ON SOME GENERALIZED CESAR RO DIFFERENCE SEQUENCE SPACES

Mikail ET

Abstract: In this paper,we have defined generalized Cesaro difference sequence spaces $C_{p}\left(\Delta^{m}\right)$, $1 \leq \mathrm{p}<\infty$, and $\mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)$ and investigated some properties of these spaces and compute their Köthe-Toeplitz duals where $m \in N$. Further, we have determined the matrices of classes $\left(\mathrm{E}, \mathrm{C}_{p}\left(\Delta^{\mathrm{m}}\right)\right)$ and $\left(\mathrm{E}, \mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right)$ where E denotes one of the sequence spaces I_{∞} and c namely the linear spaces of bounded and convergent sequences, respectively. This study generalizes some results of $N g$ and Lee [4] and Orhan [5] in special cases.

1.Introduction

Orhan [5] defined the Cesáro difference sequence spaces

$$
C_{p}=\left\{x=\left(x_{k}\right): \sum_{\mathrm{n}=1}^{\infty}\left|\frac{1}{n} \sum_{\mathrm{k}=1}^{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{k}}\right|^{\mathrm{p}}<\infty, \quad 1 \leq \mathrm{p}<\infty\right\}
$$

and

$$
C_{\infty}=\left\{x=\left(x_{k}\right): \sup _{n}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta x_{k}\right|<\infty, \quad n \geq 1\right\}
$$

and showed that the inclusion

$$
\mathrm{Ces}_{\mathrm{p}} \subset \mathrm{X}_{\mathrm{p}} \subset \mathrm{C}_{\mathrm{p}}
$$

is strict for $1 \leq p<\infty$, where $\Delta \mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}-\mathrm{X}_{\mathrm{k}+1}\right),(\mathrm{k}=1,2, \ldots)$ and $\operatorname{Ces}_{\mathrm{p}}$ and X_{p} are sequence spaces defined by

$$
\begin{aligned}
& \operatorname{Ces}_{p}=\left\{x=\left(x_{k}\right):\|x\|_{p_{i}}=\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}<\infty \quad, 1 \leq p<\infty\right\},\right. \\
& X_{p}=\left\{x=\left(x_{k}\right):\|x\|_{p 2}=\left(\sum_{n=1}^{\infty}\left|\frac{1}{n} \sum_{k=1}^{n} x_{k}\right|^{p}\right)^{\frac{1}{p}}<\infty \quad, 1 \leq p<\infty\right\}
\end{aligned}
$$

respectively ([6],[4]). Further, the inclusion $/_{\mathrm{p}} \subset \mathrm{Ces}_{\mathrm{p}} \subset \mathrm{X}_{\mathrm{p}} \subset \mathrm{C}_{\mathrm{p}}$ is also strict for $1<\mathrm{p}<\infty$, where

$$
/_{\mathrm{p}}=\left\{\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right): \sum_{\mathrm{k}=1}^{\infty}\left|\mathrm{x}_{\mathrm{k}}\right|^{\mathrm{p}}<\infty, 1 \leq \mathrm{p}<\infty\right\}
$$

The matrix transformations on Cesáro sequence spaces of a non-absolute type are given in [3]. Et and Çolak [1] defined the sequence spaces

$$
\begin{aligned}
& c\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right): \Delta^{m} x \in c\right\} \\
& /_{\infty}\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right): \Delta^{m} x \in /_{\infty}\right\}
\end{aligned}
$$

and showed that these are Banach spaces with norm

$$
\|\mathrm{x}\|_{\Delta}=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left|\mathrm{x}_{\mathrm{i}}\right|+\left\|\Delta^{\mathrm{m}} \mathrm{x}_{\mathrm{k}}\right\|_{\|_{\infty}}
$$

Now we define

$$
C_{p}\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right): \sum_{n=1}^{\infty}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}\right|^{p}<\infty, \quad 1 \leq p<\infty\right\}
$$

and

$$
C_{\infty}\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right): \sup _{n}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}\right|^{p}<\infty, \quad n \geq 1\right\}
$$

where $m \in N=\{1.2 \ldots\}$, the set of positive integers, $\Delta^{0} x=\left(x_{k}\right), \Delta x=\left(x_{k}-x_{k+1}\right)$, $\Delta^{m} \mathrm{X}=\left(\Delta^{m} \mathrm{x}_{\mathrm{k}}\right)=\left(\Delta^{m-1} \mathrm{x}_{\mathrm{k}}-\Delta^{\mathrm{m}-1} \mathrm{x}_{\mathrm{k}+1}\right)$ and so that

$$
\Delta^{m} x_{k}=\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} x_{k+v}
$$

