined, it is observed 

that CFA is frequently used for collecting evidence for construct validity. Acar-Güvendir and 
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Özer-Özkan (2015) and Şahin and Boztunç Öztürk (2018) examined scale development studies 

and they reported that CFA was used in 61% and 52% of these studies, respectively. Deciding 

the estimation method used in CFA is all-important to obtain unbiased parameter estimations. 

For this reason, it is also important to examine which estimation method is unbiased.  

When the literature is examined, there are many studies comparing CFA estimation methods. 

One of the most comprehensive of these studies is one conducted by Forero et al. (2009). In 

this study, the researchers studied 324 simulation conditions and the performance of diagonally 

weighted least squares (DWLS) and unweighted least squares (ULS) estimation methods was 

compared in terms of sample size, measurement model, test lengths, factor loadings, and 

categories of indicators. As a result of the research, it was reported that both methods had 

similar results but ULS had more accurate and less variable results for parameter estimations. 

Another comprehensive study in the literature was conducted by Flora and Curran (2004). In 

this study, they manipulated latent response (y*) distributions, model specifications, sample 

sizes, and number of categories (160 simulation conditions). As a result of the study, it was 

reported that, while WLS requires a large sample size, robust WLS performs better for all 

conditions. Also, they reported that polychoric correlation is strong against moderate violations 

of normality. 

The study conducted by Rhemtulla et al. (2012) aimed to compare the performance of robust 

ML and robust categorical least squares estimation (cat-LS) method. CFA model size, 

underlying distribution, number of indicator categories, threshold symmetry, and sample size 

were manipulated. As a result of the study, it was reported that ML was more sensitive to 

asymmetric thresholds. The cat-LS method was suggested for indicators which have fewer than 

five categories.  

When the other studies in the literature were researched, it was observed that there are many 

studies which examine datasets consists of five categories indicators (Babakus et al., 1987; Lei, 

2009; Morata-Ramirez & Holgado-Tello, 2013; B. O. Muthén & Kaplan, 1985; Potthast, 1993). 

There are also studies examining data consisting of other than five categories. Dolan (1994) 

used 2, 3, 5 and 7 categories indicators, for example; Green et al. (1997) used datasets with 2, 

4, and 6 categories and continuous indicators. Flora and Curran (2004) used 2 and 5 categories 

indicators; Beauducel and Herzberg (2006) used 2, 3, 4, 5, and 6 categories indicators; Forero 

et al. (2009) used 2 and 5 categories indicators; Yang-Wallentin et al. (2010) used 2, 5 and 7 

categories indicators; Rhemtulla et al. (2012) used 2, 3, 4, 5, 6, and 7 categories indicators; 

Liang and Yang (2014) used 2 and 4 categories indicators, and Moshagen and Musch (2014) 

used 2 and 5 categories indicators. However, in most of these studies, frequentist estimation 

methods have been compared. In addition, in most of these studies, datasets were generated 

such that the factor loadings of the indicators were equal (Beauducel & Herzberg, 2006; Flora 

& Curran, 2004; Forero et al., 2009; Liang & Yang, 2014; B. O. Muthén & Kaplan, 1985; 

Nestler, 2013; Shi et al., 2018). However, in real life applications, it is difficult to have equal 

factor loadings of all indicators. 

The motivation of the present study is to compare Bayesian estimation method and frequentist 

estimation methods under simulation conditions. Studies comparing the performance of 

Bayesian method with frequentist methods are also found in the literature. For example, Liang 

and Yang (2014) compared the performance of WLSMV and Bayesian (informative priors and 

non-informative priors) methods in 96 simulation conditions. However, in this study, the factor 

loadings of the indicators were manipulated to be 0.50 and 0.80. There was also no comparison 

with the performance of the ML method used by default in most software. Xu (2019) compared 

robust ML (MLR) and Bayesian estimation method’s performance in 27 simulation conditions. 

However, in this study, factor loadings of all indicators were fixed as 0.7. In the study conducted 

by Önen (2019), ML and Bayesian estimation methods were compared in terms of detecting 
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model misspecification, using 0.30 and 0.80 as factor loadings in the simulation study. 

When the researches in the literature were studied, although many datasets consisting of 

different categories of indicators were used, we could not find any paper which compared ML, 

ULSMV, WLSMV, and Bayesian estimation methods and, at the same time, not have fixed 

factor loadings of indicators. The differentiation of factor loadings of the indicators would be 

more appropriate for real situations. Therefore, in this study, the average factor loading, which 

is more suitable for real conditions, was determined as the simulation condition and the factor 

loadings of the indicators were generated to be different from each other (details are given in 

the method section). At the same time, the aim is to compare the performance of Bayesian and 

frequentist estimation methods (ML, ULSMV and WLSMV) for binary indicators. The present 

study differs from other studies in the literature in terms of compared estimation methods 

(frequentist vs. Bayesian) and not fixing the factor loadings of all indicators. Therefore, it is 

considered that the current research will contribute to the literature in order to examine which 

estimation methods (ML, ULSMV, WLSMV, or Bayes) perform better in binary data under 

different simulation conditions and will help researchers in practice. 

2. METHOD 

This research was designed as a Monte Carlo simulation study. Monte Carlo simulations use 

random sampling for a statistical model across varying conditions (Harrison, 2010). Thus, 

suggestions can be made by investigating the effects of different factors for the statistical model 

(Gilbert, 1999). The main purpose of this study was to investigate estimation methods 

performance under different simulation conditions. For this purpose, unlike other studies, 

average factor loading is considered as a simulation condition. In addition, the performance of 

Bayesian and frequentist estimation methods. 

2.1. Estimation Methods 

Estimation methods differ from each other in terms of the analysis processes they use and   

assumptions. In general, there are four types of estimation methods: maximum likelihood; 

unweighted least squares; generalized least squares, and asymptotically distribution-free 

(generally called as weighted least squares). Each estimation approach tries to minimize the 

corresponding fit function (Raykov & Marcoulides, 2006). The fit function expresses the fit 

between the covariances obtained from the sample and the covariances obtained from the model 

established by the researcher (Kline, 2016).  

The maximum likelihood (ML) method is the most commonly used estimation method by 

researchers (Bollen, 1989). Being the default estimation method in most software, ML may be 

used more frequently in research. ML estimation method assumes that indicators are measured 

on continuous scales and requires a large sample size. Although ML requires a continuous data 

set, it was seen that ML is used for binary data sets in the literature. For example, ML method 

was used in binary data sets in Koğar and Yılmaz Koğar's (2015) study. The ULS method makes 

estimations under the assumption of continuous variables holding multivariate normal 

distribution. In addition, all variables in this process should take place on the same scale (Kline, 

2016). The weighted least squares (WLS) method has no distributional assumption. Estimations 

can be made for both continuous and categorical indicators. However, this estimation method 

needs a large sample size (Kline, 2016). Bayesian methods differs from other frequency-based 

methods in terms of fixed and free parameters. When the ML method calculates the values 

which will make the obtained likelihood function maximum, Bayesian methods make 

estimations by combining the prior distribution of the data with the posterior distribution of 

parameter estimation (B. O. Muthén & Asparouhov, 2012).  

The estimation methods explained above are considered as essential methods; modified 

estimation methods have been obtained with the help of some corrections via essential methods. 
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In weighted least square parameter estimates using a diagonal weight matrix with standard 

errors and mean adjusted chi-square test statistic (WLSM) method, which is developed based 

on the WLS estimation method, the average corrected chi-square test statistics are produced by 

using full weight matrix. When the variances in the WLSM method are corrected, a 

modification of the WLS method is obtained with the WLSMV method. Full weighted matrix 

is used in the WLSMV method (L. K. Muthén & Muthén, 2015). In ULS parameter estimates 

with standard errors and a mean and variance adjusted (ULSMV) method, which is developed 

based on the ULS method, both the averages and the variances are corrected and the chi-square 

test statistics is calculated over the full weighted matrix (L. K. Muthén & Muthén, 2015). 

2.2. Simulation Design 

Five factors were manipulated in this simulation study: (i) sample size (200, 500 and 1,000); 

(ii) distribution of indicators (left skewed, normal and right skewed); (iii) test length (10 and 20 

indicators); (iv) average factor loading (0.4 and 0.7), and (v) factor structure (unidimensional, 

two factors [φ = 0], two factors [φ = 0.3], two factors [φ = 0.6]). Full crossed design was adopted 

for simulation conditions. 

The sample sizes were 200, 500 and 1,000. Boomsma (1985) suggests a sample size of at least 

200 to avoid non-convergence and improper solutions. In addition, Mulaik (2009) states that a 

sample size of less than 200 is inadequate for statistical inference purposes with chi-square 

statistics in CFA. Liang and Yang (2014) also emphasize that there are very few studies with 

sample sizes of less than 200. Therefore, 200 was specified as a minimum sample size. Other 

sample sizes were specified to examine the effects of sample sizes on the performance of the 

estimation methods. In addition, the 1,000 sample size was included in the study as 

recommended as a minimum sample size by some researchers (Comrey & Lee, 1992; Floyd & 

Widaman, 1995; Gorsuch, 1974; Guadagnoli & Velicer, 1988; Streiner, 1994). 

The distribution of indicators was manipulated to be left-skewed, normal and right-skewed. The 

ML estimation method estimates parameters under the assumption that the variables meets 

multivariate normal distribution (Tabachnik & Fidell, 2012). WLS and ULS are asymptotic 

distribution free methods (Brown, 2015). The aim was to examine the estimation methods 

performance when indicators were skewed. Therefore, the skewness of the indicators was 

specified as a simulation condition (details are in the data generation section). 

The test length conditions were manipulated as 10 and 20 indicators. In order to examine the 

performance of the estimation methods in short tests, a test length of 10 indicators was specified 

as a simulation condition.  The 20 item condition was determined to examine how the results 

change when the test length increases. 

The average factor loading was specified as 0.4 (low) and 0.7 (high). Unlike other studies, the 

factor loadings of the indicators were generated to be different from each other. Since the lowest 

factor loading was suggested to be 0.4 (Stevens, 2009) or .32 (Tabachnik & Fidell, 2012), the 

average factor loading was specified as 0.4 for low factor loading. Since the average factor 

loading was used in current study, the condition of 0.40 was added as the lowest average factor 

loading. Because the factor loadings of the items can be smaller than 0.40 (see Table 2). As we 

aimed to investigate the performance of estimation methods at high factor loading, the average 

factor loading was specified as 0.7.  

Factor structure is considered as unidimensional and two-factors (φ = 0, 0.3 and 0.6). When the 

studies in the literature are examined, it is observed that achievement tests are usually 

unidimensional (Anıl et al., 2010; Kılıç & Kelecioğlu, 2016) but, in some cases, two-factors 

structures may also occur (Lissitz et al., 2012; Thissen et al., 1994). Therefore, both 

unidimensional and two-factors structures were specified as simulation conditions. Interfactor 

correlations were set to φ = 0, 0.3 and 0.6 and were manipulated to examine how the magnitude 
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of the relationship between factors in two-factors structures affected the performance of 

estimation methods. While φ = 0 was specified because of the performance of the estimation 

methods in unrelated structures, φ = 0.3 was specified because of its frequent use in studies 

(Curran et al., 1996; Flora & Curran, 2004; Li, 2016). Thus, the results of the study can be 

compared to other studies in the literature. φ = 0.6 was specified because it offered the chance 

of examining how the increase of interfactor correlation affected the performance of the 

estimation methods. Thus, the aim is to examine the performance of estimation methods under 

these changing conditions. Table 1 contains a summary of the factors held constant and 

manipulated factors with their levels. 

Table 1. Simulation conditions 

Fixed Factor Manipulated Factors 

Number of 

Categories of 

Indicators 

Sample 

Size 

Distribution 

of Indicators 

Test 

Length 

Average 

Factor 

Loading 

Factor Structure 

(Model) 

1-0 

200 

500 

1,000 

Left-Skewed 

Normal 

Right-

Skewed 

10       

20       

0.40 

0.70 

Unidimensional 

Two Factors (φ = 0) 

Two Factors (φ = 0.3) 

Two Factors (φ = 0.6) 

 

Full crossed factorial design was used in the study. By crossing each condition, 3x3x2x2x4=72 

simulation conditions have been studied. The number of indicators is equally divided between 

the factors in two-factorial models. For example, in two-factors models with 10 indicators, five 

indicators were included in each factor. For each condition, 1,000 replications were obtained. 

The models examined in the study are presented in Figure 1. 

The factor loadings were specified as Table 2.  

Table 2. Factor loadings used in study 

It
em

 

N
u
m

b
er

 Figure 1.a  

Factor Loadings 

Figure 1.c  

Factor Loadings 

Figure 1.b  

Factor Loadings 

Figure 1.d  

Factor Loadings 

Average Factor Loading 

0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 

1 0.39 0.68 0.39 0.72 0.36 0.68 0.37 0.68 

2 0.37 0.72 0.37 0.73 0.40 0.73 0.37 0.73 

3 0.38 0.68 0.38 0.69 0.40 0.71 0.38 0.71 

4 0.39 0.68 0.39 0.68 0.39 0.69 0.44 0.69 

5 0.45 0.7 0.45 0.70 0.43 0.72 0.34 0.72 

6 0.39 0.72 0.39 0.73 0.39 0.69 0.35 0.69 

7 0.42 0.7 0.42 0.72 0.40 0.70 0.45 0.70 

8 0.43 0.73 0.43 0.69 0.39 0.71 0.44 0.71 

9 0.42 0.72 0.42 0.71 0.40 0.73 0.36 0.73 

10 0.34 0.70 0.34 0.67 0.44 0.69 0.46 0.69 

11     0.38 0.72 0.36 0.70 

12     0.42 0.72 0.40 0.68 

13     0.41 0.71 0.40 0.71 

14     0.39 0.7 0.39 0.72 

15     0.45 0.71 0.43 0.70 

16     0.38 0.72 0.39 0.70 

17     0.42 0.71 0.40 0.67 

18     0.41 0.71 0.39 0.74 

19     0.41 0.71 0.40 0.68 

20     0.40 0.72 0.44 0.71 
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Figure 1. Models examined in the research 

2.3. Data Generation 

A latent response variable framework was used in data generation (Brown, 2015; B. O. Muthén 

& Asparouhov, 2002). Accordingly, the datasets were firstly generated as continuous which 

holds multivariate normal distribution. Then, the datasets were categorized according to the 

skewness of the indicators using threshold values. The threshold values are specified as {0} for 

normal distribution, {1.05} for right-skewed and {-1.05} for left-skewed. In this case, the mean 

skewness values of the indicators are 0 for normal distribution, 2.00 for right-skewed 

distribution and -2.00 for left-skewed distribution. Kurtosis values are 2, 5 and 5 respectively. 

The lavaan package (Rosseel, 2012) in the R software (R Core Team, 2018) was used for data 

generation. 

2.4. Data Analysis 

The Mplus software (L. K. Muthén & Muthén, 2012) was used to analyze the generated data. 

The MplusAutomation package (Hallquist & Wiley, 2017) was used to analyze the simulated 

data and to obtain the outputs of the analyses. The performance of ML, mean and variance 

adjusted weighted least squares (WLSMV), mean and variance adjusted unweighted least 

squares (ULSMV) and Bayesian estimation methods were compared in terms of outcome 

variables. The number of iterations in ML, ULSMV and WLSMV methods is limited to 1,000, 

which is the default value of Mplus. 
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When the Bayesian estimation method was used, informative and non-informative priors could 

be used. Informative priors can be used if the researcher has information about the distribution 

of parameters. However, non-informative priors can be used if the researcher does not have 

information about the distribution of parameters (B. O. Muthén & Asparouhov, 2012). Non-

informative priors, which is the default in Mplus used in this study, were determined as follows: 

for indicators, (τ) ∼N (0, ∞); for factor loadings (λ) ∼N (0,5); for regression coefficients (β) 

∼N (0,5); for latent response variable's mean / intersection ( α) ∼N (0, ∞), and, for latent 

response variable's variance, ∼inverse Gamma (-1,0) was used (L. K. Muthén & Muthén, 2015). 

In this study, tetrachoric correlation matrix was used to conduct CFA because of the binary 

data. 

2.5. Outcome Variables 

Firstly, non-convergence solutions were investigated. Following this, improper solutions were 

examined. If the factor loadings of the indicators are -1.00 and smaller or +1.00 and greater, 

then this solution was treated as an improper solution and excluded from further analysis. 

