İstanbul Üniv. Fen Fak. Mat. Dergisi 55 - 56 (1996 - 1997), 221-229

ON SOME GENERALIZED CESÁRO DIFFERENCE SEQUENCE SPACES

Mikail ET

Abstract : In this paper, we have defined generalized Cesúro difference sequence spaces $C_p(\Delta^m)$, $1 \le p < \infty$, and $C_{\infty}(\Delta^m)$ and investigated some properties of these spaces and compute their Köthe-Toeplitz duals where $m \in N$. Further, we have determined the matrices of classes $(E, C_p(\Delta^m))$ and $(E, C_{\infty}(\Delta^m))$ where E denotes one of the sequence spaces l_{∞} and c namely the linear spaces of bounded and convergent sequences, respectively. This study generalizes some results of Ng and Lee [4] and Orhan [3] in special cases.

I.Introduction

Orhan [5] defined the Cesáro difference sequence spaces

$$C_{p} = \left\{ x = (x_{k}) : \sum_{n=1}^{\infty} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta x_{k} \right|^{p} < \infty, \quad 1 \le p < \infty \right\}$$

and

$$C_{\infty} = \left\{ x = (x_k) : \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta x_k \right| < \infty, \quad n \ge 1 \right\}$$

and showed that the inclusion

 $\operatorname{Ces}_{p} \subset \operatorname{X}_{p} \subset \operatorname{C}_{p}$

is strict for $1 \le p < \infty$, where $\Delta x = (x_k - x_{k+1}), (k = 1, 2, ...)$ and Ces_p and X_p are sequence spaces defined by

$$Ces_{p} = \left\{ x = (x_{k}) : \left\| x \right\|_{p_{1}} = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \left| x_{k} \right| \right)^{p} \right)^{\frac{1}{p}} < \infty \quad , 1 \le p < \infty \right\}$$
$$X_{p} = \left\{ x = (x_{k}) : \left\| x \right\|_{p2} = \left(\sum_{n=1}^{\infty} \left| \frac{1}{n} \sum_{k=1}^{n} x_{k} \right|^{p} \right)^{\frac{1}{p}} < \infty \quad , 1 \le p < \infty \right\}$$

respectively ([6],[4]). Further, the inclusion $/_{p} \subset \operatorname{Ces}_{p} \subset X_{p} \subset C_{p}$ is also strict for 1 , where

$$\label{eq:product} \textit{/}_{p} = \left\{ x = (x_{k}) : \sum_{k=l}^{\infty} \left| x_{k} \right|^{p} < \infty, \ 1 \leq p < \infty \right\} \ .$$

221

The matrix transformations on Cesáro sequence spaces of a non-absolute type are given in [3]. Et and Çolak [1] defined the sequence spaces

$$c(\Delta^{m}) = \left\{ x = (x_{k}) : \Delta^{m} x \in c \right\}$$
$$/_{\infty}(\Delta^{m}) = \left\{ x = (x_{k}) : \Delta^{m} x \in /_{\infty} \right\}$$

and showed that these are Banach spaces with norm

$$\left\| \mathbf{x} \right\|_{\Delta} = \sum_{i=1}^{m} \left| \mathbf{x}_{i} \right| + \left\| \Delta^{m} \mathbf{x}_{k} \right\|_{\infty}$$

Now we define

$$C_{p}(\Delta^{m}) = \left\{ x = (x_{k}) : \sum_{n=1}^{\infty} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k} \right|^{p} < \infty, \quad 1 \le p < \infty \right\}$$

and

$$C_{\infty}(\Delta^{m}) = \left\{ x = (x_{k}) : \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k} \right|^{p} < \infty, \quad n \ge 1 \right\}$$

where $m \in N = \{1.2...\}$, the set of positive integers, $\Delta^0 x = (x_k), \Delta x = (x_k - x_{k+l})$, $\Delta^m x = (\Delta^m x_k) = (\Delta^{m-i} x_k - \Delta^{m-i} x_{k+1})$ and so that

$$\Delta^{\mathsf{m}} \mathbf{x}_{k} = \sum_{v=0}^{\mathsf{m}} (-1)^{v} \binom{\mathsf{m}}{\mathsf{v}} \mathbf{x}_{k+v}$$

It is trivial that $\operatorname{C}_p(\Delta^m)$ and $\operatorname{C}_{\infty}(\Delta^m)$ are linear space.