It is trivial that $C_{p}\left(\Delta^{m}\right)$ and $C_{\infty}\left(\Delta^{m}\right)$ are linear space.
Throughout the paper we write $\lim _{\mathrm{n}}$ for $\lim _{\mathrm{n} \rightarrow \infty}$.
Theorem 1.1: $\mathrm{C}_{\mathrm{p}}\left(\Delta^{\mathrm{m}}\right)$ is a Banach space for $1 \leq \mathrm{p}<\infty$ normed by

$$
\begin{equation*}
\|x\|_{p}=\sum_{i=1}^{m}\left|x_{i}\right|+\left(\sum_{n=1}^{\infty}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}\right|^{p}\right)^{\frac{1}{p}} \tag{1}
\end{equation*}
$$

and $\mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)$ is a Banach space normed by

$$
\begin{equation*}
\|x\|_{\infty}=\sum_{i=1}^{m}\left|x_{i}\right|+\sup _{n}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}\right| \tag{2}
\end{equation*}
$$

Proof. It is a routine verification that $\mathrm{C}_{\infty}\left(\Delta^{m}\right)$ is a normed space normed by (2). To show that $\mathrm{C}_{\omega}\left(\Delta^{m}\right)$ is complete, let $\left(\mathrm{x}^{s}\right)$ be a Cauchy sequence in $\mathrm{C}_{\sigma \text { : }}\left(\Delta^{m}\right)$, where $x^{s}=\left(x_{i}^{s}\right)=\left(x_{1}^{s}, x_{2}^{s}, \ldots\right) \in C_{\infty}\left(\Delta^{m}\right)$ for each $s \in N$. Then

$$
\left\|x^{s}-x^{4}\right\|_{\infty}=\sum_{i=1}^{m}\left|x_{i}^{s}-x_{i}^{i}\right|+\sup _{n}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m}\left(x_{k}^{s}-x_{k}^{\prime}\right)\right| \rightarrow 0
$$

as $\mathrm{s}, \mathrm{t} \rightarrow \infty$. Hence we obtain

$$
\left|x_{k}^{s}-x_{k}^{1}\right| \rightarrow 0
$$

as $s, t \rightarrow \infty$, for each $k \in N$. Therefore $\left(x_{k}^{s}\right)=\left(x_{k}^{1}, x_{k}^{2}, \ldots\right)$ is a Cauchy sequence in C, the set of complex numbers. Since C is complete, it is convergent.

$$
\lim _{s} x_{k}^{s}=x_{k}
$$

say, for each $k \in N$. Since (x^{s}) is a Cauchy sequence, for each $\varepsilon>0$, there exists $N=N(\varepsilon)$ such that $\left\|x^{s}-x^{t}\right\|_{\infty}<\varepsilon$ for all $s, t \geq N$. Hence

$$
\sum_{i=1}^{m}\left|x_{i}^{s}-x_{i}^{i}\right| \leq \varepsilon \quad \text { and } \quad\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m}\left(x_{k}^{s}-x_{k}^{i}\right)\right| \leq \varepsilon
$$

for all $k \in N$ and for all $s, t \geq N$. So we have

$$
\lim _{1} \sum_{i=1}^{m}\left|x_{i}^{s}-x_{i}^{\prime}\right|=\sum_{i=1}^{m}\left|x_{i}^{s}-x_{i}\right| \leq \varepsilon
$$

and

$$
\lim _{t}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m}\left(x_{k}^{s}-x_{k}^{\prime}\right)\right|=\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m}\left(x_{k}^{s}-x_{k}\right)\right| \leq \varepsilon
$$