In order to compare data obtained from the simulation study, relative percentage bias (RPB) 

values were used (DiStefano & Morgan, 2014; Flora & Curran, 2004; Jin et al., 2016; Lei, 2009; 

Liang & Yang, 2014). The equation for RPB can be formulated as below: 

𝑅𝑃𝐵 =
𝜃̂−𝜃𝑇𝑟𝑢𝑒

𝜃𝑇𝑟𝑢𝑒
. 100% ………………………………………..1 

Here, 𝜽̂ is the mean of sample estimates over 1,000 replications, whereas 𝜽𝑻𝒓𝒖𝒆 presents the 

true value. When the formula of RPB value is examined, it is seen that the value calculated is a 

percentage. In studies where RPB values are used, absolute values of RPB greater than 10 are 

taken as the evaluation criteria (Curran et al., 1996; Flora & Curran, 2004; Rhemtulla et al., 

2012). Similarly, in this research, RPB values greater than 10 were labeled biased. In this study, 

RPB for interfactor correlation was calculated only for φ = 0.3 and φ = 0.6. Because of the zero 

divided problem (𝜽𝑻𝒓𝒖𝒆=0 in Equation 1), RPB was calculated only for φ = 0.3 and φ = 0.6 

conditions. 

When reporting RPB, averages of the indicators were calculated. The mean RPB value of the 

indicators is demonstrated in graphs. In addition, RPB values for each item are given in a table 

in Appendix 3. 

Coverage rate also was used to compare estimation methods’ performances. Coverage rate 

examines the inclusion of the real parameter value of the confidence interval to be established 

around the parameter estimation. For this purpose, a 95% confidence interval was created for 

each estimation using the standard error of the estimation, and whether the real parameter value 

was in this interval was examined. Collins et al. (2001) suggest a coverage rate less than 90% 

is problematic. Therefore, in the present study, the cut-off point of the coverage rate was 90%. 

For the relative bias of standard errors, the relative standard error bias (r-seb) was also 

calculated. For this: 

𝑟 − 𝑠𝑒𝑏 =

1

𝑛𝑟𝑒𝑝
∑ 𝑠𝑒̂(𝜃̂𝑝𝑡)

𝑛𝑟𝑒𝑝
𝑡=1

𝑠𝑑(𝜃̂𝑝𝑡)
 ………………………………. 2 

equality was used. Where 𝑠𝑒̂(𝜃𝑝𝑡), standard error of parameter p for t. replication, 𝑠𝑑(𝜃𝑝𝑡) is 

standard deviation of parameter p for t. replication. R-seb value was classified by Holtmann et 

al. (2016). Holtmann et al. (2016) as 5/6 < r-seb <6/5 negligible, 2/3 < r-seb <5/6 ve 6/5 < r-

seb <3/2 medium, and r-seb <2/3 or r-seb >3/2, large. In the present study, r-seb values which 

were negligible, and medium were considered as acceptable. 
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3. RESULT 

In this section, results of the simulation study are provided according to the outcome variables.  

3.1. Non-convergence and Improper Solutions 

Non-convergence was encountered in 15 datasets (0.01%) of 144,000 datasets mostly in 200 

sample sizes for the ML method. One of these datasets is in the 500 sample size and the other 

14 are in the 200 sample size. The ML method was not converged under conditions where 

average factor loading is 0.4, indicators follow skewed distribution (right or left) and the 

number of indicators is 10.  

Non-convergence was encountered in 19 datasets (0.01%) of 144,000 datasets, mostly in 200 

sample sizes for the Bayesian method. The Bayesian method was not converged under 

conditions where the number of factors was two, average factor loading was 0.4 and the number 

of indicators was 10. 

The ULSMV and WLSMV methods have more non-convergent datasets than ML and Bayesian 

methods. Non-convergence was encountered in 2,755 datasets (1.91%) of 144,000 datasets for 

the ULSMV method. When the properties of the non-converged datasets were examined, it was 

observed that it occurs mostly where the sample size is 200 and indicators are skewed in the 

ULSMV method. All non-converged datasets occurred under conditions where the average 

factor loading was 0.4. 

The WLSMV method has non-convergent solutions in 2,856 datasets (1.98%). It was observed 

that non-convergence occurred mostly in conditions where the sample size is 200 and average 

factor loading is 0.4. Non-convergent solutions are detailed in Appendix 1. 

The Bayesian method has no improper solution. ML has improper solutions in 162 datasets 

under conditions where sample size is 200, average factor loading is 0.4, the number of 

indicators is 10, which were skewed. ML has improper solutions for only two factors 

conditions.  

In the ULSMV method, there were improper solutions in 1,534 datasets (1.06%). It was 

observed that these datasets generally emerged under conditions where the number of indicators 

is 10, sample size is 200, average factor loading is 0.4, and indicators were skewed. In the 

WLSMV method, there were improper solutions in 1,877 datasets (1.30%). It was observed 

that these datasets generally emerged under conditions where the number of indicators is 10, 

sample size is 200, average factor loading is 0.4, and indicators were skewed. The number of 

datasets with the improper solution is detailed in Appendix 2. 

3.2. Relative Percentage Bias 

3.2.1. Relative percentage bias of factor loadings 

RPB values obtained from simulation conditions are presented in Figure 2. In addition, the 

maximum, average and minimum values of the RPB obtained from the items are given in 

Appendix 3 for researchers who want to examine them. 

When the RPB values obtained from the estimation methods for factor loadings (Figure 2) are 

examined, it can be said that all methods have an acceptable bias for sample sizes of 500 and 

1,000. It was observed that RPB values of all estimation methods are less than 10 under 

conditions with average factor loading of 0.7 in a sample size of 200. However, RPB can be 

smaller than -10 where average factor loading is 0.4 in the sample size of 200. Considering the 

conditions with an average factor loading of 0.4 and the number of indicators of 10, the RPB 

of the Bayesian method is less than -10 where the indicators are skewed and factorial structure 

consist of two factors (for φ = 0 and 0.3). For the same conditions, except for the number of 

items, the RPB of the WLSMV is less than -10 where the number of indicators is 20 and two 
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factorial structure (for φ = 0 and 0.3). Increasing the number of indicators in skewed 

distributions reduced bias. In addition, increasing the interfactor correlation reduced bias. ML 

and ULSMV methods have acceptable bias in all conditions. The WLSMV method’s RPB is 

less than -10 in just one condition (mean factor loading is 0.4, right-skewed indicators, the 

number of indicators is 20, and sample size is 200). All of the methods have negative bias. 

3.2.2. Relative percentage bias of interfactor correlations 

The results obtained from simulation conditions for interfactor correlations are presented in 

Figure 3. In addition, for researchers who want to examine further detail, values are given in 

table in Appendix 4. When the RPB values of the methods for interfactor correlation (Figure 3) 

are examined, RPB, obtained from all methods is within acceptable limits under conditions with 

an average factor loading of 0.7. However, as the sample size decreases under the conditions 

with an average factor loading of 0.4, the RPB of the φ parameter obtained from the methods 

may go beyond the limits. The RPB obtained from the Bayesian method was estimated to be 

less than the required value for both models under conditions where the sample size was 200 

and 500, and the average factor loading was 0.4. RPB values of ML, ULSMV and WLSMV 

methods are within acceptable limits under conditions where sample size is 500 and average 

factor loading is 0.4. Under the conditions where average factor load was 0.4, sample size was 

200, and skewed distribution, the number of items was increased, the RPB values of ML, 

ULSMV and WLSMV methods increased to acceptable range. Under the conditions where 

average factor loading was 0.4, sample size was 200, and normal distribution, the RPB values 

of ML, ULSMV and WLSMV methods were within acceptable limits. 

3.3. Coverage Rate 

3.3.1. Coverage rate of factor loadings 

The coverage rates obtained from the simulation conditions are presented in Figure 4. In 

addition, the maximum, minimum and average values of the coverage rates obtained from the 

items are given in Appendix 5 for researchers who want to study the detail. When the coverage 

rates of the methods are examined according to the simulation conditions, it was observed that 

the coverage rates of the estimation methods decreased under conditions where the sample size 

is 200 and the items were skewed. When average factor loading increases to 0.7, the coverage 

rates of estimation methods increase for a sample size of 200. The coverage rate of ULSMV 

and WLSMV is below 90% under the conditions where sample size is 200, average factor 

loading is 0.4 and the items are skewed. It can be said that the Bayesian method performs better 

than the others under these conditions. Increasing the number of items increased the coverage 

rate of ML. The coverage rate of the Bayesian method is less than 90% for the conditions where 

the factor structure is unidimensional, the number of items is 20 and average factor loading is 

0.4. 

Under the conditions where the sample size is 500, the coverage rate of all methods, except for 

Bayesian, is over 90% for all models. However, the Bayesian method can fall below 90% in 

unidimensional structures. With the increase in the average factor loading, the performance of 

the Bayesian method in unidimensional structures increases. When the simulation conditions 

where the sample size is 1,000 are examined, the Bayesian method has a lower coverage rate 

in unidimensional structures than the other structures under conditions where average factor 

loading is 0.4. The coverage rates of the ML, ULSMV and WLSMV methods are adequate for 

all models for the conditions where the indicators are normal and distribution skewed. Under 

conditions with an average factor loading of 0.7, the coverage rates of all other methods, except 

the ML method, are sufficient. The coverage rate of ML is below 90% for some models under 

conditions where the number of indicators is 10 or 20. Interestingly, the increase in sample size 

reduced the coverage rate of ML for these conditions. 
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Figure 2. Relative percentage bias (RPB) of factor loadings 
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Figure 3. Relative percentage bias (RPB) of interfactor correlations
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3.3.2. Coverage rate of interfactor correlations 

The coverage rate of the methods for interfactor correlation are presented in Figure 5, and the 

numerical values are presented in a table in Appendix 6. Coverage rates obtained from all 

estimation methods are 90% and above, under conditions where the sample size is 1,000 and 

average factor loading is 0.7. Under the conditions where the sample size is 200 and average 

factor loading is 0.7, the coverage rates of the methods are above 90% under the conditions 

where indicators follow normal distribution. However, the performance of the WLSMV method 

decreased as the φ parameter decreases under conditions where the indicators distributions are 

skewed. ML and Bayesian methods have a coverage rate of over 90% under conditions where 

the sample size is 200, indicators are skewed and average factor loading is 0.7. The ULSMV 

method had a coverage rate of over 90% with the increase of the φ parameter under conditions 

where the sample size is 200, indicators were skewed and average factor loading is 0.7, and 

remained below 90% under conditions where φ was 0. 

The conditions where indicators follow normal distribution and average factor loading is 0.4, 

increasing the sample size increased coverage rate of ML, ULSMV and WLSMV. In addition, 

the coverage rate of the Bayesian method is less than 90% where the φ parameter is 0.6. 

Decreasing the φ parameter increased the coverage rate of the Bayesian method. The conditions 

where indicators are normally distributed, the average factor loading is 0.4 and sample size is 

200, increasing the interfactor correlation (φ) increased the coverage rate of ULSMV and 

WLSMV. With the increase in the number of indicators in these conditions, the coverage rate 

of ML increased but it was not affected by the magnitude of the interfactor correlation. 

Under conditions where the average factor loading is 0.4, indicators follow skewed distribution, 

sample size is 200 and the number of items is 10, the coverage rate of the Bayesian method 

alone (for φ = 0 and 0.3) is higher than 90%, while when the number of indicators increased to 

20, the coverage rate of ML is about 90%. Under all conditions where the average factor loading 

is 0.4, items have skewed distribution and sample size is 500, the coverage rate of the ULSMV 

and WLSMV methods is higher than 90% only if the φ parameter is 0.6. For these conditions, 

the coverage rate of ML is higher than 90%. With the increase in the number of items, the 

coverage rate of ML also increased. While the Bayesian method has a coverage rate of less than 

90% under conditions where the φ parameter is 0.6, under conditions where the φ parameter is 

0 or 0.3, the coverage rate of the Bayesian method is higher than 90%. 

3.4. Relative Standard Error Bias 

3.4.1. Relative standard error of factor loadings 

The r-seb values obtained from the simulation conditions are presented in Figure 6. In addition, 

maximum, minimum values and averages of the r-seb values obtained from the indicators are 

given in Appendix 7. In all conditions where the sample size is 500 and 1,000, all estimation 

methods have an acceptable r-seb value for all models. However, the WLSMV method has a 

large r-seb value in all two-dimensional models, except for unidimensional structures under 20-

indicators conditions with a skewed distribution with an average factor loading of 0.4 in 200 

sample size.
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Figure 4. Coverage rate of factor loadings 
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Figure 5. Coverage rate of interfactor correlations 
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Figure 6. Relative standard error bias (r-seb) of factor loadings 
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Figure 7. Relative standard error bias (r-seb) of interfactor correlations
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3.4.2. Relative standard error of interfactor correlations 

The r-seb values of the methods for interfactor correlation are presented in Figure 7 and the 

numerical values are given in the table in Appendix 8. When Figure 7 is examined, it can be 

said that the r-seb values of all estimation methods are acceptable under all conditions where 

sample sizes are 500 and 1,000. However, the r-seb values of the estimation methods are out of 

range for decreasing the sample size and the indicators became skewed.  

The r-seb values of the estimation methods are acceptable under conditions where the sample 

size is 200 and the average factor loading is 0.7. In cases where the items are skewed, the r-seb 

values of the WLSMV method are out of the acceptable range when φ parameter is 0. The r-

seb values of the other methods are acceptable under these conditions. 

The r-seb values of the estimation methods are acceptable under conditions where the sample 

size is 200, the average factor loading is 0.4 and indicators follow normal distribution. In these 

conditions, except for distribution of indicators, the r-seb values of the Bayesian method are 

acceptable under conditions where indicators follow skewed distribution. Increasing the 

number of items under these conditions, the r-seb values of the ML method increased to an 

acceptable range. The r-seb values of the ULSMV and WLSMV methods are unacceptable for 

these conditions. In these conditions, ML and Bayesian methods perform better in terms of r-

seb values. 

4. DISCUSSION 

In this study, CFA estimation methods were compared by manipulating sample size, 

distribution of data, test length, average factor loading, and factor structure for binary data. 

4.1. Non-convergence and Improper Solutions 

Non-convergence frequently encounters datasets which have a two-factor structure and consist 

of skewed indicators for the ULSMV and WLSMV estimation methods. These methods have a 

less converged problem in unidimensional structures than in two-factor structures (even if items 

are skewed). The increase in the number of items for conditions where items are skewed 

decreases the non-convergence datasets for ULSMV and WLSMV. It can be said that all 

estimation methods converge when the average factor loading is 0.7. In other words, the 

ULSMV and WLSMV estimation methods are mostly non-convergent for small sample size, 

low average factor loading, short test length, two-dimensional models, and the magnitude of 

interfactor correlation is small. This result is consistent with the study by Moshagen and Musch 

(2014). In a study comparing MLR and WLSMV estimation methods conducted by Li (2016a), 

consisting of 4, 6, 8, and 10 categories indicators with skewness coefficients ranging from 1.01-

1.31, it was reported that WLSMV converged under all conditions and there were no improper 

solutions. It is thought that the differentiation of the number of categories of indicators and the 

skewness of the indicators may have caused differentiation between the results. Nestler (2013) 

states that the DWLS (WLSMV) method had 3.7% non-convergence in sample size of 250. The 

present study is similar to the study conducted by Flora and Curran (2004) and Nestler (2013) 

in terms of non-convergence. 

There are no improper solutions in the Bayesian method, whereas there are a few in the ML 

method. Liang and Yang (2014) also reported that there were no improper solutions in binary 

data in a simulation study using non-informative priors. The result obtained in this respect is 

consistent with the Liang and Yang's (2014) study. The ULSMV and WLSMV methods have 

more improper solutions under conditions where average factor loading is 0.4 and sample size 

is 200. There was a decrease in the number of improper solutions under conditions where the 

average factor load was 0.4, sample size was 200 and the indicators followed a normal 
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distribution. The number of improper solutions is very close to 0 even if the sample size is small 

under conditions where the average factor load was 0.7. 

When non-convergence and improper solution results are evaluated, it can be said that ML and 

Bayesian methods perform better than ULSMV and WLSMV methods. It was observed that 

the number of non-convergence and improper solutions of the methods increased where the 

average factor loading was low, test length was short and the distribution of indicators were 

skewed, the factor structure was not unidimensional, and the sample size was small. 