Throughout the paper we write \lim_{n} for $n \rightarrow \infty$

lim

Theorem 1.1: $C_p(\Delta^m)$ is a Banach space for $1 \le p < \infty$ normed by

$$\|\mathbf{x}\|_{p} = \sum_{i=1}^{m} |\mathbf{x}_{i}| + \left(\sum_{n=1}^{\infty} \left|\frac{1}{n}\sum_{k=1}^{n} \Delta^{m} \mathbf{x}_{k}\right|^{p}\right)^{\frac{1}{p}}$$
(1)

and $\operatorname{C}_{\infty}(\Delta^m)$ is a Banach space normed by

$$\|\mathbf{x}\|_{\infty} = \sum_{i=1}^{m} |\mathbf{x}_{i}| + \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m} \mathbf{x}_{k} \right|$$
(2)

Proof. It is a routine verification that $C_{\infty}(\Delta^m)$ is a normed space normed by (2). To show that $C_{\infty}(\Delta^m)$ is complete, let (x^s) be a Cauchy sequence in $C_{\infty}(\Delta^m)$, where $x^s = (x_1^s) = (x_1^s, x_2^s, \dots) \in C_{\infty}(\Delta^m)$ for each $s \in \mathbb{N}$. Then

$$\left\|\mathbf{x}^{s}-\mathbf{x}^{t}\right\|_{\infty}=\sum_{i=1}^{m}\left|\mathbf{x}_{i}^{s}-\mathbf{x}_{i}^{t}\right|+\sup_{\alpha}\left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m}(\mathbf{x}_{k}^{s}-\mathbf{x}_{k}^{t})\right|\rightarrow0$$

가시키지만 하는 것 같 한 것

as s, $t \rightarrow \infty$. Hence we obtain

$$\left|\mathbf{x}_{k}^{s}-\mathbf{x}_{k}^{1}\right|\rightarrow0$$

as s, $t \to \infty$, for each $k \in N$. Therefore $(x_k^s) = (x_k^1, x_k^2, ...)$ is a Cauchy sequence in C, the set of complex numbers. Since C is complete, it is convergent.

 $\lim_{s} x_{k}^{s} = x_{k}$

say, for each $k \in \mathbb{N}$. Since (x^s) is a Cauchy sequence, for each $\varepsilon > 0$, there exists $\mathbb{N} = \mathbb{N}(\varepsilon)$ such that $||x^s - x^t||_{\infty} < \varepsilon$ for all $s, t \ge \mathbb{N}$. Hence

$$\sum_{i=1}^{m} \left| x_{i}^{s} - x_{i}^{t} \right| \leq \varepsilon \quad \text{and} \quad \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m} \left(x_{k}^{s} - x_{k}^{t} \right) \right| \leq \varepsilon$$

for all $k \in N$ and for all $s, t \ge N$. So we have

$$\lim_{t} \sum_{i=1}^{m} \left| \mathbf{x}_{i}^{s} - \mathbf{x}_{i}^{t} \right| = \sum_{i=1}^{m} \left| \mathbf{x}_{i}^{s} - \mathbf{x}_{i} \right| \le \varepsilon$$

and

$$\lim_{t} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m} \left(x_{k}^{s} - x_{k}^{t} \right) \right| = \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m} \left(x_{k}^{s} - x_{k}^{t} \right) \right| \le \varepsilon$$

for all $s \ge N$. This implies that $\|x^s - x\|_{\infty} < 2\varepsilon$ for all $s \ge N$, that is, $x^s \to x$ as $s \to \infty$ where

x≈(x_k).Since

$$\begin{aligned} &\left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m}x_{k}\right| \approx \left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m}\left(x_{k}+x_{k}^{N}-x_{k}^{N}\right)\right| \\ &\leq \left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m}x_{k}^{N}\right| + \left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m}\left(x_{k}^{N}-x_{k}^{N}\right)\right| \\ &\leq \left\|x^{N}-x\right\|_{\infty} + \left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m}x_{k}^{N}\right| < \infty \end{aligned}$$

we obtain $x \in C_{\infty}(\Delta^m)$. Therefore $C_{\infty}(\Delta^m)$ is a Banach space. In the same way it can be shown that $C_p(\Delta^m)$ is a Banach space with norm (1).