for all $\mathrm{s} \geq \mathrm{N}$. This implies that $\left\|\mathrm{x}^{3}-\mathrm{x}\right\|_{\infty}<2 \varepsilon$ for all $\mathrm{s} \geq \mathrm{N}$, that is, $\mathrm{x}^{\mathrm{s}} \rightarrow \mathrm{x}$ as $\mathrm{s} \rightarrow \infty$ where $x=\left(x_{k}\right)$.Since

$$
\begin{aligned}
& \left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}\right|=\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m}\left(x_{k}+x_{k}^{N}-x_{k}^{N}\right)\right| \\
& \leq\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}^{N}\right|+\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m}\left(x_{k}^{N}-x_{k}\right)\right| \\
& \leq\left\|x^{N}-x\right\|_{\infty}+\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}^{N}\right|<\infty
\end{aligned}
$$

we obtain $\mathrm{x} \in \mathrm{C}_{\infty}\left(\Delta^{m}\right)$. Therefore $\mathrm{C}_{\infty}\left(\Delta^{m}\right)$ is a Banach space. In the same way it can be shown that $C_{p}\left(\Delta^{m}\right)$ is a Banach space with norm (1).

Furthermore $x \in C_{p}\left(\Delta^{m}\right)$ if and only if $\|x\|_{p}<\infty, 1 \leq p \leq \infty$. Since $C_{p}\left(\Delta^{m}\right)(1 \leq p \leq \infty)$ is a Banach space with continuous coordinates, that is, $\left\|\mathrm{X}^{5}-\mathrm{x}\right\|_{\mathrm{p}} \rightarrow 0$ implies $\left|\mathrm{x}^{s}-\mathrm{x}\right| \rightarrow 0$ for each $k \in N$, as $s \rightarrow \infty$, it is a BK-space.

If we take $m=1$ and $m=0$ in Theorem 1.1 we have the following results, respectively.
Corollary 1.2 ([5]): The space $\mathrm{C}_{\mathrm{p}}(1 \leq \mathrm{p} \leq \infty)$ is a Banach space.
Corollary 1.3 ([4]): The space $\mathrm{X}_{\mathrm{p}}(\mathrm{I} \leq \mathrm{p} \leq \infty)$ is a Banach space.
Now let us define the operator

$$
s: C_{p}\left(\Delta^{m}\right) \rightarrow C_{p}\left(\Delta^{m}\right), x \rightarrow s x=\left(0,0, \ldots x_{m+1}, x_{m+2}, \ldots\right)
$$

It is clear that s is a bouded linear operator on $C_{p}\left(\Delta^{m}\right)$. Furthermore the set

$$
s\left(C_{p}\left(\Delta^{m}\right)\right)=s C_{p}\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right): x \in C_{p}\left(\Delta^{m}\right), \quad x_{1}=x_{2}=\ldots=x_{m}=0\right\}
$$

is a subspace of $C_{p}\left(\Delta^{m}\right),(1 \leq p \leq \infty)$.
Now we give some inclusion relations between these sequence spaces.
Theorem 1.4: If $1 \leq p<q$, then $C_{p}\left(\Delta^{m}\right) \subset C_{q}\left(\Delta^{m}\right)$
Proof: The inequality

$$
\left(\sum_{k=1}^{n}\left|a_{k}\right|^{q}\right)^{\frac{1}{q}} \leq\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}, \quad(0<p<q)
$$

[5] gives the proof.
Theorem 1.5: The inclusion $C_{p}\left(\Delta^{m-1}\right) \subset C_{p}\left(\Delta^{m}\right), 1 \leq p \leq \infty$, is strict.
Proof: Let $\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right) \in \mathrm{C}_{\mathrm{p}}\left(\Delta^{\mathrm{m}-1}\right), 1 \leq \mathrm{p}<\infty$. Then

$$
\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}\right| \leq\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} x_{k}\right|+\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} x_{k+1}\right|
$$

It is known that, for $1 \leq \mathrm{p}<\infty$,

$$
|a+b|^{p} \leq 2^{p}\left(|a|^{p}+|b|^{p}\right)
$$

Hence, for $1 \leq \mathrm{p}<\infty$,

$$
\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}\right|^{p} \leq M\left\{\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} x_{k}\right|^{p}+\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} x_{k+1}\right|^{p}\right\}
$$

where $M=2^{p}$. Then, for each positive integer r, we get

$$
\sum_{n=1}^{r}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}\right|^{p} \leq M\left\{\sum_{n=1}^{r}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} x_{k}\right|^{\rho}+\sum_{n=1}^{r}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} x_{k+1}\right|^{p}\right\}
$$