4.2. Relative Percentage Bias of Factor Loadings 

When the RPB values calculated via factor loadings of the estimation methods were examined, 

the Bayesian and WLSMV methods may give biased results under conditions where the sample 

size is 200, average factor loading is 0.4, and items are skewed. The conditions where the 

sample size is 200, average factor loading is 0.4, and items are skewed show that increasing the 

number of indicators and number of factors and decreasing the interfactor correlation decreased 

the WLSMV estimation method’s RPB, and decreasing the number of indicators and the 

interfactor correlation while increasing the number of factors decreased the RPB value of the 

Bayesian method. This result is similar to the findings obtained by Nalbantoğlu Yılmaz (2019) 

in continuous data. She stated that the WLS method has larger RPB values for small samples. 

In addition, this result is consistent with the research conducted by Moshagen and Musch (2014) 

and Lei (2009). Moshagen and Musch (2014) report that RPB was less than 10% for 

unidimensional structures, while Lei (2009) states that RPB values of the ML and WLSMV 

methods were less than 10%. Flora and Curran (2004) report that the RPB values of robust 

WLS estimation methods did not exceed 10%. But in the present study, the RPB value of 

WLSMV is more than 10% in conditions where the sample size is 200, the average factor 

loading is 0.4, the distribution of 20 indicators are left-skewed, and the interfactor correlation 

is 0 and 0.3. This difference may be due to the fact that the factor loadings are not equal for all 

indicators in the present study. In addition, Flora and Curran (2004) make y* (latent continuous 

variable) skewed. However, in the present study, the latent variable (y*) was generated to 

follow a normal distribution. Indicators were skewed and analyses were performed. It is thought 

that the differentiation of the results may have been due to this differentiation. 

4.3. Relative Percentage Bias of Interfactor Correlations 

When the RPB values of the φ parameter, which is interfactor correlation, are examined, the 

RPB performance of all methods is sufficient in all conditions with average factor loading of 

0.7. However, the RPB performance of the ML, ULSMV and WLSMV methods decreased 

when the sample size decreased and the skewness of the items increased under conditions where 

average factor loading is 0.4. Beauducel and Herzberg (2006) state that interfactor correlation 

size is more effective on the performance of the estimation methods. In this respect, it can be 

said that the present study is similar to Beauducel and Herzberg's (2006) study. The RPB value 

of the Bayesian method is higher than 10% in almost all conditions where the average factor 

loading is 0.4, sample size is 1,000, distribution of indicators normal and the number of 

indicators is 20. This result is consistent with the findings of Liang and Yang (2014). 

4.4. Coverage Rate of Factor Loadings 

When the coverage rates calculated via factor loadings of the estimation methods were 

examined, it was observed that the increase in sample size and average factor loading increased 

the performance of the estimation methods. It can be said that the coverage rate of the ULSMV 

and WLSMV methods are not sufficient in the conditions where the distribution of indicators 

is skewed, sample size is small, and average factor loadings is low. This result is consistent 

with the findings of the simulation study conducted by Forero et al. (2009). In addition, Koğar 

and Yılmaz Koğar (2015) stated that ULS and DWLS methods have less standard errors when 
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compared to the ML method. The difference may have originated from variables that were not 

examined in current study included in the real data set. In the simulation study conducted by 

Wolf et al. (2013), it was reported that ML had sufficient coverage rates under all conditions 

studied. However, in this study, the data were generated as normal and continuous. It can be 

said that there may be a difference in this respect with the results of the present study. The 

coverage rate of the Bayesian method is less than 90% for the conditions where the model is 

unidimensional and average factor loading is 0.4. Önen (2019) states that the coverage rate of 

the Bayesian method is sufficient for all simulation conditions. In the present study, the 

difference may have arisen since non-informative priors for Bayesian estimations. 

4.5. Coverage Rate of Interfactor Correlations 

Coverage rates calculated for interfactor correlations for the WLSMV method remained below 

90% under conditions where the correlation between the dimensions was 0 and a small sample 

size. The performance of the WLSMV method decreased as the φ parameter decreased under 

conditions where the indicators followed a skewed distribution. The ML and Bayesian methods 

had a coverage rate of over 90% under conditions where sample size is 200, average factor load 

is 0.7 and items are skewed. Li (2016b) likewise reported that the coverage rate of the MLR 

method is adequate, and that the WLSMV method may have a coverage rate of less than 90% 

in skewed distributions. It can be said that the current research findings are consistent with this 

study. The ULSMV method’s coverage rate remained below 90% as interfactor correlation 

decreases under conditions of sample size of 200 and skewed distribution of items. Under 

conditions where the average factor loading is 0.4, sample is small and the indicators follow 

normal distribution, the coverage of the ULSMV and WLSMV methods decreases as interfactor 

correlation decreases. In the case of indicators with average factor loading of 0.4, the 

performances of other methods remained below 90%, except for the Bayesian method. 

However, with the increase in the sample size, the coverage rate of the methods increased. 

4.6. Relative Standard Error Bias of Factor Loadings 

When r-seb values are examined for factor loadings, it can be said that the methods perform 

sufficiently in most of the conditions. The WLSMV method went beyond the acceptable limits 

for r-seb values under conditions where the average factor loading is 0.4, the sample size is 200 

and the number of indicators are 20, and is within the acceptable range under other conditions. 

Other methods are acceptable in all conditions. In the simulation study performed by Xu (2019), 

the MLR method has sufficient relative bias in normal, mild non-normal and moderate non-

normal data. However, the Bayesian method has a relative bias greater than 10% under 

moderate non-normal conditions. In the present study, the Bayesian method has sufficient r-seb 

value under all conditions. In the study conducted by Xu (2019), the data was produced as a 

correlation matrix. In addition, the factor loadings of the indicators were fixed to 0.7. It can be 

said that the differentiation may have originated from here. 

4.7. Relative Standard Error Bias of Interfactor Correlations 

When the r-seb values are examined for interfactor correlations, all methods are in the 

acceptable range in 500 and 1,000 sample sizes, while the WLSMV method in the sample size 

of 200 may be out of the acceptable range in skewed distributions. 

When the results of the research are evaluated in general, it can be said that the increase in the 

average factor loading and the sample size have a positive effect on the performances of the 

estimation methods. The increase in the number of indicators did not cause much difference for 

the indicators which follow normal distribution, but it affected the estimations of the methods 

for the indicators which followed skewed distribution. According to the research findings, it 

can be said that the methods are sufficient to estimate the average factor loading and the 

interfactor correlations, regardless of the estimation method used in most of the conditions 
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where the average factor loading is 0.7. However, as the average factor loading was 0.4, the 

number of skewed indicators increased, the sample size decreased and the interfactor 

correlations decreased, the performance of the methods decreased. Especially in small samples, 

the interfactor correlation was lower in the case of skewed indicators than indicators which 

follow normal distribution. 

According to the research findings, it can be said that any estimation method can be chosen 

under conditions where sample size is 500 or 1000 and average factor loading is 0.7. The 

performance of the estimation methods differs in conditions with a sample size of 200. 

Therefore, the conditions where sample size is 200, the average factor loading is 0.4, indicators 

follow normal distribution, and the structure is unidimensional, it is recommended to use ML, 

ULSMV or WLSMV.  

However, if the indicators are skewed, it can be recommended that to use ML or ULSMV 

estimation method. As the interfactor correlation decreases, the performance of the estimation 

methods to estimate the interfactor correlations decreases in small samples. Therefore, 

expanding the sample can be considered in such a case. According to the research findings, 

there is no method that makes the most accurate estimation under all conditions. However, it 

can be suggested that to use the ULSMV estimation method because it is observed that it has 

sufficient performance under more conditions. 
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6. APPENDIX 

Appendix 1. Number of datasets having convergence failure 

S
am

p
le

 

S
iz

e 

M
o

d
el

 

M
et

h
o
d
 

Mean Factor Loading = 0.4 Mean Factor Loading = 0.7 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

10 20 10 20 10 20 10 20 10 20 10 20 

200 

U
n

id
im

en
s

io
n

al
 ML - - - - - - - - - - - - 

200 ULSMV 41 32 2 3 50 26 - - - - - - 

200 WLSMV 29 41 2 3 49 30 1 - - - - - 

200 BAYES 1 - - - 2 - - - - - - - 

200 

2
 f

ac
to

rs
 

(φ
 =

 0
) ML 2 - - - 2 - - - - - - - 

200 ULSMV 299 101 81 11 290 120 - - - - - - 

200 WLSMV 282 157 85 11 306 158 - - - - 1 - 

200 BAYES 3 2 1 - - 3 - - - - - - 

200 

2
 f

ac
to

rs
 

(φ
 =

 0
.3

) ML 2 - - - 4 - - - - - - - 

200 ULSMV 256 101 48 6 282 110 - - - - - - 

200 WLSMV 240 157 49 6 270 160 1 - - - 1 - 

200 BAYES - - - - 1 - - - - - - - 

200 

2
 f

ac
to

rs
 

(φ
 =

 0
.6

) ML 4 - - - - - - - - - - - 

200 ULSMV 211 1-3 27 5 186 87 - - - - - - 

200 WLSMV 193 1-2 27 5 165 109 - - - - - 1 

200 BAYES 1 2 - - - 2 - - - - - - 

500 

U
n

id
im

en
s

io
n

al
 ML - - - - - - - - - - - - 

500 ULSMV 4 - - - - - - - - - - - 

500 WLSMV 5 - - - - - - - - - - - 

500 BAYES - - - - - - - - - - - - 

500 

2
 f

ac
to

rs
 

(φ
 =

 0
) ML 1 - - - - - - - - - - - 

500 ULSMV 65 5 1 - 70 1 - - - - - - 

500 WLSMV 54 4 1 - 57 1 - - - - - - 

500 BAYES - - - - - - - - - - - - 

500 

2
 f

ac
to

rs
 

(φ
 =

 0
.3

) ML - - - - - - - - - - - - 

500 ULSMV 43 6 - - 34 2 - - - - - - 

500 WLSMV 30 5 - - 18 1 - - - - - - 

500 BAYES - - - - - - - - - - - - 

500 

2
 f

ac
to

rs
 

(φ
 =

 0
.6

) ML - - - - - - - - - - - - 

500 ULSMV 17 1 - - 16 5 - - - - - - 

500 WLSMV 13 1 - - 14 4 - - - - - - 

500 BAYES - - - - 1 - - - - - - - 

1000 

U
n

id
im

en
s

io
n

al
 ML - - - - - - - - - - - - 

1000 ULSMV - - - - - - - - - - - - 

1000 WLSMV - - - - - - - - - - - - 

1000 BAYES - - - - - - - - - - - - 

1000 

2
 f

ac
to

rs
 

(φ
 =

 0
) ML - - - - - - - - - - - - 

1000 ULSMV 3 - - - 2 - - - - - - - 

1000 WLSMV 3 - - - 2 - - - - - - - 

1000 BAYES - - - - - - - - - - - - 

1000 

2
 f

ac
to

rs
 

(φ
 =

 0
.3

) ML - - - - - - - - - - - - 

1000 ULSMV 2 - - - - - - - - - - - 

1000 WLSMV 2 - - - - - - - - - - - 

1000 BAYES - - - - - - - - - - - - 

1000 

2
 f

ac
to

rs
 

(φ
 =

 0
.6

) ML - - - - - - - - - - - - 

1000 ULSMV - - - - - - - - - - - - 

1000 WLSMV - - - - - - - - - - - - 

1000 BAYES 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix 2. Number of datasets having inadmissible solution 
S

am
p

le
 

S
iz

e 

M
o

d
el

 

M
et

h
o
d
 

Mean Factor Loading = 0.4 Mean Factor Loading = 0.7 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

10 20 10 20 10 20 10 20 10 20 10 20 

200 

U
n

id
im

en
s

io
n

al
 ML - - - - - - - - - - - - 

200 ULSMV 9 - - - 11 - - - - - - - 

200 WLSMV 8 - - - 11 - - - - - - - 

200 BAYES - - - - - - - - - - - - 

200 

2
 f

ac
to

rs
 

(φ
 =

 0
) ML 37 1 - - 28 - 2 - - - - - 

200 ULSMV 219 24 57 - 205 30 21 - - - 26 1 

200 WLSMV 239 96 55 - 199 111 53 8 - - 80 15 

200 BAYES - - - - - - - - - - - - 

200 

2
 f

ac
to

rs
 

(φ
 =

 0
.3

) ML 25 - 1 - 27 1 1 - - - 1 - 

200 ULSMV 179 20 35 1 185 34 19 1 - - 25 1 

200 WLSMV 169 83 34 1 176 83 17 - - - 27 - 

200 BAYES - - - - - - - - - - - - 

200 

2
 f

ac
to

rs
 

(φ
 =

 0
.6

) ML 19 1 - - 10 - - - - - 1 - 

200 ULSMV 118 5 4 - 129 4 6 3 - - 12 2 

200 WLSMV 88 29 4 - 105 23 3 3 - - 10 2 

200 BAYES - - - - - - - - - - - - 

500 

U
n

id
im

en
s

io
n

al
 ML - - - - - - - - - - - - 

500 ULSMV - - - - - - - - - - - - 

500 WLSMV - - - - - - - - - - - - 

500 BAYES - - - - - - - - - - - - 

500 

2
 f

ac
to

rs
 

(φ
 =

 0
) ML 3 - - - 1 - - - - - - - 

500 ULSMV 52 - - - 35 - - - - - - - 

500 WLSMV 50 1 - - 38 4 - - - - 1 - 

500 BAYES - - - - - - - - - - - - 

500 

2
 f

ac
to

rs
 

(φ
 =

 0
.3

) ML 1 - - - 1 - - - - - - - 

500 ULSMV 26 - 1 - 22 - - - - - 1 - 

500 WLSMV 22 - 1 - 21 - - - - - - - 

500 BAYES - - - - - - - - - - - - 

500 

2
 f

ac
to

rs
 

(φ
 =

 0
.6

) ML - - - - - - - - - - - - 

500 ULSMV 3 - - - 5 - - - - - - - 

500 WLSMV - - - - 4 - - - - - - - 

500 BAYES - - - - - - - - - - - - 

1000 

U
n

id
im

en
s

io
n

al
 ML - - - - - - - - - - - - 

1000 ULSMV - - - - - - - - - - - - 

1000 WLSMV - - - - - - - - - - - - 

1000 BAYES - - - - - - - - - - - - 

1000 

2
 f

ac
to

rs
 

(φ
 =

 0
) ML - - - - 1 - - - - - - - 

1000 ULSMV - - - - 2 - - - - - - - 

1000 WLSMV - - - - 2 - - - - - - - 

1000 BAYES - - - - - - - - - - - - 

1000 

2
 f

ac
to

rs
 

(φ
 =

 0
.3

) ML - - - - - - - - - - - - 

1000 ULSMV 1 - - - - - - - - - - - 

1000 WLSMV 1 - - - - - - - - - - - 

1000 BAYES - - - - - - - - - - - - 

1000 

2
 f

ac
to

rs
 

(φ
 =

 0
.6

) ML - - - - - - - - - - - - 

1000 ULSMV - - - - - - - - - - - - 

1000 WLSMV - - - - - - - - - - - - 

1000 BAYES - - - - - - - - - - - - 
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Appendix 3. Mean, maximum and minimum values of relative percentage bias 
S

am
p
le

 

S
iz

e 

M
o
d
el

 

M
F

L
 

M
et

h
o
d
 

Number of Items = 10 Number of Items = 20 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min 

200 

U
n
id

im
en

si
o

n
al

 