223

▼ IBerronateerenaareer

Furthermore $x \in C_p(\Delta^m)$ if and only if $\|x\|_p < \infty$, $1 \le p \le \infty$. Since $C_p(\Delta^m)$ $(1 \le p \le \infty)$ is

a Banach space with continuous coordinates, that is, $\|\mathbf{x}^s - \mathbf{x}\|_p \to 0$ implies $|\mathbf{x}^s - \mathbf{x}| \to 0$ for each $k \in \mathbb{N}$, as $s \to \infty$, it is a BK-space.

If we take m=1 and m=0 in Theorem 1.1 we have the following results, respectively.

Corollary 1.2 ([5]): The space C_p $(1 \le p \le \infty)$ is a Banach space.

Corollary 1.3 ([4]): The space X_p ($I \le p \le \infty$) is a Banach space.

Now let us define the operator

s: $C_p(\Delta^m) \rightarrow C_p(\Delta^m), x \rightarrow sx = (0, 0, \dots, x_{m+1}, x_{m+2}, \dots)$

It is clear that s is a bouded linear operator on $C_p(\Delta^m)$. Furthermore the set

$$s(C_p(\Delta^m)) = sC_p(\Delta^m) = \{x = (x_k) : x \in C_p(\Delta^m), x_1 = x_2 = ... = x_m = 0\}$$

is a subspace of $\, C_p^{} (\Delta^m)\,$, ($\, 1 \leq p \leq \infty$).

Now we give some inclusion relations between these sequence spaces.

Theorem 1.4: If $1 \le p \le q$, then $C_p(\Delta^m) \subset C_q(\Delta^m)$

Proof: The inequality

$$(\sum_{k=1}^{n} \left| a_{k} \right|^{q})^{\frac{1}{q}} \leq (\sum_{k=1}^{n} \left| a_{k} \right|^{p})^{\frac{1}{p}}, \quad (0$$

[5] gives the proof.

Theorem 1.5: The inclusion $C_p(\Delta^{m-1}) \subset C_p(\Delta^m)$, $1 \le p \le \infty$, is strict.

Proof.: Let $x = (x_k) \in C_p(\Delta^{m-1})$, $1 \le p \le \infty$. Then

$$\left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m}\mathbf{x}_{k}\right| \leq \left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m-1}\mathbf{x}_{k}\right| + \left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m-1}\mathbf{x}_{k+1}\right|$$

It is known that, for $1 \le p < \infty$,

$$\left|a+b\right|^{p} \leq 2^{p}\left(\left|a\right|^{p}+\left|b\right|^{p}\right)$$

Hence, for $1 \le p < \infty$,

$$\frac{\left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m}x_{k}\right|^{p} \leq M\left\{\left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m-1}x_{k}\right|^{p} + \left|\frac{1}{n}\sum_{k=1}^{n}\Delta^{m-1}x_{k+1}\right|^{p}\right\}$$

where M=2^p. Then , for each positive integer r, we get

$$\sum_{n=1}^{r} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k} \right|^{p} \leq M \Biggl\{ \sum_{n=1}^{r} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} x_{k} \right|^{p} + \sum_{n=1}^{r} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} x_{k+1} \right|^{p} \Biggr\}$$

Now, as $r \rightarrow \infty$

$$\sum_{n=1}^{\infty} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m} \mathbf{x}_{k} \right|^{p} \leq \mathbf{M} \left\{ \sum_{n=1}^{\infty} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} \mathbf{x}_{k} \right|^{p} + \sum_{n=1}^{\infty} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m-1} \mathbf{x}_{k+1} \right|^{p} \right\} < \infty$$

Thus $C_p(\Delta^{m-1}) \subset C_p(\Delta^m)$ $(1 \le p < \infty)$. The inclusion is strict since the sequence $x = (k^{m-1})$, for example, belongs to $C_p(\Delta^m)$, but does not belong to $C_p(\Delta^{m-1})$ for $1 \le p < \infty$. Similarly, it can be easily shown that $C_{\infty}(\Delta^{m-1}) \subset C_{\infty}(\Delta^m)$. To see that $C_{\infty}(\Delta^{m-1}) \ne C_{\infty}(\Delta^m)$, we define the sequence (x_k) by $x_k = k^m$, (k=1,2,...). Then (x_k) is a member of $C_{\infty}(\Delta^m)$, but not a member of $C_{\infty}(\Delta^{m-1})$. Now $c(\Delta^m) \subset /_{\infty}(\Delta^m) \subset C_{\infty}(\Delta^m)$ and the inclusion is strict since the sequence (x_k) belongs to $C_{\infty}(\Delta^m)$, but does not belong to $/_{\infty}(\Delta^m)$, where