Now, as $r \rightarrow \infty$

$$
\sum_{n=1}^{\infty}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k}\right|^{p} \leq M\left\{\sum_{n=1}^{\infty}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} x_{k}\right|^{p}+\sum_{n=1}^{\infty}\left|\frac{1}{n} \sum_{k=1}^{n} \Delta^{m-3} x_{k+1}\right|^{p}\right\}<\infty
$$

Thus $C_{p}\left(\Delta^{m-1}\right) \subset C_{p}\left(\Delta^{m}\right)(1 \leq p<\infty)$. The inclusion is strict since the sequence $\mathrm{x}=\left(\mathrm{k}^{\mathrm{m}-1}\right)$, for example, belongs to $\mathrm{C}_{\mathrm{p}}\left(\Delta^{\mathrm{m}}\right)$, but does not belong to $\mathrm{C}_{\mathrm{p}}\left(\Delta^{\mathrm{m}-1}\right)$ for $\mathrm{l} \leq \mathrm{p}<\infty$. Similarly, it can be easily shown that $C_{\infty}\left(\Delta^{m-1}\right) \subset C_{\infty}\left(\Delta^{m}\right)$. To see that $C_{\infty}\left(\Delta^{m-1}\right) \neq C_{\infty}\left(\Delta^{m}\right)$, we define the sequence $\left(\mathrm{x}_{\mathrm{k}}\right)$ by $\mathrm{x}_{\mathrm{k}}=\mathrm{k}^{\mathrm{m}},(\mathrm{k}=1,2, \ldots)$. Then $\left(\mathrm{x}_{\mathrm{k}}\right)$ is a member of $\mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)$, but not a member of $\mathrm{C}_{\infty}\left(\Delta^{m-l}\right)$. Now $c\left(\Delta^{m}\right) \subset l_{\infty}\left(\Delta^{m}\right) \subset \mathrm{C}_{\infty}\left(\Delta^{m}\right)$ and the inclusion is strict since the sequence (x_{k}) belongs to $\mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)$, but does not belong to $/ \rho_{\infty}\left(\Delta^{m}\right)$, where
$\Delta^{\mathrm{m}} \mathrm{X}_{\mathrm{k}}=\begin{aligned} & \sqrt{\mathrm{k}}, \mathrm{k}=\mathrm{n}^{2} \\ & \left\{\begin{array}{l}\mathrm{l} \\ 0 \quad, \quad \mathrm{k} \neq \mathrm{n}^{2}\end{array} \quad, \quad \mathrm{n}=1,2, \ldots\right.\end{aligned}$

Note that $C_{p}\left(\Delta^{m}\right)$ and $c\left(\Delta^{m}\right)$, overlap but neither one contains the other. Actually the sequence (x_{k}) by $\mathrm{x}_{\mathrm{k}}=\mathrm{k}^{m}$, is an element of $\mathrm{c}\left(\Delta^{m}\right)$, but is not an element of $C_{p}\left(\Delta^{m}\right)$. Moreover the sequence $\left(x_{k}\right)=\left((-1)^{k}\right),(k=1,2, \ldots)$ belongs to $C_{p}\left(\Delta^{m}\right)$, but does not belong to $c\left(\Delta^{m}\right)$.

Remark: $\mathrm{C}_{\mathrm{p}}\left(\Delta^{\mathrm{m}}\right)(1 \leq \mathrm{p} \leq \infty)$ need not to be sequence algebra. We give a counter example $(m \geq 2)$. Let $x=(k), y=\left(k^{m-1}\right)$. Clearly $x, y \in C_{p}\left(\Delta^{m}\right)(1 \leq p<\infty), x . y \notin C_{p}\left(\Delta^{m}\right)$.