0.4 ML -3.0 0.7 -5.3 -8.2 -5.3 -10.5 -1.8 0.8 -3.9 -0.3 1.4 -2.7 -8.5 -6.7 -10.2 -0.5 1.7 -1.8 

200 0.4 ULSMV -7.0 2.8 -10.8 -0.1 2.6 -2.0 -5.9 1.9 -8.8 -4.3 -2.4 -6.3 -0.5 1.3 -2.3 -4.4 -1.7 -6.8 

200 0.4 WLSMV -3.6 7.8 -6.3 0.9 3.6 -1.1 -2.0 6.7 -5.1 -0.6 3.8 -3.4 0.7 2.6 -0.9 -0.9 5.2 -2.8 

200 0.4 BAYES -10.0 -5.4 -17.1 -4.3 0.3 -14.1 -10.5 -5.3 -14.6 -6.4 -0.7 -28.9 -3.8 0.5 -28.1 -6.6 -1.9 -28.7 

200 0.7 ML -0.4 0.1 -0.8 -3.3 -2.4 -4.0 -0.0 0.5 -0.3 1.2 1.9 0.8 -2.6 -1.8 -3.3 1.0 1.5 0.4 

200 0.7 ULSMV -1.1 -0.6 -1.6 -0.2 0.4 -0.6 -0.7 -0.0 -1.1 -0.8 -0.0 -1.4 -0.1 0.3 -0.7 -1.1 -0.7 -1.6 

200 0.7 WLSMV 0.5 1.2 -0.1 0.6 1.1 0.1 1.0 1.5 0.7 1.1 1.7 0.6 0.7 1.2 0.2 0.9 1.4 0.5 

200 0.7 BAYES 0.7 2.4 -1.8 0.7 1.6 -1.4 0.8 2.4 -3.5 0.6 2.5 -16.6 0.7 2.1 -9.3 -0.0 2.1 -17.5 

200 

2
 f

ac
to

rs
 (

φ
 =

 0
) 

0.4 ML -4.9 1.9 -9.1 -7.7 -4.7 -10.7 -3.9 -0.9 -7.2 -3.0 -0.8 -5.8 -8.3 -6.2 -9.9 -3.4 -0.1 -7.1 

200 0.4 ULSMV -6.9 5.1 -17.1 0.4 5.0 -2.3 -5.7 5.8 -14.4 -9.1 0.3 -13.4 -0.5 1.7 -2.1 -9.7 0.8 -14.0 

200 0.4 WLSMV -4.9 6.1 -13.4 1.0 5.9 -2.2 -3.6 6.6 -11.7 -10.7 1.5 -15.1 0.5 3.0 -1.1 -11.4 4.0 -16.9 

200 0.4 BAYES -13.4 6.6 -23.9 -2.9 8.4 -9.2 -13.3 8.0 -22.0 -4.4 1.1 -8.3 -1.2 2.5 -7.6 -5.2 0.5 -9.4 

200 0.7 ML -1.2 -0.3 -2.2 -3.5 -3.2 -3.9 -1.2 -0.8 -1.7 -0.1 0.6 -1.0 -3.5 -2.4 -4.3 -0.1 0.7 -0.7 

200 0.7 ULSMV -0.9 0.1 -1.8 -0.0 0.6 -0.4 -0.9 -0.2 -1.6 -1.0 -0.1 -2.1 -0.4 0.1 -1.0 -0.9 -0.1 -1.6 

200 0.7 WLSMV 0.1 1.2 -0.7 0.4 1.1 0.0 0.3 1.1 -0.3 0.7 1.4 -0.2 0.3 0.8 -0.3 0.7 1.9 0.1 

200 0.7 BAYES -2.0 2.9 -16.9 -0.8 2.5 -9.7 -2.6 1.8 -16.1 -0.8 2.6 -18.5 -0.6 1.1 -12.1 -0.9 3.4 -17.2 

200 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 

0.4 ML -5.1 0.5 -10.1 -7.2 -4.2 -9.9 -4.3 1.2 -7.5 -2.3 -0.4 -5.1 -8.7 -7.0 -10.1 -3.0 -1.4 -6.5 

200 0.4 ULSMV -7.5 5.7 -15.8 0.1 2.3 -3.4 -7.6 6.0 -16.1 -8.5 -0.3 -11.7 -1.2 0.1 -3.1 -9.3 1.5 -13.4 

200 0.4 WLSMV -5.1 11.6 -11.4 0.7 3.0 -2.9 -5.5 8.1 -16.5 -10.1 4.8 -15.8 -0.1 1.3 -2.1 -9.9 5.8 -15.5 

200 0.4 BAYES -12.5 7.5 -23.0 -1.8 8.2 -8.5 -13.2 8.7 -21.2 -3.7 1.0 -8.2 -1.2 2.1 -6.2 -4.5 2.0 -8.6 

200 0.7 ML -1.2 -0.5 -1.8 -3.8 -3.0 -4.5 -1.4 -0.8 -1.9 -0.2 0.4 -0.9 -3.3 -2.8 -3.7 0.1 0.6 -0.9 

200 0.7 ULSMV -1.1 -0.5 -1.7 -0.5 0.3 -1.0 -1.3 -0.6 -1.8 -1.1 -0.3 -1.8 -0.3 0.2 -0.9 -0.9 -0.3 -1.9 

200 0.7 WLSMV 0.1 0.7 -0.4 0.0 0.7 -0.3 -0.0 0.5 -0.5 0.7 1.5 0.0 0.5 1.1 -0.1 0.9 1.5 -0.1 

200 0.7 BAYES -1.8 2.9 -15.6 -1.0 1.9 -8.5 -2.6 1.3 -14.9 -0.8 2.1 -17.6 -0.4 1.5 -11.8 -0.6 2.6 -16.6 

200 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 

0.4 ML -3.7 0.7 -7.2 -7.7 -5.9 -9.2 -2.7 -0.8 -5.2 -2.1 0.6 -4.3 -8.3 -6.7 -11.5 -1.8 -0.2 -5.1 

200 0.4 ULSMV -6.4 2.5 -11.6 -0.4 0.7 -2.1 -4.7 4.7 -9.7 -8.9 -1.9 -12.4 -0.9 0.7 -3.4 -8.6 -1.1 -12.2 

200 0.4 WLSMV -3.6 4.4 -7.3 0.3 1.4 -1.2 -2.5 7.6 -9.4 -7.1 3.1 -11.7 0.3 2.0 -2.1 -6.9 3.9 -10.6 

200 0.4 BAYES -7.3 9.9 -16.4 1.5 10.2 -6.3 -6.8 11.3 -14.2 -1.3 4.0 -5.4 0.8 4.8 -2.6 -1.4 4.3 -6.9 

200 0.7 ML -1.0 -0.5 -1.5 -3.5 -3.0 -4.4 -0.9 -0.1 -1.9 0.0 0.5 -0.4 -3.1 -2.4 -4.2 0.1 0.9 -0.6 

200 0.7 ULSMV -1.4 -0.7 -2.1 -0.2 0.1 -0.6 -1.3 -0.1 -2.4 -1.3 -0.7 -2.0 -0.3 0.3 -1.0 -1.1 -0.3 -1.9 

200 0.7 WLSMV 0.1 0.7 -0.5 0.4 0.8 0.0 0.3 1.4 -0.7 0.7 1.2 0.0 0.6 1.2 -0.1 0.8 1.6 0.1 

200 0.7 BAYES -1.0 3.1 -12.4 -0.4 2.1 -7.4 -1.6 2.0 -12.4 -0.4 2.4 -15.5 -0.1 1.5 -10.3 -0.3 2.9 -14.7 

500 

U
n

id
im

en
si

o
n

al
 

0.4 ML -0.9 1.5 -2.2 -8.9 -7.5 -9.8 -1.2 -0.3 -2.6 -0.1 1.3 -1.2 -8.7 -7.6 -9.7 -0.1 1.0 -1.2 

500 0.4 ULSMV -1.7 -0.2 -2.9 -0.4 0.4 -1.4 -1.9 -0.5 -3.7 -1.7 -0.2 -3.0 -0.3 0.2 -1.2 -1.8 -0.6 -2.8 

500 0.4 WLSMV 0.3 2.4 -1.1 0.0 0.8 -1.0 -0.1 1.4 -1.5 0.4 1.7 -0.8 0.2 0.8 -0.7 0.3 1.4 -0.8 

500 0.4 BAYES -4.3 0.4 -24.6 -2.9 0.9 -21.6 -4.6 -0.6 -22.0 -3.6 1.4 -33.7 -2.4 1.1 -27.9 -3.4 2.1 -33.5 

500 0.7 ML 0.0 0.5 -0.4 -3.3 -2.7 -3.8 -0.3 -0.0 -0.5 1.0 1.5 0.6 -2.8 -2.4 -3.3 1.0 1.4 0.6 

500 0.7 ULSMV -0.3 0.1 -0.7 0.0 0.4 -0.2 -0.5 -0.3 -0.7 -0.4 -0.0 -0.8 -0.1 0.1 -0.4 -0.4 -0.0 -0.8 

500 0.7 WLSMV 0.4 0.8 -0.0 0.3 0.7 0.1 0.1 0.4 -0.1 0.4 0.7 -0.1 0.2 0.5 -0.1 0.4 0.8 -0.0 

500 0.7 BAYES 0.3 1.7 -5.0 0.2 1.1 -4.0 -0.4 1.4 -5.8 -0.1 1.9 -12.4 0.1 1.1 -7.4 0.1 1.6 -11.6 

500 

2
 f

ac
to

rs
 (

φ
 =

 0
) 

0.4 ML -1.5 1.1 -3.9 -7.8 -6.3 -9.3 -1.8 -0.2 -4.5 -1.0 0.3 -2.4 -8.6 -7.1 -9.7 -1.2 0.1 -2.6 

500 0.4 ULSMV -0.9 1.0 -3.4 0.4 1.4 -0.5 -0.8 1.6 -2.4 -1.9 -0.8 -3.6 -0.1 1.1 -1.1 -2.1 -0.8 -3.3 

500 0.4 WLSMV 0.1 1.9 -2.6 0.7 1.6 -0.2 0.2 2.4 -1.7 0.0 1.4 -1.4 0.3 1.5 -0.6 -0.2 1.1 -1.7 

500 0.4 BAYES -2.4 3.4 -5.8 -0.5 2.0 -2.8 -3.1 0.7 -5.1 -1.6 0.8 -5.6 -0.8 1.5 -8.1 -2.0 1.7 -5.7 

500 0.7 ML -0.8 -0.2 -1.4 -3.6 -3.3 -4.0 -1.1 -0.3 -1.6 0.0 0.4 -0.4 -3.5 -2.7 -4.1 -0.2 0.2 -0.5 

500 0.7 ULSMV -0.2 0.5 -0.7 0.0 0.4 -0.2 -0.4 0.3 -0.8 -0.3 0.2 -0.7 -0.2 0.1 -0.5 -0.5 -0.1 -0.9 

500 0.7 WLSMV 0.3 0.9 -0.2 0.2 0.7 -0.0 0.0 0.8 -0.5 0.4 0.9 0.0 0.1 0.4 -0.2 0.2 0.6 -0.2 

500 0.7 BAYES -0.7 1.5 -8.3 -0.3 1.8 -5.8 -1.2 1.8 -9.1 -0.2 1.6 -8.7 -0.3 1.0 -6.1 -0.6 1.3 -9.9 

500 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 

0.4 ML -1.9 0.2 -5.4 -8.1 -6.5 -10.0 -1.0 1.0 -2.6 -1.0 1.6 -3.3 -8.6 -7.7 -11.1 -1.1 0.2 -2.9 

500 0.4 ULSMV -1.8 -0.2 -5.2 0.1 1.5 -1.4 -1.0 0.6 -2.3 -2.1 0.2 -4.8 -0.3 0.6 -2.4 -2.1 -0.8 -5.0 

500 0.4 WLSMV -0.5 1.2 -4.0 0.4 1.8 -1.1 0.1 2.0 -1.8 -0.2 2.3 -2.7 0.1 1.0 -1.9 -0.2 1.1 -2.5 

500 0.4 BAYES -1.9 4.8 -7.7 -0.0 2.1 -2.2 -1.4 2.8 -5.6 -1.2 1.8 -4.1 -0.6 2.1 -6.5 -1.4 1.7 -4.6 

500 0.7 ML -0.9 -0.4 -1.4 -3.6 -3.0 -4.3 -1.0 -0.4 -1.6 -0.1 0.4 -0.5 -3.3 -2.5 -3.9 0.0 0.4 -0.3 

500 0.7 ULSMV -0.3 0.2 -0.9 -0.0 0.2 -0.4 -0.4 -0.1 -1.1 -0.5 -0.1 -0.9 -0.1 0.2 -0.6 -0.3 0.1 -0.8 

500 0.7 WLSMV 0.2 0.7 -0.3 0.2 0.4 -0.2 0.1 0.4 -0.5 0.2 0.6 -0.1 0.2 0.5 -0.3 0.4 0.8 -0.0 

500 0.7 BAYES -0.8 1.9 -7.7 -0.2 1.3 -5.5 -1.0 2.1 -9.0 -0.3 1.4 -8.6 -0.1 0.9 -6.0 -0.4 2.0 -9.6 

500 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 

0.4 ML -1.5 0.4 -3.6 -8.8 -7.5 -10.5 -1.2 -0.2 -2.4 -0.3 1.9 -1.5 -8.5 -6.8 -9.8 -0.5 1.4 -2.1 

500 0.4 ULSMV -2.3 -0.0 -5.1 -0.7 0.1 -1.6 -1.8 -0.4 -2.8 -2.0 0.6 -3.3 -0.3 0.5 -1.2 -2.0 -1.0 -4.3 

500 0.4 WLSMV -0.8 0.6 -3.3 -0.3 0.4 -1.2 -0.2 0.6 -1.5 0.1 2.4 -1.1 0.2 1.0 -0.6 0.1 1.6 -1.8 

500 0.4 BAYES 0.9 8.8 -2.5 1.3 6.4 -1.0 1.1 6.6 -3.2 0.7 2.2 -1.6 0.6 3.9 -1.7 0.6 3.2 -4.1 

500 0.7 ML -0.7 -0.1 -1.1 -3.7 -3.0 -4.3 -0.9 -0.2 -1.3 0.1 0.6 -0.3 -3.2 -2.6 -4.0 0.1 0.5 -0.2 

500 0.7 ULSMV -0.4 0.0 -0.8 -0.2 0.2 -0.5 -0.5 0.1 -1.0 -0.5 0.1 -1.0 -0.1 0.3 -0.3 -0.5 0.0 -0.9 

500 0.7 WLSMV 0.2 0.7 -0.2 0.1 0.5 -0.3 0.1 0.6 -0.5 0.3 0.8 -0.2 0.3 0.7 -0.0 0.3 0.8 -0.1 

500 0.7 BAYES -0.5 1.5 -6.6 -0.2 1.2 -5.1 -0.8 2.0 -7.7 -0.1 1.8 -7.2 -0.0 1.1 -5.1 -0.3 1.7 -7.9 

1000 

U
n

id
im

en
si

o
n
al

 

0.4 ML -0.8 1.1 -1.5 -8.8 -7.9 -9.8 -0.8 0.1 -1.9 0.1 0.9 -1.0 -8.6 -7.4 -9.6 -0.1 0.9 -0.7 

1000 0.4 ULSMV -0.9 0.5 -1.8 -0.1 0.4 -0.8 -0.9 -0.3 -1.9 -0.7 0.0 -1.9 -0.1 0.7 -0.9 -0.9 -0.0 -1.6 

1000 0.4 WLSMV 0.0 1.7 -0.8 0.1 0.7 -0.5 0.0 0.6 -1.1 0.3 1.0 -0.8 0.2 1.0 -0.7 0.2 1.0 -0.5 

1000 0.4 BAYES -2.3 2.2 -15.2 -1.3 0.9 -7.7 -2.6 0.0 -16.4 -1.8 2.1 -27.8 -1.1 1.6 -19.8 -1.7 1.3 -26.5 

1000 0.7 ML -0.0 0.2 -0.2 -3.4 -3.1 -4.1 -0.1 0.2 -0.4 1.1 1.4 0.8 -2.8 -2.4 -3.4 1.1 1.3 0.8 

1000 0.7 ULSMV -0.1 0.1 -0.3 -0.0 0.2 -0.2 -0.2 0.1 -0.5 -0.1 0.1 -0.5 -0.1 0.1 -0.3 -0.1 0.2 -0.4 

1000 0.7 WLSMV 0.2 0.5 0.1 0.1 0.3 -0.1 0.1 0.4 -0.2 0.2 0.5 -0.1 0.1 0.2 -0.1 0.2 0.5 -0.0 

1000 0.7 BAYES 0.0 1.1 -3.5 0.0 0.6 -0.6 -0.0 0.8 -3.4 0.1 0.8 -6.4 0.1 0.7 -3.5 0.1 1.0 -6.2 

1000 

2
 f

ac
to

rs
 (

φ
 

=
 0

) 