n provinsi seriese receptor en la provinsi en

$$\Delta^{m} x_{k} = \begin{cases} \sqrt{k} , & k = n^{2} \\ \\ 0 , & k \neq n^{2} \end{cases}, \quad n = 1, 2, ...$$

Note that $C_p(\Delta^m)$ and $c(\Delta^m)$, overlap but neither one contains the other. Actually the sequence (x_k) by $x_k = k^m$, is an element of $c(\Delta^m)$, but is not an element of $C_p(\Delta^m)$. Moreover the sequence $(x_k)=((-1)^k)$, (k=1,2,...) belongs to $C_p(\Delta^m)$, but does not belong to $c(\Delta^m)$.

Remark: $C_p(\Delta^m)$ $(1 \le p \le \infty)$ need not to be sequence algebra. We give a counter example ($m \ge 2$). Let x=(k), $y=(k^{m-1})$. Clearly $x, y \in C_p(\Delta^m)$ $(1 \le p < \infty)$, $x \cdot y \notin C_p(\Delta^m)$. If we define

$$O_{p}(\Delta^{m}) = \left\{ x = (x_{k}) : \sum_{n=l}^{\infty} \left(\frac{l}{n} \sum_{k=l}^{n} \left| \Delta^{m} x_{k} \right| \right)^{p} < \infty, \quad l \le p < \infty \right\}$$
$$O_{\infty}(\Delta^{m}) = \left\{ x = (x_{k}) : \sup_{n} \frac{1}{n} \sum_{k=l}^{n} \left| \Delta^{m} x_{k} \right| < \infty, \quad n \ge l \right\}$$

then these spaces are normed spaces under the following norms respectively.

$$\left\| x \right\|_{p_{3}} = \sum_{i=1}^{m} \left| x_{i} \right| + \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \left| \Delta^{m} x_{k} \right| \right)^{p} \right)^{\frac{1}{p}}, \quad 1 \le p < \infty$$

and

$$\|\mathbf{x}\|_{ost} = \sum_{i=1}^{m} |\mathbf{x}_i| + \sup_{\mathbf{a}} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^m \mathbf{x}_k| \right)$$

Clearly $O_p(\Delta^m) \subset C_p(\Delta^m)$, $1 \le p \le \infty$. On the other hand, it is easily seen that $O_p(\Delta^{m-1}) \subset O_p(\Delta^m)$, $1 \le p \le \infty$.

II.Dual Spaces

In this section we give Köthe-Toeplitz duals of $C_{\infty}(\Delta^m)$ and $O_{\infty}(\Delta^m)$

Lemma 2.1: $x \in s C_{\infty}(\Delta^m)$ implies $\sup_k k^{-1} |\Delta^{m-1} x_k| < \infty$.

Proof is trivial.

Lemma 2.2: ([1]).
$$\sup_{k} k^{-1} \left| \Delta^{m-1} x_{k} \right| < \infty$$
 implies $\sup_{k} k^{-m} \left| x_{k} \right| < \infty$

Corollary 2.3: $x \in s C_{\infty}(\Delta^m)$ implies $\sup_k k^{-m} |x_k| < \infty$.

Definition 2.4 : ([2]) Let X be a sequence space and define

$$X^{\alpha} = \left\{ a = (a_k) : \sum_{k=1}^{\infty} |a_k x_k| < \infty \quad \text{for all} \quad x \in X \right\},$$

Then X^{α} is called the α - dual spaces of X. X^{α} is also called Köthe-Toeplitz dual space. It is easy to show that $\emptyset \subset X^{\alpha}$. If $X \subset Y$, then $Y^{\alpha} \subset X^{\alpha}$. It is clear that $X \subset X^{\alpha\alpha}$. If $X = X^{\alpha\alpha}$ then X is called a α -space. In particular, an α -space is called a Köthe space or a perfect sequence space.