If we define

$$
\begin{aligned}
& O_{p}\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right): \sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|\Delta^{m} x_{k}\right|\right)^{p}<\infty, 1 \leq p<\infty\right\} \\
& O_{\infty}\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right): \sup _{n} \frac{1}{n} \sum_{k=1}^{n}\left|\Delta^{m} x_{k}\right|<\infty, \quad n \geq 1\right\}
\end{aligned}
$$

then these spaces are normed spaces under the following norms respectively.

$$
\|x\|_{p_{j}}=\sum_{i=1}^{m}\left|x_{i}\right|+\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|\Delta^{m} x_{k}\right|\right)^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty
$$

and

$$
\|x\|_{l o l}=\sum_{i=1}^{m}\left|x_{i}\right|+\sup _{n}\left(\frac{1}{n} \sum_{k=1}^{n}\left|\Delta^{m} x_{k}\right|\right)
$$

Clearly $O_{p}\left(\Delta^{m}\right) \subset C_{p}\left(\Delta^{m}\right), 1 \leq p \leq \infty$. On the other hand, it is easily seen that $\mathrm{O}_{\mathrm{p}}\left(\Delta^{\mathrm{m}-\mathrm{l}}\right) \subset \mathrm{O}_{\mathrm{p}}\left(\Delta^{\mathrm{m}}\right), 1 \leq \mathrm{p} \leq \infty$.

II. Dual Spaces

In this section we give Köthe-Toeplitz duals of $\mathrm{C}_{\infty}\left(\Delta^{m}\right)$ and $\mathrm{O}_{\infty}\left(\Delta^{m}\right)$
Lemma 2.I: $\mathrm{x} \in \mathrm{S}_{\omega}\left(\Delta^{\mathrm{m}}\right)$ implies sup $\mathrm{k}^{-1}\left|\Delta^{\mathrm{m}-1} \mathrm{x}_{\mathrm{k}}\right|<\infty$.
Proof is trivial.
Lemma 2.2: (II]). supk $\mathrm{k}^{-1}\left|\Delta^{m-1} \mathrm{x}_{\mathrm{k}}\right|<\infty$ implies sup $\mathrm{s} \mathrm{k}^{-m \mathrm{~m}}\left|\mathrm{x}_{\mathrm{k}}\right|<\infty$.
Corollary 2.3: $\mathrm{x} \in \mathrm{S}_{\infty}\left(\Delta^{\mathrm{m}}\right)$ implies $\sup _{\mathrm{k}} \mathrm{k}^{-\mathrm{m}}\left|\mathrm{x}_{\mathrm{k}}\right|<\infty$.
Definition 2.4 : ([2]) Let X be a sequence space and define

$$
X^{a}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|<\infty \quad \text { for all } x \in X\right\},
$$

Then X^{α} is called the α-dual spaces of $\mathrm{X} . \mathrm{X}^{\alpha}$ is also called Köthe-Toeplitz dual space. It is easy to show that $\varnothing \subset X^{\alpha}$. If $X \subset Y$, then $Y^{\alpha} \subset X^{\alpha}$. It is clear that $X \subset X^{\alpha \alpha}$. If $X=X^{\alpha \alpha}$ then X is called a α-space. In particular, an α-space is called a Köthe space or a perfect sequence space.

Lemma 2.5: $\left[\mathrm{sC}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right]^{p^{a}}=\left\{\mathrm{a}=\left(\mathrm{a}_{\mathrm{k}}\right): \sum_{\mathrm{k}=1}^{\infty} \mathrm{k}^{\mathrm{m}}\left|\mathrm{a}_{\mathrm{k}}\right|<\infty\right\}$.
Proof: Let $U_{1}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty} k^{m}\left|a_{k}\right|<\infty\right\}$. If $a \in U_{1}$, then

$$
\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|=\sum_{k=1}^{\infty} k^{m}\left|a_{k}\right|\left(k^{-m}\left|x_{k}\right|\right)<\infty
$$

for each $\mathrm{x} \in \mathrm{SC}_{\infty}\left(\Delta^{\mathrm{m}}\right)$, by Corollary 2.3. Hence $\mathrm{a} \in\left[\mathrm{sC}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right]^{\mathrm{p}}$

$$
\text { Let } a \in\left[s C_{\infty}\left(\Delta^{m}\right)\right]^{\alpha} \text {. Then } \sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|<\infty \text { for each } \mathbf{a} \in S C_{\infty}\left(\Delta^{m}\right) \text {. }
$$