0.4 ML -1.1 1.0 -2.4 -8.5 -7.2 -9.6 -1.4 0.4 -2.7 -0.7 0.6 -1.9 -8.6 -7.3 -9.4 -0.8 0.5 -2.0 

1000 0.4 ULSMV -0.6 0.8 -1.9 0.1 1.1 -1.1 -0.8 0.2 -1.9 -0.8 0.6 -2.5 0.1 0.9 -0.5 -0.8 0.2 -2.1 

1000 0.4 WLSMV 0.0 1.8 -1.5 0.2 1.2 -1.0 -0.2 1.0 -1.2 0.1 1.6 -1.3 0.3 1.1 -0.3 0.1 1.1 -1.1 

1000 0.4 BAYES -1.2 2.9 -8.1 -0.4 2.2 -1.9 -1.5 1.1 -3.2 -0.8 1.6 -3.9 -0.4 1.4 -4.7 -0.9 3.1 -2.9 
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S
am

p
le

 

S
iz

e 

M
o
d
el

 

M
F

L
 

M
et

h
o
d

 

Number of Items = 10 Number of Items = 20 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min 

1000 0.7 ML -0.9 -0.8 -1.0 -3.7 -3.1 -4.1 -1.0 -0.7 -1.2 -0.1 0.3 -0.3 -3.4 -2.8 -3.9 -0.1 0.2 -0.6 

1000 0.7 ULSMV -0.1 0.0 -0.2 -0.0 0.2 -0.2 -0.2 0.1 -0.5 -0.1 0.2 -0.4 -0.1 0.1 -0.3 -0.2 0.1 -0.6 

1000 0.7 WLSMV 0.1 0.3 -0.1 0.1 0.3 -0.1 -0.0 0.3 -0.3 0.2 0.5 -0.0 0.1 0.2 -0.1 0.1 0.4 -0.3 

1000 0.7 BAYES -0.3 1.8 -5.3 -0.1 0.9 -2.5 -0.5 1.1 -5.1 -0.1 1.0 -3.1 -0.1 0.4 -2.6 -0.3 1.2 -3.0 

1000 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 

0.4 ML -1.3 -0.1 -2.4 -8.6 -7.3 -9.6 -1.1 -0.4 -2.8 -0.7 1.2 -1.6 -8.6 -7.3 -9.9 -0.9 0.0 -1.8 

1000 0.4 ULSMV -0.9 0.2 -1.8 -0.0 1.2 -0.9 -0.7 0.4 -2.0 -1.0 0.8 -2.4 -0.1 0.5 -0.9 -1.2 0.2 -2.4 

1000 0.4 WLSMV -0.2 0.6 -0.9 0.1 1.4 -0.8 -0.0 1.0 -1.3 -0.0 1.9 -1.1 0.2 0.8 -0.7 -0.2 0.8 -1.3 

1000 0.4 BAYES -0.6 5.0 -6.6 0.0 2.7 -2.9 -0.4 2.8 -2.3 -0.6 1.8 -3.9 -0.3 1.4 -3.4 -0.9 2.0 -3.2 

1000 0.7 ML -0.9 -0.6 -1.2 -3.7 -3.2 -4.3 -0.9 -0.4 -1.1 -0.0 0.4 -0.3 -3.4 -2.6 -4.0 -0.1 0.2 -0.3 

1000 0.7 ULSMV -0.2 0.0 -0.5 -0.1 0.1 -0.4 -0.2 0.3 -0.6 -0.2 0.3 -0.6 -0.0 0.2 -0.2 -0.2 0.0 -0.6 

1000 0.7 WLSMV 0.1 0.4 -0.2 -0.0 0.2 -0.3 0.1 0.6 -0.3 0.1 0.7 -0.1 0.1 0.3 -0.0 0.1 0.4 -0.1 

1000 0.7 BAYES -0.3 1.7 -5.1 -0.2 0.9 -2.8 -0.4 1.2 -5.2 -0.1 1.2 -3.3 -0.0 0.4 -2.5 -0.3 1.1 -3.4 

1000 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 

0.4 ML -1.3 0.3 -1.9 -8.7 -8.1 -9.7 -1.0 0.0 -3.3 -0.4 0.5 -1.4 -8.6 -7.8 -9.5 -0.5 0.6 -1.2 

1000 0.4 ULSMV -1.1 0.2 -1.8 -0.2 0.4 -0.9 -0.9 0.2 -2.9 -1.1 -0.0 -1.8 -0.1 1.2 -1.1 -1.1 -0.1 -1.6 

1000 0.4 WLSMV -0.4 1.0 -1.0 0.0 0.6 -0.7 -0.1 0.9 -2.2 -0.0 0.8 -0.9 0.1 1.5 -0.9 -0.0 1.0 -0.6 

1000 0.4 BAYES 1.5 10.2 -5.0 1.2 6.5 -1.9 1.9 8.0 -2.4 0.6 4.8 -2.5 0.3 1.9 -1.2 0.4 4.3 -2.0 

1000 0.7 ML -0.6 -0.4 -1.0 -3.6 -3.2 -4.0 -0.8 -0.4 -1.0 0.2 0.3 -0.1 -3.4 -2.8 -3.9 -0.0 0.4 -0.4 

1000 0.7 ULSMV -0.1 0.1 -0.6 -0.0 0.1 -0.1 -0.2 0.3 -0.7 -0.2 0.1 -0.4 -0.1 0.0 -0.4 -0.3 -0.0 -0.7 

1000 0.7 WLSMV 0.1 0.4 -0.2 0.1 0.3 0.0 0.0 0.5 -0.3 0.2 0.5 -0.0 0.0 0.2 -0.2 0.0 0.4 -0.3 

1000 0.7 BAYES -0.1 1.9 -4.2 -0.0 1.0 -2.1 -0.3 1.2 -4.5 0.0 1.1 -2.7 -0.1 0.4 -2.6 -0.3 1.0 -3.2 
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Appendix 4. Relative percentage bias of interfactor correlations 
M

o
d

el
 

Sample 

Size 

Number of 

Items 

Estimation 

Method 

Mean Factor Loading = 0.4 Mean Factor Loading = 0.7 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 

200 

10 Items ML -11.77 -2.13 -9.51 1.21 0.37 3.01 

10 Items ULSMV -27.72 7.51 -32.22 -4.45 1.88 -2.22 

10 Items WLSMV -9.93 8.88 -14.92 -1.24 2.55 0.59 

10 Items BAYES -52.33 -29.60 -53.21 -0.84 2.69 1.93 

20 Items ML -1.83 0.77 -2.25 4.63 1.06 0.47 

20 Items ULSMV -19.62 10.02 -19.00 -0.52 1.87 -5.39 

20 Items WLSMV -15.13 10.70 -14.29 3.41 2.49 -1.75 

20 Items BAYES -34.01 -19.16 -34.66 0.31 -1.17 -3.25 

500 

10 Items ML -0.35 1.87 -1.81 1.78 0.31 1.91 

10 Items ULSMV -4.83 5.29 -5.98 -1.78 0.77 -1.64 

10 Items WLSMV 2.99 5.56 2.75 0.86 1.01 0.97 

10 Items BAYES -27.78 -15.68 -29.73 0.39 0.25 0.76 

20 Items ML 3.31 0.55 1.75 4.04 1.21 3.93 

20 Items ULSMV -1.72 4.45 -3.41 -0.46 0.89 -0.64 

20 Items WLSMV 7.10 4.65 5.40 2.32 1.13 2.09 

20 Items BAYES -17.17 -9.67 -18.84 -0.36 -0.39 -0.65 

1000 

10 Items ML 2.75 0.99 2.87 2.60 0.44 2.78 

10 Items ULSMV -0.50 2.39 -0.68 -0.50 0.38 -0.34 

10 Items WLSMV 3.68 2.52 3.59 0.78 0.49 0.96 

10 Items BAYES -16.36 -4.71 -14.68 0.31 0.80 0.80 

20 Items ML 2.39 0.35 0.22 3.95 1.50 3.97 

20 Items ULSMV -0.97 2.36 -3.38 -0.13 0.81 0.26 

20 Items WLSMV 3.37 2.46 0.94 1.21 0.92 1.58 

20 Items BAYES -9.30 -3.44 -10.70 0.03 0.44 -0.11 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 

200 

10 Items ML -7.98 0.24 -6.08 3.56 0.30 2.05 

10 Items ULSMV -17.69 1.78 -17.11 1.70 0.75 0.04 

10 Items WLSMV -11.77 2.12 -9.89 3.79 1.33 2.34 

10 Items BAYES -54.18 -31.97 -51.69 -1.14 0.28 -1.18 

20 Items ML 4.01 -0.30 0.20 2.94 1.00 2.46 

20 Items ULSMV -1.78 4.49 -3.28 0.15 1.06 -0.33 

20 Items WLSMV 2.84 4.83 2.50 2.54 1.54 2.06 

20 Items BAYES -32.52 -22.84 -35.04 -2.30 -1.53 -2.79 

500 

10 Items ML 1.79 0.63 -0.45 2.18 0.41 2.21 

10 Items ULSMV -0.76 2.35 -2.84 0.15 0.43 0.35 

10 Items WLSMV 1.72 2.53 -0.08 1.08 0.63 1.29 

10 Items BAYES -29.27 -20.40 -30.88 0.35 -0.05 0.44 

20 Items ML 2.12 0.39 1.66 2.77 1.00 3.04 

20 Items ULSMV 1.37 2.31 0.79 -0.21 0.62 0.29 

20 Items WLSMV 3.63 2.44 3.14 0.76 0.81 1.24 

20 Items BAYES -19.28 -11.67 -19.67 -0.99 -0.30 -0.78 

1000 

10 Items ML 1.60 0.17 2.35 2.34 0.48 1.80 

10 Items ULSMV 0.85 0.97 1.60 0.22 0.23 -0.40 

10 Items WLSMV 2.07 1.07 2.77 0.73 0.33 0.07 

10 Items BAYES -19.65 -10.51 -18.50 0.38 0.38 0.01 

20 Items ML 1.24 -0.22 1.95 2.87 0.66 2.38 

20 Items ULSMV 0.26 0.74 0.91 0.26 0.14 -0.19 

20 Items WLSMV 1.46 0.81 2.10 0.72 0.23 0.29 

20 Items BAYES -11.40 -6.10 -10.66 -0.21 -0.23 -0.70 
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Appendix 5. Mean, maximum and minimum values of coverage rate 
S

am
p
le

 

S
iz

e 

M
o
d
el

 

M
F

L
 

M
et

h
o
d
 

Number of Items = 10 Number of Items = 20 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min 

200 

U
n
id

im
en

si
o

n
al

 

0.4 BAYES 92.5 94.6 91.0 93.8 95.7 87.6 92.9 94.1 91.9 91.1 95.3 38.0 91.0 95.9 31.3 91.2 95.8 36.6 

200 0.4 ML 91.7 93.6 87.1 93.0 93.8 91.5 92.0 93.5 88.3 93.2 94.4 91.3 92.8 94.6 90.5 93.6 95.6 91.6 

200 0.4 ULSMV 88.5 92.1 86.6 93.5 94.2 92.9 89.0 93.9 85.7 91.4 94.6 88.8 93.9 95.7 92.8 91.4 94.3 88.9 

200 0.4 WLSMV 87.8 90.2 86.3 92.8 93.4 92.2 88.0 91.3 85.8 89.0 93.2 86.4 93.1 94.7 91.6 88.9 91.5 86.6 

200 0.7 BAYES 91.1 94.3 88.7 92.6 94.3 91.3 91.8 92.7 90.6 89.7 93.0 57.5 91.4 94.1 78.3 89.7 94.3 55.3 

200 0.7 ML 93.5 95.3 92.8 94.3 95.6 93.4 93.1 95.0 92.2 92.0 93.8 90.1 94.5 96.2 93.1 92.2 93.3 91.0 

200 0.7 ULSMV 93.2 94.2 92.4 94.0 95.3 92.5 92.7 93.7 91.8 92.9 94.1 91.7 94.1 95.1 92.9 93.0 94.5 91.5 

200 0.7 WLSMV 91.1 91.6 90.4 93.0 94.3 91.9 90.6 91.7 89.4 90.3 91.7 89.2 92.8 93.6 91.8 90.7 92.9 88.6 

200 

2
 f

ac
to

rs
(φ

 =
 0

) 

0.4 BAYES 90.9 99.7 87.8 93.8 99.9 90.6 91.4 99.6 88.2 93.2 100.0 90.7 93.6 98.3 91.2 93.1 100.0 89.5 

200 0.4 ML 84.0 87.5 81.6 89.2 91.1 87.7 84.7 87.5 80.7 91.4 93.3 88.1 92.6 94.4 90.3 91.2 93.0 86.7 

200 0.4 ULSMV 88.3 96.7 85.1 92.0 94.4 90.6 87.7 96.2 84.4 87.0 93.1 84.5 92.8 94.6 91.0 86.5 93.2 83.9 

200 0.4 WLSMV 86.8 93.5 84.1 91.8 94.3 90.1 87.3 93.9 83.4 79.1 85.0 74.4 92.1 94.2 90.5 79.0 84.4 76.1 

200 0.7 BAYES 87.1 92.1 74.3 90.1 92.8 81.6 88.3 92.5 74.6 89.4 95.0 53.8 90.7 94.7 71.9 89.7 94.0 62.6 

200 0.7 ML 93.1 94.0 92.5 94.5 95.5 93.4 93.2 94.2 91.9 93.0 95.4 91.8 94.0 95.6 92.6 93.3 94.1 91.7 

200 0.7 ULSMV 92.4 93.4 91.4 94.0 95.0 92.7 92.8 94.2 91.4 92.7 94.5 91.2 93.9 95.3 92.4 93.2 94.5 92.3 

200 0.7 WLSMV 90.8 92.3 89.9 93.4 95.1 92.2 91.1 92.0 89.5 89.4 91.8 87.4 93.0 94.7 91.3 90.2 91.0 89.0 

200 

2
 f

ac
to

rs
(φ

 =
 0

.3
) 

0.4 BAYES 91.4 100.0 87.0 93.5 99.4 89.7 91.0 99.6 87.5 93.0 100.0 90.5 93.8 98.3 91.9 93.0 100.0 88.9 

200 0.4 ML 85.5 88.2 82.3 90.0 91.5 88.6 85.7 88.3 83.0 91.4 92.8 88.9 92.5 94.3 90.9 91.5 93.1 88.5 

200 0.4 ULSMV 87.8 95.6 83.5 92.3 93.2 91.6 87.5 95.1 83.3 87.2 94.5 84.8 92.9 94.4 91.1 87.4 93.9 83.9 

200 0.4 WLSMV 87.5 93.6 84.3 91.9 92.8 91.0 87.4 94.2 83.9 82.2 89.5 79.3 92.0 93.7 90.4 82.8 89.4 79.9 

200 0.7 BAYES 87.9 92.9 74.8 90.5 93.7 86.7 88.6 92.3 78.2 89.5 93.8 58.1 90.8 94.0 72.7 89.4 93.2 62.8 

200 0.7 ML 93.8 94.6 92.5 93.9 94.8 92.7 93.5 95.1 92.2 93.0 94.6 91.9 94.1 95.8 92.8 92.8 94.5 90.5 

200 0.7 ULSMV 92.9 94.1 91.4 93.7 95.2 92.0 92.8 94.8 91.8 92.7 93.9 91.5 93.9 94.7 92.8 92.5 93.4 90.6 

200 0.7 WLSMV 92.0 93.1 90.8 93.0 94.2 91.4 91.7 94.3 90.5 90.4 92.0 89.3 92.8 94.0 91.6 90.2 91.2 88.3 

200 

2
 f

ac
to

rs
(φ

 =
 0

.6
) 