Lemma 2.5:
$$\left[sC_{\infty}(\Delta^{m}) \right]^{\alpha} = \left\{ a = (a_{k}) : \sum_{k=1}^{\infty} k^{m} |a_{k}| < \infty \right\}.$$

Proof: Let $U_{1} = \left\{ a = (a_{k}) : \sum_{k=1}^{\infty} k^{m} |a_{k}| < \infty \right\}.$ If $a \in U_{1}$, then
 $\sum_{k=1}^{\infty} |a_{k}x_{k}| = \sum_{k=1}^{\infty} k^{m} |a_{k}| (k^{-m} |x_{k}|) < \infty$

for each $x \in sC_{\infty}(\Delta^m)$, by Corollary 2.3. Hence $a \in [sC_{\infty}(\Delta^m)]^{\alpha}$

Let
$$\mathbf{a} \in \left[sC_{\infty}(\Delta^m) \right]^{\alpha}$$
. Then $\sum_{k=1}^{\infty} \left| a_k x_k \right| < \infty$ for each $\mathbf{a} \in sC_{\infty}(\Delta^m)$.

For the sequence $x=(x_k)$, defined by

$$\kappa_{k} = \begin{cases} 0, & k \le m \\ k^{m}, & k > m \end{cases}$$

$$(2.1)$$

we may write

$$\sum_{k=1}^{\infty} \left| k^{m} a_{k} \right| = \sum_{k=1}^{m} \left| k^{m} a_{k} \right| + \sum_{k=1}^{\infty} \left| k^{m} a_{k} \right| < \infty$$

This implies $a \in U_1$.

Theorem 2.6.
$$\left[sC_{\infty}(\Delta^{m}) \right]^{\alpha} = \left[C_{\infty}(\Delta^{m}) \right]^{\alpha}$$

Proof. Since $sC_{\infty}(\Delta^{m}) \subset C_{\infty}(\Delta^{m})$, then $\left[C_{\infty}(\Delta^{m}) \right]^{\alpha} \subset \left[sC_{\infty}(\Delta^{m}) \right]^{\alpha}$

Let $a \in \left[sC_{\infty}(\Delta^m)\right]^{\alpha}$ and $x \in C_{\infty}(\Delta^m)$. If we take the sequence $x=(x_k)$,

$$\mathbf{x}_{k} = \begin{cases} \mathbf{x}_{k}, & \mathbf{k} \le \mathbf{m} \\ \mathbf{x}_{k}', & \mathbf{k} > \mathbf{m} \end{cases}$$

where $x'=(x'_k) \in s C_{\infty}(\Delta^m)$. Then we may write

$$\sum_{k=l}^{\infty} \left| a_k \mathbf{x}_k \right| = \sum_{k=l}^{m} \left| a_k \mathbf{x}_k \right| + \sum_{k=l}^{\infty} \left| a_k \mathbf{x}'_k \right| < \infty$$

This implies that $a \in \left[C_{\infty}(\Delta^m)\right]^{\alpha}$.

Theorem 2.7:
$$\left[O_{\infty}(\Delta^{m})\right]^{\alpha} = \left[C_{\infty}(\Delta^{m})\right]^{\alpha}$$
.

Proof is trivial.

Theorem 2.8: For
$$X=O_{\infty}(\Delta^m)$$
 or $C_{\infty}(\Delta^m)$

$$\left[\mathbf{X}\right]^{\alpha\alpha} = \left\{ \mathbf{a} = (\mathbf{a}_k) : \sup_k k^{-m} |\mathbf{a}_k| < \infty \right\}$$

Proof is trivial.

Corollary 2.9 : X is not perfect.

III.Matrix Transformations

Let $A = (a_{nk})$ be an infinite matrix of complex numbers a_{nk} (n,k =1,2, ...) and X,Y be two subsets of the space of complex sequences we write formally

$$A_{n}(x) = \sum_{k=1}^{\infty} a_{nk} x_{k} \qquad (n = 1, 2, ...),$$
(3)

and say that the matrix $A = (a_{nk})$ defines a matrix transformations from X into Y and it is denoted by writing $A \in (X,Y)$. If each series in (3) converges and $((A_n(x)) \in Y$ whenever

227

 $(x_k) \in X$. Furthermore, let (X, Y) be the set of all infinite matrices $A = (a_{nk})$ which map the sequence space X into the sequence space Y. We now determine the matrices of classes $(E, C_p(\Delta^m)), 1 \le p \le \infty$, where E denotes one of the sequence spaces $/_{\infty}$, all bounded complex sequences, and c, all convergent complex sequences.