For the sequence $x=\left(x_{k}\right)$, defined by

$$
x_{k}= \begin{cases}0, & k \leq m \tag{2.1}\\ k^{m}, & k>m\end{cases}
$$

we may write

$$
\sum_{k=1}^{\infty}\left|k^{m} a_{k}\right|=\sum_{k=1}^{m}\left|k^{m} a_{k}\right|+\sum_{k=1}^{\infty}\left|k^{m} a_{k}\right|<\infty
$$

This implies $a \in U_{1}$.
Theorem 2.6. $\left[\mathrm{sC}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right]^{\alpha}=\left[\mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right]^{\alpha}$
Proof. Since $s \mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right) \subset \mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)$, then $\left[\mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right]^{a} \subset\left[\mathrm{sC}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right]^{d}$.
Let $\mathrm{a} \in\left[\mathrm{sC}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right]^{\omega}$ and $\mathrm{x} \in \mathrm{C}_{\infty}\left(\Delta^{m}\right)$. If we take the sequence $\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right)$,

$$
x_{k}=\left\{\begin{array}{cc}
x_{k}, & k \leq m \\
x_{k}^{\prime}, & k>m
\end{array}\right.
$$

where $x^{\prime}=\left(x_{k}^{\prime}\right) \in s C_{\infty}\left(\Delta^{m}\right)$. Then we may write

$$
\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|=\sum_{k=1}^{m}\left|a_{k} x_{k}\right|+\sum_{k=1}^{\infty}\left|a_{k} x_{k}^{\prime}\right|<\infty
$$

This implies that $\mathrm{a} \in\left[\mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right]^{\alpha}$.
Theorem 2.7: $\left[\mathrm{O}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right]^{\mathrm{d}}=\left[\mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right]^{\alpha}$.
Proof is trivial.

$$
\begin{aligned}
& \text { Theorem 2.8: For } \mathrm{X}=\mathrm{O}_{\infty}\left(\Delta^{m}\right) \text { or } \mathrm{C}_{\infty}\left(\Delta^{m}\right) \\
& {[\mathrm{X}]^{\text {ac }}=\left\{\mathrm{a}=\left(\mathrm{a}_{\mathrm{k}}\right): \sup _{\mathrm{k}} \mathrm{k}^{-\mathrm{m}}\left|\mathrm{a}_{\mathrm{k}}\right|<\infty\right\}}
\end{aligned}
$$

Proof is trivial.
Corollary 2.9 : X is not perfect.

III.Matrix Transformations

Let $A=\left(a_{n k}\right)$ be an infinite matrix of complex numbers $a_{n k}(n, k=1,2, \ldots)$ and X, Y be two subsets of the space of complex sequences we write formally

$$
\begin{equation*}
A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k} \quad(n=1,2, \ldots) \tag{3}
\end{equation*}
$$

and say that the matrix $A=\left(a_{n k}\right)$ defines a matrix transformations from X into Y and it is denoted by writing $A \in(X, Y)$. If each series in (3) converges and $\left(\left(A_{n}(x)\right) \in Y\right.$ whenever
$\left(x_{k}\right) \in X$. Furthernore, let (X, Y) be the set of all infinite matrices $A=\left(a_{n k}\right)$ which map the sequence space X into the sequence space Y. We now determine the matrices of classes $\left(E, C_{p}\left(\Delta^{m}\right)\right), 1 \leq p \leq \infty$, where E denotes one of the sequence spaces $/_{\infty}$, all bounded complex sequences, and c, all convergent complex sequences.