0.4 BAYES 91.0 99.3 87.3 93.7 98.5 91.3 90.8 99.3 87.8 93.1 100.0 90.5 93.6 98.9 90.0 93.6 100.0 89.6 

200 0.4 ML 88.1 91.0 85.6 91.8 92.8 91.0 88.3 89.6 86.4 92.2 94.3 89.7 92.7 94.4 91.0 92.7 94.8 89.3 

200 0.4 ULSMV 88.8 93.9 85.8 92.9 94.0 91.8 88.3 93.4 85.3 88.7 95.2 86.5 93.4 94.6 92.2 88.7 94.2 86.4 

200 0.4 WLSMV 88.1 91.9 83.7 92.5 93.5 91.2 88.2 92.7 84.9 85.3 92.4 83.2 92.6 94.1 91.3 85.7 91.6 83.0 

200 0.7 BAYES 89.0 91.8 80.6 90.7 92.9 88.3 89.7 92.4 79.1 90.1 93.8 65.8 91.2 93.8 79.2 90.0 93.5 68.9 

200 0.7 ML 93.3 94.4 92.0 93.8 95.4 92.5 93.0 93.8 92.3 92.9 94.5 91.1 94.4 95.1 93.7 93.1 94.1 90.7 

200 0.7 ULSMV 93.1 94.2 91.8 93.5 94.8 92.2 92.7 93.6 92.0 92.8 94.0 91.4 94.1 95.5 93.0 93.0 94.6 91.3 

200 0.7 WLSMV 91.6 92.8 90.1 92.7 93.9 91.6 91.3 92.9 90.2 90.9 93.2 89.1 92.9 94.4 91.0 90.8 93.0 88.5 

500 

U
n

id
im

en
si

o
n

al
 

0.4 BAYES 88.7 94.5 46.8 89.6 96.1 46.0 90.8 95.7 64.1 90.1 96.4 14.3 90.7 95.9 26.2 90.0 95.6 15.0 

500 0.4 ML 94.2 95.8 93.2 92.1 93.5 90.0 94.3 95.3 92.4 94.1 95.4 92.7 90.7 91.9 89.1 94.3 95.7 92.4 

500 0.4 ULSMV 93.0 94.7 91.9 94.6 95.6 93.8 93.3 94.7 91.7 93.4 94.6 91.8 94.5 95.7 93.1 93.5 95.1 91.8 

500 0.4 WLSMV 92.9 94.7 91.7 94.3 95.4 93.7 93.0 94.0 92.1 93.2 94.1 91.5 94.1 95.3 92.5 93.1 94.6 91.7 

500 0.7 BAYES 91.5 93.6 82.8 91.8 95.0 79.8 92.4 94.5 87.0 90.6 94.9 52.3 92.5 96.3 68.5 91.1 94.3 57.2 

500 0.7 ML 94.3 95.7 93.4 93.4 95.2 92.3 94.6 95.5 93.8 93.2 94.7 91.7 93.6 94.9 92.7 93.5 95.0 91.7 

500 0.7 ULSMV 94.2 95.5 93.2 94.5 96.1 93.4 94.4 95.2 93.7 93.9 95.4 93.0 94.9 96.1 93.7 94.4 95.5 92.9 

500 0.7 WLSMV 93.6 95.5 92.3 94.0 95.5 92.6 93.6 94.5 93.0 93.0 94.4 91.8 94.4 96.0 92.7 93.5 94.9 92.2 

500 

2
 f

ac
to

rs
(φ

 =
 0

) 

0.4 BAYES 94.0 99.9 90.8 94.4 98.3 92.8 94.2 99.8 91.5 94.0 99.6 92.3 94.2 98.9 85.3 94.1 99.6 92.1 

500 0.4 ML 92.5 93.8 90.1 92.2 93.7 90.5 92.9 94.8 91.6 94.3 96.4 92.8 91.6 93.1 90.2 94.2 95.6 92.5 

500 0.4 ULSMV 91.5 93.8 90.6 93.9 94.7 93.2 92.5 94.0 90.5 92.9 95.3 91.1 94.3 95.3 92.9 92.8 94.3 90.9 

500 0.4 WLSMV 92.0 94.0 91.0 93.8 94.7 92.9 92.9 94.6 91.5 92.8 94.7 90.8 94.0 95.1 92.6 92.7 93.9 91.0 

500 0.7 BAYES 91.3 94.3 84.0 91.8 93.8 87.0 90.6 93.7 80.6 91.9 94.6 78.2 92.3 94.3 77.8 92.3 95.3 75.9 

500 0.7 ML 94.4 95.6 93.6 92.9 95.7 91.2 94.5 95.8 92.8 94.2 96.3 92.7 93.0 95.1 91.5 94.3 95.3 93.5 

500 0.7 ULSMV 93.8 95.0 92.3 94.1 95.7 93.2 93.9 95.5 92.1 94.1 95.3 92.2 94.5 95.1 93.6 94.0 95.3 92.5 

500 0.7 WLSMV 93.7 94.9 92.0 93.9 95.5 92.9 93.8 95.3 92.1 93.3 95.1 91.7 94.1 95.0 93.2 93.3 94.5 91.9 

500 

2
 f

ac
to

rs
(φ

 =
 0

.3
) 

0.4 BAYES 94.3 99.7 91.4 94.5 98.4 91.9 94.5 99.7 91.2 93.9 99.8 91.0 94.0 98.6 89.2 94.6 99.8 92.3 

500 0.4 ML 93.3 94.8 91.7 92.4 93.8 91.3 94.3 95.0 93.8 94.2 95.4 92.9 92.0 93.1 89.9 94.4 96.2 92.8 

500 0.4 ULSMV 92.3 93.2 91.4 93.8 94.3 92.5 93.1 93.8 92.2 92.7 94.3 91.2 94.4 95.6 93.4 93.0 94.8 91.3 

500 0.4 WLSMV 92.5 93.6 91.3 93.6 94.4 92.4 93.1 94.2 91.7 92.6 94.6 91.4 94.0 95.4 93.0 92.9 94.3 91.7 

500 0.7 BAYES 91.0 93.7 84.5 92.4 94.5 88.9 90.1 93.7 79.1 92.4 95.6 79.0 92.7 95.3 77.9 92.0 95.1 74.9 

500 0.7 ML 94.2 95.3 92.9 93.3 94.9 91.8 94.3 95.3 93.3 94.6 95.6 93.1 93.4 94.6 92.1 94.1 95.7 92.7 

500 0.7 ULSMV 94.0 94.9 92.8 94.6 95.6 92.2 94.1 94.7 93.0 94.2 95.8 92.5 94.7 96.0 93.2 93.8 95.1 92.8 

500 0.7 WLSMV 93.4 94.8 92.7 94.3 95.9 92.4 93.5 94.6 92.2 93.7 95.1 92.5 94.3 95.9 93.0 93.0 94.4 91.4 

500 

2
 f

ac
to

rs
(φ

 =
 0

.6
) 

0.4 BAYES 94.3 97.9 91.6 94.6 98.7 92.9 94.0 98.6 90.6 94.1 99.3 92.0 94.2 96.1 92.5 94.3 99.4 91.9 

500 0.4 ML 94.3 95.0 93.4 92.6 93.1 91.8 93.8 95.4 92.1 94.3 95.7 93.3 91.8 93.8 90.1 94.3 95.4 92.5 

500 0.4 ULSMV 92.8 93.7 91.7 94.3 95.4 93.2 92.3 94.4 91.4 93.6 94.8 92.4 94.5 95.6 93.5 93.2 94.4 91.1 

500 0.4 WLSMV 92.7 93.6 91.8 94.2 95.4 93.0 92.4 94.4 91.5 93.2 94.3 91.9 94.1 95.4 93.3 93.0 94.5 90.9 

500 0.7 BAYES 91.9 94.2 86.0 92.7 95.7 88.6 91.6 94.9 80.7 92.9 96.0 84.0 92.9 94.7 81.2 93.0 95.6 82.4 

500 0.7 ML 94.7 96.3 93.0 93.2 94.7 92.1 94.4 95.5 92.8 94.7 96.7 91.8 93.7 95.2 92.2 94.5 95.6 93.4 

500 0.7 ULSMV 94.3 95.7 93.4 94.8 96.0 93.6 94.0 95.5 92.8 94.7 96.4 92.9 95.0 95.9 93.9 94.3 95.3 93.1 

500 0.7 WLSMV 93.7 95.1 92.5 94.5 95.8 93.5 93.6 95.2 92.2 93.8 95.6 91.9 94.4 95.5 93.4 93.6 95.4 92.3 

1000 

U
n

id
im

en
si

o
n
al

 

0.4 BAYES 90.6 94.9 63.8 91.8 95.6 71.4 90.9 94.8 65.4 91.0 96.7 23.0 91.2 95.5 37.5 90.6 95.6 25.5 

1000 0.4 ML 94.4 95.6 92.8 89.1 90.8 86.9 94.8 95.6 93.5 95.1 96.2 94.2 87.2 89.2 84.6 94.7 95.8 93.7 

1000 0.4 ULSMV 93.7 94.6 92.4 94.4 96.4 93.7 94.1 95.0 92.5 94.7 95.9 93.2 94.6 95.6 93.6 94.2 95.6 93.0 

1000 0.4 WLSMV 93.6 94.8 92.4 94.4 96.4 93.6 94.0 94.6 92.7 94.5 95.6 93.4 94.4 95.3 93.2 93.9 95.6 92.3 

1000 0.7 BAYES 91.6 94.9 82.3 93.2 95.7 87.5 92.1 95.7 82.6 92.2 94.8 72.5 92.8 95.3 74.0 92.6 94.9 74.9 

1000 0.7 ML 94.5 95.8 93.3 89.8 91.3 88.1 94.7 95.3 94.1 93.1 94.7 91.8 90.6 92.2 88.8 93.5 95.1 92.0 

1000 0.7 ULSMV 94.3 95.3 93.7 94.6 95.5 93.1 94.3 95.0 93.9 94.2 95.2 92.1 94.8 96.2 93.6 94.8 96.0 93.6 

1000 0.7 WLSMV 93.9 95.4 93.2 94.4 95.3 93.1 94.0 94.9 93.5 93.7 94.9 91.3 94.6 96.0 93.2 94.2 95.2 93.4 

1000 

2
 f

ac
to

rs
(φ

 

=
 0

) 

0.4 BAYES 94.7 98.0 93.0 94.0 96.2 92.2 94.5 98.3 91.9 94.0 96.8 91.8 94.4 96.3 88.3 94.1 97.3 89.5 

1000 0.4 ML 94.7 96.3 93.4 90.6 91.6 89.8 94.7 95.8 93.6 94.6 95.6 93.3 89.8 90.4 88.3 94.8 95.9 93.8 

1000 0.4 ULSMV 93.3 94.2 92.0 94.1 95.1 92.1 93.6 95.2 92.1 93.9 95.1 92.5 94.8 96.5 93.2 94.3 96.2 93.1 

1000 0.4 WLSMV 93.5 94.6 92.1 94.0 95.2 92.2 93.7 95.3 92.4 93.9 95.1 92.6 94.7 96.4 93.3 94.1 95.7 93.0 
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S
am

p
le

 

S
iz

e 

M
o
d
el

 

M
F

L
 

M
et

h
o
d

 

Number of Items = 10 Number of Items = 20 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min 

1000 0.7 BAYES 92.4 95.0 84.2 93.4 95.9 90.1 92.3 94.3 87.6 92.4 96.1 82.3 92.8 94.8 84.9 93.3 96.6 85.0 

1000 0.7 ML 95.2 95.9 94.4 90.7 92.6 89.3 94.7 95.7 93.1 94.9 95.8 93.7 89.5 91.0 87.6 95.0 96.1 94.0 

1000 0.7 ULSMV 94.7 95.7 93.7 95.1 96.3 94.4 94.2 95.2 93.0 94.5 95.5 93.2 94.4 95.2 93.1 94.8 96.0 93.7 

1000 0.7 WLSMV 94.6 95.5 94.0 95.1 96.2 94.5 94.4 95.3 93.7 94.2 95.3 93.0 94.2 95.1 93.2 94.4 96.2 92.8 

1000 

2
 f

ac
to

rs
(φ

 =
 0

.3
) 

0.4 BAYES 94.6 97.5 93.0 94.5 96.5 92.5 94.9 98.6 92.5 93.7 96.8 91.7 94.4 96.1 90.3 94.1 98.6 91.1 

1000 0.4 ML 94.6 95.8 93.6 90.8 92.8 88.7 95.0 95.8 94.5 94.6 95.8 93.5 89.3 91.0 87.7 94.7 95.9 93.4 

1000 0.4 ULSMV 93.5 94.9 92.2 94.5 95.4 93.3 94.1 95.2 93.2 94.0 94.7 93.3 94.7 96.0 93.7 94.2 95.8 92.3 

1000 0.4 WLSMV 93.5 94.9 91.9 94.4 95.3 93.2 94.0 95.1 93.3 93.8 95.0 92.9 94.6 96.0 93.5 94.0 95.4 92.2 

1000 0.7 BAYES 92.3 96.6 86.8 93.3 95.2 87.2 92.6 95.0 86.1 92.7 95.4 82.1 92.9 95.8 85.5 92.9 96.5 84.8 

1000 0.7 ML 94.9 96.1 94.1 90.3 92.9 88.7 94.9 96.0 93.6 95.0 96.2 93.4 89.3 91.2 87.7 94.7 96.5 92.8 

1000 0.7 ULSMV 94.6 96.2 94.0 94.7 95.9 93.1 94.8 95.6 94.0 94.7 95.8 93.4 94.6 95.8 93.3 94.5 96.4 92.6 

1000 0.7 WLSMV 94.4 95.6 93.8 94.8 96.0 93.3 94.5 95.2 93.6 94.3 95.8 93.0 94.2 95.5 93.4 94.2 96.5 92.7 

1000 

2
 f

ac
to

rs
(φ

 =
 0

.6
) 

0.4 BAYES 94.2 98.4 90.8 94.5 95.7 93.6 94.0 99.3 91.3 94.0 96.8 91.9 94.8 96.4 93.2 94.5 97.6 91.7 

1000 0.4 ML 94.5 95.3 93.4 90.5 91.3 89.5 94.5 95.5 92.8 94.8 96.0 93.2 88.9 90.5 86.8 95.0 96.0 93.4 

1000 0.4 ULSMV 93.7 94.3 92.7 94.6 95.9 93.5 93.5 95.4 91.8 94.2 95.2 92.8 94.7 95.5 93.6 94.5 95.5 93.1 

1000 0.4 WLSMV 93.6 94.5 92.8 94.6 95.7 93.5 93.5 95.5 92.0 94.1 95.5 92.7 94.5 95.2 93.6 94.4 95.3 93.0 

1000 0.7 BAYES 93.0 95.4 87.5 93.6 96.6 90.3 92.4 95.1 87.1 92.5 95.5 85.1 93.2 95.8 85.3 93.3 95.9 84.9 

1000 0.7 ML 94.9 95.9 93.5 90.9 92.2 89.4 95.0 96.5 92.6 94.6 95.4 93.0 89.3 91.0 87.7 94.8 95.7 93.4 

1000 0.7 ULSMV 94.8 96.5 93.0 95.3 96.3 94.3 94.4 95.6 92.6 94.8 96.2 93.6 94.7 96.2 93.6 94.5 95.7 92.9 

1000 0.7 WLSMV 94.3 95.3 92.8 94.9 96.0 93.9 94.3 95.3 92.1 94.3 95.2 92.8 94.5 96.2 93.5 94.3 95.6 92.8 
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Appendix 6. Coverage rate of interfactor correlations 
S

am
p

le
 

S
iz

e 

M
o

d
el

 
Mean Factor 

Loading 

Estimation 

Method 

Number of Items = 10 Number of Items = 20 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

2
0

0
 

2
 f

ac
to

rs
 (

φ
 =

 0
) 

0.4 ML 76.98 88.48 80.63 90.60 92.70 90.20 

0.4 ULSMV 71.31 84.82 71.86 63.44 86.86 61.01 

0.4 WLSMV 67.74 83.54 70.81 38.22 85.74 40.11 

0.4 BAYES 96.79 95.10 96.90 97.09 95.10 96.49 

0.7 ML 93.00 94.60 95.10 94.50 95.30 94.60 

0.7 ULSMV 86.80 93.30 89.00 86.90 93.60 87.30 

0.7 WLSMV 74.60 92.60 74.77 67.00 92.90 70.10 

0.7 BAYES 93.30 93.80 94.90 94.20 94.40 94.50 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 0.4 ML 76.86 90.09 79.57 89.10 93.10 91.30 

0.4 ULSMV 72.52 87.66 71.77 73.36 88.03 75.97 

0.4 WLSMV 74.69 86.84 75.63 58.20 87.22 59.37 

0.4 BAYES 92.70 93.60 92.49 92.30 94.20 93.70 

0.7 ML 92.40 94.00 93.10 93.50 94.50 93.10 

0.7 ULSMV 89.10 93.20 89.20 92.00 94.50 89.40 

0.7 WLSMV 86.29 92.20 86.29 86.90 93.60 85.50 

0.7 BAYES 92.80 93.50 93.40 94.40 95.10 93.70 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 0.4 ML 78.68 88.64 80.73 90.78 92.59 90.29 