Theorem 3.1: $A \in (E, C_p(\Delta^m))$, $1 \le p \le \infty$, if and only if

i)
$$\sum_{k=1}^{\infty} |a_{nk}| < \infty$$
, for each n

ii) $B \in (E,/_p)$

where B = (b_{ik}) = $\frac{1}{i} (\Delta^{m-1} a_{1k} - \Delta^{m-1} a_{i+1,k})$.

Proof : Sufficiency is trivial.

Necessity: Suppose that $A = (a_{nk})$ maps E into $C_p(\Delta^m)$, $(1 \le p < \infty)$ then the series $A_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k$

is convergent for each n and for all $x \in E$ and $(A_n(x)) \in C_p(\Delta^m)$. Since $E^{\beta} = /_I$ for $E = /_{\infty}$ or c, then we get (i). Furthermore, since $(A_n(x)) \in C_p(\Delta^m)$,

$$\sum_{i=1}^{\infty} \left| \frac{1}{i} \sum_{n=1}^{i} \Delta^{m} A_{n}(x) \right|^{p} = \sum_{i=1}^{\infty} \left| \frac{1}{i} (\Delta^{m-1} A_{1}(x) - \Delta^{m-1} A_{i+1}(x) \right|^{p} < \infty$$

for all $x \in E$ and for $1 \le p \le \infty$. Whereas

$$\frac{1}{i}(\Delta^{m-1}A_1(x) - \Delta^{m-1}A_{i+1}(x)) = \sum_{k=1}^{\infty} \frac{1}{i}(\Delta^{m-1}a_{1k} - \Delta^{m-1}a_{i+1,k})x_k$$

for $x \in E$. If we now set

$$B_{i}(x) = \sum_{k=1}^{\infty} \frac{1}{i} (\Delta^{m-1} a_{1k} - \Delta^{m-1} a_{i+1,k}) x_{1}$$

Then $(B_i(x)) \in /_p$, $(1 \le p \le \infty)$. So that $B \in (E,/_p)$ where

$$B = (b_{ik}) = \frac{1}{i} (A^{m-1}a_{1k} - \Delta^{m-1}a_{i+1,k})$$

for all i, k. Hence the necessity is proved.

Theorem 3.2: $A \in (E, C_{\infty}(\Delta^m))$, if and only if

i)
$$\sum_{k=1}^{\infty} |a_{nk}| < \infty , \text{ for each } n$$

ii)
$$B \in (E, 1/\infty)$$

where
$$B = (b_{ik}) = \frac{1}{i} (\Delta^{m-1} a_{1k} - \Delta^{m-1} a_{i+1,k}).$$

Proof is trivial.

Corollary 3.3 ([5]) : $A \in (E, C_p)$, $1 \le p < \infty$, if and only if

i)
$$\sum_{k=1}^{\infty} |a_{nk}| < \infty$$
, for each n

ii)
$$B \in (E, /_p)$$

where $B = (b_{ik}) = \frac{1}{i}(a_{ik} - a_{i+1,k})$ for all i,k.

References

94 - en Brochternen beiden sonn bei

[1] Et, M and Çolak, R : On Some Generalized Difference Sequence Spaces. Soochow Journal of Mathematics Vol. 21, No: 4, 377-386 (1995).

[2] Kamthan, P.K. and Gupta, M. : Sequence Spaces and Series, Marcel Dekker Inc. New York, (1981)

[3] Ng, P. N : Matrix transformations of Cesáro sequence spaces of a non-absolute type. Tamkang J. Math. 10 (1979), 215-221.

[4] Ng, P.N. and Lee, P.Y: Cesáro sequence spaces of non-absolute type. Comment. Math. 20 (1978), 429-433.

[5], Orhan, C : Cesáro difference sequence spaces and related matrix transformations. Comm. Fac. Sci. Univ. Ankara Ser. A_1 32 (1983), 55-63

[6] Shiue, J.S : On the Cesáro sequence spaces. Tamkang J. Math. (1970), 19-25

Mikail ET

Department of Mathematics, Firat University, 23119-Elazig TURKEY e-mail : <u>met@firat.edu.tr</u>