Theorem 3.1: $\mathrm{A} \in\left(\mathrm{E}, \mathrm{C}_{\mathrm{p}}\left(\Delta^{\mathrm{m}}\right)\right), 1 \leq \mathrm{p}<\infty$, if and only if
i) $\quad \sum_{k=1}^{\infty}\left|a_{n k}\right|<\infty$, for each n
ii) $\quad \mathrm{B} \in(\mathrm{E}, / \mathrm{p})$
where $B=\left(b_{i k}\right)=\frac{1}{i}\left(\Delta^{m-1} a_{1 k}-\Delta^{m-1} a_{i+1, k}\right)$.
Proof: Sufficiency is trivial.
Necessity: Suppose that $A=\left(a_{n k}\right)$ maps E into $C_{p}\left(\Delta^{m}\right),(1 \leq p<\infty)$ then the series

$$
A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}
$$

is convergent for each n and for all $x \in E$ and $\left(A_{n}(x)\right) \in C_{p}\left(\Delta^{m}\right)$. Since $E^{\beta}=/ /$ for $E=/ \infty$ or c, then we get (i). Furthermore, since $\left(A_{n}(x)\right) \in C_{p}\left(\Delta^{m}\right)$,

$$
\left.\sum_{i=1}^{\infty}\left|\frac{1}{i} \sum_{n=1}^{i} \Delta^{m} A_{n}(x)\right|^{p}=\sum_{i=1}^{\infty} \right\rvert\, \frac{1}{i}\left(\Delta^{m-1} A_{1}(x)-\left.\Delta^{m-1} A_{i+1}(x)\right|^{p}<\infty\right.
$$

for all $\mathrm{x} \in \mathrm{E}$ anf for $1 \leq \mathrm{p}<\infty$. Whereas

$$
\frac{1}{i}\left(\Delta^{m-1} A_{1}(x)-\Delta^{m-1} A_{i+1}(x)\right)=\sum_{k=1}^{\infty} \frac{1}{i}\left(\Delta^{m-1} a_{2 k}-\Delta^{m-1} a_{i+1, k}\right) x_{k}
$$

for $x \in E$. If we now set
$B_{i}(x)=\sum_{k=1}^{\infty} \frac{1}{i}\left(\Delta^{m-l} a_{i k}-\Delta^{m-1} a_{i+1, k}\right) x_{k}$
Then $\left(B_{i}(x)\right) \in /_{p},(1 \leq p<\infty)$. So that $B \in(E, / p)$ where

$$
B=\left(b_{i k}\right)=\frac{1}{i}\left(A^{m-1} a_{1 k}-\Delta^{m-1} a_{i+1, k}\right)
$$

for all i, k. Hence the necessity is proved.
Theorem 3.2: $\mathrm{A} \in\left(\mathrm{E}, \mathrm{C}_{\infty}\left(\Delta^{\mathrm{m}}\right)\right)$, if and only if
i) $\quad \sum_{k=1}^{\infty}\left|a_{n k}\right|<\infty$, for each n
ii) $\quad \mathrm{B} \in\left(\mathrm{E}, /_{\infty}\right)$
where $B=\left(b_{i k}\right)=\frac{1}{i}\left(\Delta^{m-1} a_{1 k}-\Delta^{m-1} a_{i+1, k}\right)$.

Proof is trivial.
Corollary 3.3 ([5]): $A \in\left(E, C_{p}\right), 1 \leq p<\infty$, if and only if
i) $\quad \sum_{k=1}^{\infty}\left|a_{n k}\right|<\infty$, for each n
ii) $\quad \mathrm{B} \in(\mathrm{E}, / \mathrm{p})$
where $B=\left(b_{i k}\right)=\frac{1}{i}\left(a_{i k}-a_{i+1 . k}\right)$ for all i, k.

References

[I] El, M and Çolak, R : On Some Generalized Difference Sequence Spaces. Soochow Journal of Mathematics Yol. 21, No: 4, 377-386 (1995).
[2] Kamthan, P.K. and Gupta, M. : Sequence Spaces and Series, Marcel Dekker Inc. New' York, (1981)
[3] Ng, P. N: Matrix transformations of Cesáro sequence spaces of a non-absolute type. Tamkang J. Math. IO (1979), 215-221.
[4] Ng, P.N. and Lee, P.Y: Cesáro sequence spaces of non-absolute type. Comment. Math. 20 (1978), 429-433.
[5]. Orhan, C : Cesáro difference sequence spaces and related matrix transformations. Comm. Fac. Sci. Univ. Ankara Ser. A, 32 (1983), 55-63
[6] Shiue, J.S : On the Cesáro sequence spaces. Tamkang J. Math. (1970), 19-25

Mikail ET
Department of Mathematics, Fırat University, 23119-Elazığ TURKEY
e-mail : met@firat.edu.tr