0.4 ULSMV 84.82 94.21 85.51 84.63 91.04 83.37 

0.4 WLSMV 86.86 93.76 87.37 79.42 90.13 80.30 

0.4 BAYES 71.57 83.30 75.20 77.15 81.10 71.64 

0.7 ML 92.60 94.10 92.50 91.80 94.40 92.50 

0.7 ULSMV 91.60 93.40 91.50 92.20 93.40 91.40 

0.7 WLSMV 90.70 93.00 90.80 90.50 92.60 89.59 

0.7 BAYES 93.70 94.60 94.40 94.30 95.60 95.30 

5
0

0
 

2
 f

ac
to

rs
 (

φ
 =

 0
) 

0.4 ML 90.69 94.00 92.19 93.90 93.80 93.80 

0.4 ULSMV 82.74 91.19 85.22 87.44 92.40 85.19 

0.4 WLSMV 85.23 90.89 86.79 89.76 92.30 88.79 

0.4 BAYES 95.40 94.80 96.00 95.60 94.90 96.10 

0.7 ML 93.60 95.30 93.40 94.90 95.40 93.30 

0.7 ULSMV 91.50 94.70 90.20 93.30 94.40 91.20 

0.7 WLSMV 92.10 94.30 91.40 94.10 94.40 91.90 

0.7 BAYES 93.40 94.20 93.20 94.80 94.00 93.00 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 0.4 ML 92.40 95.20 92.30 93.20 95.00 94.30 

0.4 ULSMV 87.49 93.50 87.33 88.93 93.00 90.58 

0.4 WLSMV 87.60 93.20 89.30 89.85 92.60 90.39 

0.4 BAYES 93.70 93.30 92.20 92.90 94.90 92.80 

0.7 ML 94.30 94.00 95.20 92.90 95.10 94.00 

0.7 ULSMV 92.70 94.30 94.40 94.60 94.00 94.60 

0.7 WLSMV 92.50 93.70 94.30 94.00 93.80 94.10 

0.7 BAYES 93.60 93.00 94.50 93.60 94.70 95.10 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 0.4 ML 93.67 95.00 92.56 93.00 94.40 93.50 

0.4 ULSMV 94.07 94.29 92.41 92.08 93.40 91.86 

0.4 WLSMV 94.95 93.99 93.08 90.88 93.30 91.47 

0.4 BAYES 81.20 80.70 75.48 79.50 87.50 76.30 

0.7 ML 92.60 94.20 93.00 93.40 93.60 91.70 

0.7 ULSMV 94.10 94.70 93.80 94.80 93.80 93.70 

0.7 WLSMV 93.80 94.40 93.20 94.00 93.20 92.80 

0.7 BAYES 93.60 94.20 94.00 94.60 94.20 93.90 

1
0

0
0
 

2
 f

ac
to

rs
 (

φ
 =

 0
) 

0.4 ML 93.40 94.80 93.70 93.60 93.40 94.80 

0.4 ULSMV 90.17 93.60 90.08 91.30 92.80 91.70 

0.4 WLSMV 90.57 93.60 91.18 91.80 92.40 92.60 

0.4 BAYES 94.80 95.70 95.40 95.00 93.10 95.70 

0.7 ML 95.50 95.10 95.10 95.20 94.70 94.40 

0.7 ULSMV 94.40 94.80 93.50 92.90 93.80 94.10 

0.7 WLSMV 94.90 94.70 93.90 93.80 93.70 94.20 

0.7 BAYES 95.10 95.10 94.40 95.00 93.80 95.00 

2
 f

ac
to

rs
 (

φ
 =

 

0
.3

) 

0.4 ML 93.10 93.60 93.50 95.10 94.70 94.80 

0.4 ULSMV 91.78 92.50 90.70 93.30 93.80 92.90 

0.4 WLSMV 92.08 92.50 91.30 93.10 93.80 93.30 

0.4 BAYES 93.70 94.80 93.90 94.90 94.30 94.30 

0.7 ML 96.20 94.60 93.80 94.10 94.30 95.00 

0.7 ULSMV 96.00 94.10 93.30 94.90 93.60 94.40 
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e 
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o
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Mean Factor 

Loading 

Estimation 

Method 

Number of Items = 10 Number of Items = 20 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

0.7 WLSMV 95.70 94.10 93.60 94.80 93.60 94.20 

0.7 BAYES 96.30 94.30 93.80 94.70 94.50 95.10 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 0.4 ML 95.50 94.50 95.30 94.20 95.00 93.30 

0.4 ULSMV 94.78 94.00 94.58 93.30 95.00 93.10 

0.4 WLSMV 94.58 94.00 93.88 92.90 94.80 92.90 

0.4 BAYES 80.00 89.30 85.20 86.40 91.80 87.60 

0.7 ML 92.10 94.70 94.50 91.70 93.50 91.80 

0.7 ULSMV 94.30 95.40 95.80 94.50 94.50 95.50 

0.7 WLSMV 93.90 95.10 95.70 94.10 94.40 95.70 

0.7 BAYES 93.00 94.70 95.00 95.70 94.90 96.10 
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Appendix 7. Mean, maximum and minimum values of r-seb 
S

am
p
le

 

S
iz

e 

M
o
d
el

 

M
F

L
 

M
et

h
o
d
 

Number of Items = 10 Number of Items = 20 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min 

200 

U
n
id

im
en

si
o

n
al

 

0.4 ML 0.90 0.93 0.86 0.98 1.01 0.93 0.91 0.95 0.85 0.96 1.00 0.91 0.98 1.03 0.93 0.97 1.01 0.90 

200 0.4 ULSMV 0.76 0.90 0.73 0.96 0.99 0.91 0.77 0.95 0.71 0.90 0.98 0.85 0.97 1.02 0.93 0.91 1.02 0.84 

200 0.4 WLSMV 0.72 0.86 0.68 0.94 0.97 0.89 0.74 0.92 0.69 0.77 0.96 0.66 0.95 0.99 0.90 0.77 0.97 0.70 

200 0.4 BAYES 0.94 1.19 0.88 1.02 1.24 0.93 0.96 1.23 0.88 1.00 1.35 0.94 1.00 1.06 0.90 1.01 1.37 0.93 

200 0.7 ML 0.97 1.02 0.92 1.00 1.03 0.97 0.98 1.01 0.96 0.99 1.03 0.96 0.99 1.03 0.96 0.99 1.03 0.96 

200 0.7 ULSMV 0.96 1.00 0.92 0.99 1.04 0.96 0.95 0.98 0.93 0.96 0.99 0.91 0.99 1.03 0.96 0.96 1.01 0.92 

200 0.7 WLSMV 0.92 0.96 0.89 0.97 1.01 0.94 0.93 0.96 0.92 0.93 0.97 0.89 0.97 1.00 0.94 0.93 0.98 0.91 

200 0.7 BAYES 0.96 1.03 0.89 0.98 1.03 0.94 0.98 1.03 0.95 0.98 1.07 0.93 0.97 1.00 0.93 0.98 1.10 0.91 

200 

2
 f

ac
to

rs
 (

φ
 =

 0
) 

0.4 ML 0.73 0.78 0.69 0.89 0.94 0.85 0.76 0.78 0.70 0.88 0.94 0.83 0.95 1.00 0.92 0.89 0.95 0.83 

200 0.4 ULSMV 0.77 0.96 0.69 0.86 0.92 0.82 0.75 0.95 0.66 0.73 0.91 0.66 0.92 0.97 0.88 0.73 0.91 0.68 

200 0.4 WLSMV 0.74 0.93 0.66 0.86 0.91 0.82 0.75 0.91 0.65 0.60 0.75 0.55 0.90 0.96 0.87 0.60 0.74 0.54 

200 0.4 BAYES 1.09 2.27 0.79 1.09 1.80 0.91 1.08 2.10 0.80 1.05 2.06 0.86 1.02 1.54 0.93 1.03 2.12 0.86 

200 0.7 ML 0.95 0.97 0.92 0.99 1.02 0.96 0.96 1.00 0.93 0.98 1.04 0.94 0.99 1.04 0.96 0.99 1.02 0.96 

200 0.7 ULSMV 0.94 0.97 0.92 0.98 1.01 0.95 0.95 0.98 0.91 0.95 1.00 0.89 0.99 1.02 0.95 0.96 1.02 0.93 

200 0.7 WLSMV 0.89 0.92 0.86 0.97 1.01 0.95 0.92 0.95 0.89 0.88 0.92 0.83 0.97 1.01 0.93 0.90 0.94 0.86 

200 0.7 BAYES 0.99 1.21 0.92 0.97 1.09 0.91 1.01 1.18 0.90 1.00 1.14 0.94 0.97 1.04 0.94 1.00 1.21 0.93 

200 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 

0.4 ML 0.77 0.80 0.75 0.91 0.94 0.88 0.78 0.84 0.74 0.89 0.92 0.84 0.96 1.00 0.92 0.89 0.93 0.86 

200 0.4 ULSMV 0.76 0.98 0.69 0.87 0.92 0.84 0.75 0.95 0.66 0.75 0.95 0.69 0.93 0.98 0.88 0.75 0.96 0.66 

200 0.4 WLSMV 0.74 0.95 0.67 0.86 0.91 0.83 0.74 0.95 0.67 0.62 0.87 0.54 0.91 0.96 0.87 0.63 0.84 0.56 

200 0.4 BAYES 1.09 2.14 0.80 1.04 1.63 0.86 1.06 2.08 0.76 1.02 2.07 0.87 1.02 1.54 0.92 1.02 1.97 0.86 

200 0.7 ML 0.98 1.02 0.91 0.98 1.01 0.93 0.96 1.00 0.94 0.98 1.02 0.94 0.99 1.03 0.96 0.98 1.03 0.91 

200 0.7 ULSMV 0.95 0.99 0.91 0.97 1.00 0.91 0.95 0.97 0.93 0.94 0.98 0.90 0.98 1.01 0.96 0.95 0.98 0.89 

200 0.7 WLSMV 0.93 0.98 0.88 0.96 0.99 0.91 0.92 0.95 0.87 0.91 0.96 0.87 0.96 0.99 0.93 0.92 0.95 0.86 

200 0.7 BAYES 1.01 1.29 0.91 0.95 1.05 0.88 0.99 1.19 0.91 0.99 1.13 0.91 0.97 1.03 0.94 1.00 1.16 0.93 

200 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 

0.4 ML 0.81 0.84 0.77 0.93 0.96 0.92 0.80 0.84 0.76 0.92 0.96 0.88 0.97 1.02 0.92 0.93 0.98 0.89 

200 0.4 ULSMV 0.78 0.97 0.71 0.91 0.94 0.87 0.78 0.96 0.71 0.77 1.01 0.71 0.96 1.02 0.92 0.78 0.99 0.70 

200 0.4 WLSMV 0.75 0.93 0.67 0.89 0.93 0.86 0.76 0.91 0.68 0.66 0.93 0.59 0.93 0.99 0.89 0.67 0.90 0.61 

200 0.4 BAYES 1.04 1.87 0.79 1.04 1.48 0.92 1.02 1.88 0.77 1.03 1.86 0.89 1.00 1.44 0.90 1.04 1.85 0.88 

200 0.7 ML 0.97 1.00 0.93 0.98 1.02 0.95 0.97 1.00 0.92 0.99 1.03 0.94 0.99 1.02 0.96 0.99 1.05 0.95 

200 0.7 ULSMV 0.95 0.98 0.92 0.98 1.02 0.95 0.95 0.98 0.92 0.95 1.00 0.91 0.99 1.02 0.94 0.96 1.00 0.91 

200 0.7 WLSMV 0.93 0.96 0.89 0.96 1.01 0.93 0.93 0.98 0.90 0.92 0.97 0.88 0.97 0.99 0.93 0.92 0.98 0.87 

200 0.7 BAYES 0.99 1.24 0.92 0.95 1.02 0.91 0.99 1.17 0.92 1.00 1.18 0.95 0.98 1.03 0.94 1.00 1.23 0.94 

500 

U
n

id
im

en
si

o
n

al
 

0.4 ML 0.97 1.01 0.94 1.00 1.03 0.97 0.98 1.01 0.94 0.99 1.02 0.95 0.99 1.02 0.96 0.98 1.03 0.96 

500 0.4 ULSMV 0.92 0.95 0.89 0.99 1.02 0.97 0.94 0.97 0.90 0.96 0.99 0.93 0.98 1.01 0.95 0.96 1.00 0.93 

500 0.4 WLSMV 0.94 0.97 0.91 0.98 1.02 0.96 0.94 0.97 0.90 0.95 0.99 0.92 0.97 1.00 0.94 0.95 0.99 0.92 

500 0.4 BAYES 0.95 1.02 0.84 0.96 1.07 0.76 0.99 1.06 0.94 1.01 1.50 0.93 0.99 1.10 0.94 1.00 1.44 0.95 

500 0.7 ML 1.00 1.06 0.97 1.00 1.04 0.97 0.99 1.03 0.97 1.00 1.03 0.97 1.00 1.03 0.96 1.01 1.06 0.96 

500 0.7 ULSMV 0.99 1.04 0.96 1.00 1.04 0.97 0.98 1.01 0.95 0.98 1.00 0.94 1.00 1.03 0.97 0.99 1.04 0.95 

500 0.7 WLSMV 0.98 1.03 0.95 0.99 1.03 0.96 0.97 1.00 0.94 0.97 0.99 0.94 0.99 1.02 0.96 0.98 1.03 0.94 

500 0.7 BAYES 0.96 1.00 0.81 0.96 1.03 0.79 0.95 0.99 0.90 0.96 1.02 0.84 0.98 1.02 0.85 0.97 1.02 0.85 

500 

2
 f

ac
to

rs
 (

φ
 =

 0
) 

0.4 ML 0.92 0.94 0.90 0.97 1.01 0.95 0.93 1.01 0.89 0.97 1.04 0.93 0.98 1.04 0.94 0.97 1.00 0.94 

500 0.4 ULSMV 0.85 0.91 0.82 0.94 0.97 0.92 0.87 0.92 0.82 0.92 0.96 0.87 0.97 1.03 0.93 0.92 0.95 0.87 

500 0.4 WLSMV 0.87 0.92 0.84 0.93 0.97 0.92 0.88 0.94 0.84 0.93 1.00 0.89 0.96 1.02 0.92 0.92 0.95 0.86 

500 0.4 BAYES 1.10 1.76 0.91 1.03 1.31 0.93 1.10 1.73 0.91 1.02 1.70 0.93 1.01 1.57 0.94 1.03 1.69 0.93 

500 0.7 ML 1.00 1.03 0.97 1.00 1.08 0.95 0.99 1.03 0.96 1.00 1.05 0.95 1.00 1.05 0.96 1.00 1.05 0.96 

500 0.7 ULSMV 0.98 1.02 0.95 0.99 1.08 0.94 0.98 1.02 0.95 0.98 1.03 0.93 0.99 1.04 0.95 0.98 1.02 0.93 

500 0.7 WLSMV 0.98 1.02 0.95 0.99 1.08 0.94 0.98 1.02 0.95 0.97 1.03 0.92 0.98 1.03 0.94 0.97 1.01 0.93 

500 0.7 BAYES 0.97 1.03 0.93 0.96 1.06 0.90 0.97 1.03 0.93 0.97 1.03 0.91 0.97 1.02 0.88 0.98 1.07 0.92 

500 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 

0.4 ML 0.94 0.97 0.91 0.98 1.00 0.94 0.97 1.02 0.95 0.97 1.01 0.93 0.99 1.03 0.94 0.98 1.02 0.94 

500 0.4 ULSMV 0.87 0.91 0.83 0.95 0.97 0.92 0.89 0.93 0.86 0.93 0.98 0.90 0.99 1.03 0.94 0.94 0.98 0.90 

500 0.4 WLSMV 0.88 0.91 0.84 0.94 0.97 0.91 0.90 0.94 0.87 0.93 0.98 0.89 0.98 1.01 0.93 0.94 0.97 0.90 

500 0.4 BAYES 1.09 1.64 0.90 1.02 1.33 0.91 1.09 1.66 0.90 1.02 1.66 0.91 1.01 1.45 0.91 1.04 1.58 0.92 

500 0.7 ML 0.98 1.01 0.95 1.01 1.05 0.98 0.98 1.00 0.96 1.01 1.06 0.97 1.01 1.05 0.96 0.99 1.03 0.95 

500 0.7 ULSMV 0.97 1.00 0.95 1.00 1.03 0.96 0.98 1.00 0.95 0.98 1.03 0.92 1.00 1.04 0.95 0.97 1.00 0.95 

500 0.7 WLSMV 0.97 0.99 0.94 0.99 1.04 0.96 0.97 0.99 0.94 0.97 1.03 0.92 0.99 1.03 0.95 0.96 0.99 0.93 

500 0.7 BAYES 0.96 1.00 0.92 0.97 1.03 0.91 0.96 1.00 0.92 0.98 1.08 0.90 0.98 1.04 0.89 0.98 1.11 0.91 

500 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 

0.4 ML 0.96 0.98 0.94 0.99 1.01 0.97 0.95 1.00 0.92 0.98 1.04 0.95 0.99 1.03 0.96 0.98 1.01 0.93 

500 0.4 ULSMV 0.90 0.95 0.85 0.97 0.99 0.94 0.89 0.93 0.84 0.93 1.00 0.89 0.98 1.02 0.95 0.95 0.98 0.90 

500 0.4 WLSMV 0.89 0.94 0.85 0.96 0.98 0.93 0.89 0.93 0.84 0.93 1.00 0.88 0.97 1.01 0.94 0.94 0.97 0.89 

500 0.4 BAYES 1.04 1.44 0.92 1.02 1.32 0.92 1.04 1.44 0.89 1.02 1.49 0.93 1.00 1.24 0.91 1.02 1.46 0.92 

500 0.7 ML 0.99 1.03 0.96 1.01 1.05 0.98 0.99 1.04 0.95 1.02 1.08 0.97 1.01 1.06 0.99 1.01 1.05 0.98 

500 0.7 ULSMV 0.98 1.03 0.96 1.01 1.04 0.98 0.98 1.02 0.94 0.99 1.05 0.95 1.01 1.05 0.97 0.98 1.02 0.94 

500 0.7 WLSMV 0.97 1.03 0.94 1.00 1.03 0.97 0.97 1.02 0.93 0.98 1.04 0.94 1.00 1.04 0.96 0.97 1.01 0.94 

500 0.7 BAYES 0.97 1.01 0.91 0.97 1.01 0.92 0.97 1.05 0.92 0.99 1.13 0.92 0.98 1.04 0.91 0.99 1.08 0.93 

1000 

U
n

id
im

en
si

o
n
al

 

0.4 ML 0.97 1.01 0.94 0.99 1.04 0.96 0.99 1.03 0.95 1.01 1.04 0.98 1.00 1.03 0.95 0.99 1.03 0.97 

1000 0.4 ULSMV 0.95 0.99 0.93 0.98 1.03 0.96 0.97 1.01 0.94 0.99 1.03 0.96 0.99 1.03 0.95 0.98 1.02 0.95 

1000 0.4 WLSMV 0.95 0.98 0.92 0.98 1.03 0.95 0.97 1.01 0.94 0.99 1.02 0.96 0.99 1.02 0.95 0.97 1.01 0.94 

1000 0.4 BAYES 0.93 0.97 0.74 0.95 1.04 0.71 0.95 1.00 0.82 1.00 1.08 0.95 0.97 1.05 0.83 0.97 1.02 0.93 

1000 0.7 ML 1.00 1.02 0.98 1.01 1.04 0.95 1.00 1.02 0.97 1.01 1.06 0.95 1.00 1.04 0.97 1.01 1.05 0.97 

1000 0.7 ULSMV 0.99 1.02 0.97 1.00 1.03 0.95 0.98 1.01 0.96 0.99 1.03 0.93 1.00 1.04 0.97 0.99 1.03 0.96 

1000 0.7 WLSMV 0.99 1.01 0.96 1.00 1.03 0.94 0.97 1.00 0.96 0.98 1.02 0.92 1.00 1.04 0.97 0.99 1.03 0.95 

1000 0.7 BAYES 0.95 1.00 0.78 0.96 1.01 0.80 0.94 1.03 0.80 0.98 1.03 0.86 0.97 1.06 0.78 0.98 1.05 0.90 

1000 

2
 f

ac
to

rs
 (

φ
 

=
 0

) 

0.4 ML 0.98 1.02 0.94 0.98 1.00 0.93 0.97 1.00 0.93 0.99 1.01 0.96 1.01 1.05 0.97 0.99 1.06 0.96 

1000 0.4 ULSMV 0.91 0.94 0.87 0.96 0.99 0.92 0.92 0.94 0.89 0.97 0.99 0.93 1.00 1.04 0.97 0.97 1.04 0.94 

1000 0.4 WLSMV 0.92 0.95 0.88 0.96 0.99 0.91 0.92 0.95 0.89 0.96 0.99 0.93 1.00 1.04 0.96 0.97 1.03 0.94 

1000 0.4 BAYES 1.04 1.26 0.94 1.00 1.13 0.92 1.03 1.37 0.93 0.98 1.21 0.92 1.01 1.21 0.95 1.00 1.31 0.92 



Int. J. Asst. Tools in Educ., Vol. 7, No. 3, (2020) pp. 451–487 

 485 

S
am

p
le

 

S
iz

e 

M
o
d
el

 

M
F

L
 

M
et

h
o
d

 

Number of Items = 10 Number of Items = 20 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min 

1000 0.7 ML 1.00 1.03 0.96 1.01 1.03 0.97 1.00 1.04 0.96 1.01 1.05 0.95 1.00 1.04 0.96 1.02 1.08 0.98 

1000 0.7 ULSMV 1.00 1.03 0.96 1.00 1.02 0.97 0.99 1.04 0.95 1.00 1.04 0.93 1.00 1.04 0.95 1.00 1.04 0.96 

1000 0.7 WLSMV 1.00 1.03 0.96 1.00 1.02 0.97 0.99 1.04 0.95 0.99 1.03 0.93 0.99 1.03 0.95 0.99 1.04 0.96 

1000 0.7 BAYES 0.97 1.02 0.87 0.97 1.06 0.93 0.97 1.01 0.93 0.95 1.06 0.79 0.97 1.04 0.84 0.97 1.13 0.84 

1000 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 

0.4 ML 0.97 1.01 0.95 0.99 1.01 0.96 0.99 1.02 0.97 0.98 1.02 0.95 1.00 1.03 0.95 0.99 1.03 0.95 

1000 0.4 ULSMV 0.93 0.96 0.90 0.97 1.00 0.95 0.94 0.96 0.92 0.96 0.99 0.93 0.99 1.02 0.96 0.97 1.01 0.93 

1000 0.4 WLSMV 0.93 0.96 0.90 0.97 0.99 0.94 0.95 0.97 0.92 0.96 0.99 0.93 0.99 1.02 0.95 0.96 1.01 0.92 

1000 0.4 BAYES 1.04 1.27 0.95 1.00 1.13 0.92 1.05 1.42 0.93 0.97 1.18 0.90 1.00 1.11 0.96 0.99 1.38 0.90 

1000 0.7 ML 1.00 1.02 0.96 1.01 1.07 0.96 1.01 1.04 0.97 1.01 1.07 0.96 0.99 1.04 0.96 1.01 1.07 0.95 

1000 0.7 ULSMV 0.99 1.02 0.96 1.00 1.06 0.95 1.00 1.03 0.97 0.99 1.04 0.94 0.99 1.03 0.95 0.99 1.05 0.94 

1000 0.7 WLSMV 0.99 1.01 0.96 1.00 1.06 0.95 1.00 1.03 0.97 0.99 1.05 0.93 0.98 1.03 0.95 0.99 1.05 0.93 

1000 0.7 BAYES 0.97 1.05 0.91 0.97 1.02 0.90 0.97 1.05 0.93 0.95 1.04 0.79 0.96 1.04 0.83 0.97 1.13 0.85 

1000 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 

0.4 ML 0.97 1.00 0.94 0.99 1.03 0.97 0.97 1.02 0.93 1.00 1.03 0.97 0.99 1.04 0.97 1.00 1.04 0.94 

1000 0.4 ULSMV 0.94 0.97 0.91 0.98 1.02 0.96 0.94 0.98 0.90 0.98 1.02 0.95 0.99 1.03 0.96 0.98 1.02 0.94 

1000 0.4 WLSMV 0.94 0.97 0.91 0.98 1.01 0.95 0.94 0.98 0.90 0.97 1.01 0.95 0.98 1.02 0.96 0.98 1.02 0.94 

1000 0.4 BAYES 1.02 1.23 0.91 1.01 1.13 0.96 1.01 1.32 0.89 0.99 1.20 0.92 1.00 1.10 0.95 1.00 1.23 0.92 

1000 0.7 ML 1.01 1.04 0.95 1.02 1.05 0.99 1.00 1.04 0.95 1.01 1.03 0.96 1.00 1.02 0.97 1.01 1.03 0.99 

1000 0.7 ULSMV 1.00 1.03 0.93 1.02 1.05 0.98 0.99 1.03 0.95 1.00 1.03 0.95 1.00 1.03 0.97 0.99 1.03 0.95 

1000 0.7 WLSMV 1.00 1.03 0.93 1.01 1.05 0.98 0.99 1.02 0.94 0.99 1.03 0.94 1.00 1.02 0.96 0.99 1.02 0.95 

1000 0.7 BAYES 0.99 1.08 0.90 0.98 1.08 0.90 0.96 1.03 0.85 0.95 1.02 0.81 0.97 1.03 0.82 0.97 1.08 0.85 
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Appendix 8. r-seb values of interfactor correlations 
S

am
p

le
 

S
iz

e 

M
o

d
el

 
Mean Factor 

Loading 

Estimation 

Method 

Number of Items = 10 Number of Items = 20 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

2
0

0
 

2
 f

ac
to

rs
 (

φ
 =

 0
) 

0.4 ML 0.62 0.84 0.67 0.85 0.93 0.84 

0.4 ULSMV 0.58 0.70 0.59 0.53 0.79 0.51 

0.4 WLSMV 0.56 0.68 0.58 0.34 0.77 0.34 

0.4 BAYES 1.23 1.10 1.28 1.15 1.05 1.13 

0.7 ML 0.97 0.99 1.01 0.99 1.05 0.99 

0.7 ULSMV 0.85 0.96 0.87 0.85 0.98 0.86 

0.7 WLSMV 0.61 0.94 0.62 0.54 0.96 0.55 

0.7 BAYES 0.98 0.99 1.00 0.98 0.99 0.99 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 0.4 ML 0.67 0.88 0.70 0.83 0.94 0.89 

0.4 ULSMV 0.59 0.77 0.61 0.53 0.83 0.56 

0.4 WLSMV 0.56 0.76 0.58 0.35 0.81 0.34 

0.4 BAYES 1.18 1.06 1.16 1.07 1.10 1.13 

0.7 ML 0.96 0.96 0.96 0.98 1.00 0.97 

0.7 ULSMV 0.86 0.94 0.87 0.90 0.99 0.88 

0.7 WLSMV 0.72 0.93 0.71 0.77 0.97 0.74 

0.7 BAYES 0.96 0.96 0.96 0.98 1.01 0.97 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 0.4 ML 0.77 0.91 0.80 0.89 0.93 0.84 

0.4 ULSMV 0.67 0.95 0.67 0.53 0.92 0.56 

0.4 WLSMV 0.65 0.93 0.69 0.44 0.89 0.47 

0.4 BAYES 0.98 1.08 0.95 1.12 1.12 1.09 

0.7 ML 0.97 1.00 0.98 0.97 0.99 0.97 

0.7 ULSMV 0.95 1.00 0.96 0.92 0.98 0.93 

0.7 WLSMV 0.91 0.98 0.94 0.88 0.96 0.90 

0.7 BAYES 1.01 1.01 1.03 1.01 1.00 1.01 

5
0

0
 

2
 f

ac
to

rs
 (

φ
 =

 0
) 

0.4 ML 0.85 0.95 0.90 0.97 0.97 0.94 

0.4 ULSMV 0.68 0.86 0.72 0.81 0.91 0.78 

0.4 WLSMV 0.70 0.86 0.75 0.83 0.90 0.77 

0.4 BAYES 1.06 1.01 1.12 1.06 1.01 1.04 

0.7 ML 0.96 1.00 0.96 0.99 1.05 0.94 

0.7 ULSMV 0.91 0.98 0.90 0.97 0.99 0.90 

0.7 WLSMV 0.92 0.97 0.90 0.96 0.98 0.90 

0.7 BAYES 0.95 0.97 0.94 0.99 0.99 0.93 

2
 f

ac
to

rs
 (

φ
 =

 0
.3

) 0.4 ML 0.91 0.99 0.94 0.95 0.98 0.96 

0.4 ULSMV 0.77 0.92 0.77 0.84 0.93 0.86 

0.4 WLSMV 0.78 0.92 0.80 0.86 0.92 0.86 

0.4 BAYES 1.13 1.07 1.07 1.06 1.02 1.05 

0.7 ML 0.99 0.96 1.02 0.99 1.01 1.03 

0.7 ULSMV 0.96 0.95 0.99 0.99 1.00 1.00 

0.7 WLSMV 0.96 0.95 0.98 0.98 0.99 0.99 

0.7 BAYES 0.98 0.93 1.00 0.98 0.99 1.01 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 0.4 ML 1.00 0.98 0.95 0.91 1.00 0.95 

0.4 ULSMV 0.92 0.96 0.89 0.84 1.00 0.91 

0.4 WLSMV 0.92 0.95 0.90 0.83 0.99 0.90 

0.4 BAYES 1.13 1.11 1.08 1.10 1.13 1.11 

0.7 ML 0.99 1.00 0.99 1.01 1.01 1.00 

0.7 ULSMV 0.99 1.01 0.99 0.99 1.01 0.98 

0.7 WLSMV 0.98 1.00 0.97 0.98 1.00 0.96 

0.7 BAYES 0.99 0.97 0.99 1.01 1.02 0.99 

1
0

0
0
 

2
 f

ac
to

rs
 (

φ
 =

 0
) 

0.4 ML 0.94 0.99 0.97 0.96 0.95 0.98 

0.4 ULSMV 0.83 0.94 0.85 0.89 0.92 0.91 

0.4 WLSMV 0.84 0.94 0.87 0.90 0.91 0.91 

0.4 BAYES 1.02 1.03 1.08 1.02 0.95 1.04 

0.7 ML 1.03 0.99 0.98 1.01 1.03 0.98 

0.7 ULSMV 0.99 0.99 0.97 0.97 0.99 0.97 

0.7 WLSMV 0.99 0.98 0.97 0.97 0.98 0.97 

0.7 BAYES 1.02 0.99 0.98 1.02 0.98 0.98 

2
 f

ac
to

rs
 (

φ
 =

 

0
.3

) 

0.4 ML 0.96 0.97 0.95 1.00 1.00 0.99 

0.4 ULSMV 0.88 0.95 0.87 0.95 0.98 0.93 

0.4 WLSMV 0.89 0.94 0.88 0.95 0.97 0.93 

0.4 BAYES 1.05 1.03 1.04 1.06 1.00 1.04 

0.7 ML 1.06 0.98 1.00 1.00 1.01 1.03 

0.7 ULSMV 1.04 0.98 0.98 0.99 1.00 1.00 
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S
am

p
le

 

S
iz

e 

M
o

d
el

 

Mean Factor 

Loading 

Estimation 

Method 

Number of Items = 10 Number of Items = 20 

Left-Skewed Normal Right-Skewed Left-Skewed Normal Right-Skewed 

0.7 WLSMV 1.04 0.97 0.98 0.98 1.00 0.99 

0.7 BAYES 1.05 0.98 1.00 1.00 1.00 1.03 

2
 f

ac
to

rs
 (

φ
 =

 0
.6

) 0.4 ML 1.00 0.97 1.03 0.99 1.02 0.96 

0.4 ULSMV 0.96 0.95 0.98 0.96 1.03 0.94 

0.4 WLSMV 0.96 0.95 0.98 0.96 1.03 0.94 

0.4 BAYES 1.08 1.05 1.14 1.10 1.08 1.08 

0.7 ML 0.96 1.01 1.02 1.02 1.01 1.03 

0.7 ULSMV 0.95 1.01 1.03 1.00 1.01 1.03 

0.7 WLSMV 0.95 1.00 1.02 0.99 1.01 1.02 

0.7 BAYES 0.95 1.00 1.01 1.02 1.01 1.04 

 


