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0 A ; SOME GENERALIZED CESARO DIFFERENCE SEQUENCE SPACES 

Mikail ET 

Abstract : In this paper, we have defined generalized Cesàro difference sequence spaces C p ( A m ) , 

1 < p < co, and Cm(Am) and investigated some properties of these spaces and compute their Kothe-Toeplitz 

duals where m e N. Further, we have determined the matrices of classes (E, C p (A m )) and (E, C K ( A m )) 

where E denotes one of the sequence spaces /„ and c namely the linear spaces of bounded and convergent 

sequences, respectively. This study generalizes some results ofNg and Lee [4] and Orhan [5] in special cases. 

l.Introduction 

Orhan [5] defined the Cesâro difference sequence spaces 

p 1 

C P H x = ( x k ) : £ 
i n 

A x k 

and 

C „ = | x = ( x f c ) : s u p n 

and showed that the inclusion 

C e s p c X p c C p 

i n 

n M 

< co, 1 < p < co 

< co. n > 1 

is strict for l < p < c o , where Ax = ( x k - x k + ! ) , ( k = 1,2,...) and Ces p and X p are sequence 

spaces defined by 

Ces p = x = ( x k ) < co , 1 < p < oo 

1 
n= l 

V J 

<co , 1 < p <co 

respectively ([6],[4]}.Further,the inclusion / p c C e s p c X p c C p is also strict for l < p < co, where 

/ p = j x = ( x k ) : £ | x k | p < o o , i < p < c o l . 
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The matrix transformations on Cesâro sequence spaces o f a non-absolute type are 

given in [3] . Et and Çolak [1] defined the sequence spaces 

c ( A m ) = { x = ( x k ) : A m x e c } 

U A ' n H x = C x k ) : A ' n x e / o , } 

and showed that these are Banach spaces wi th norm 

H A = z h i + | | A m x k | [ 

N o w we define 

C p ( A ™ ) = x = ( x k ) ) : ] T 
n i . = i 

and 

C f f l ( A m ) = x = ( x k ) ) : s u p n 

1 " 

n k = , 

< C O , 1 < p < C O 

< co, n > 1 

where m e N = {1 .2 . . . } , the set o f positive integers, A°x = ( x k ) , Ax = ( x k - x k + i ) , 

A r a x = ( A m x k ) = ( A m - 1 x k - A , n - ] x k + l ) andsothat 

m 

A m x k = x c - i y 

I t is t r ivial that C ( A m ) and C m ( A m ) are linear space. 

Throughout the paper we write I i m n for 
l i m 

n —> co 

Theorem LI: C p ( A m ) is a Banach space for 1 < p < co normed by 

m «o i n 

• H , = Z N + Z ^ Z a - X J 
V 1 / 

and Cm(Am) is a Banach space normed by 

m i n I 

(1) 

(2) 
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Proof. It is a routine verification that C m ( A m ) is a normed space normed by (2). To 

show that C m ( A m ) is complete, let (x s ) be a Cauchy sequence in C^A"1), where 

k e = (xs

l)=(x],x\,- ) e C J A m ) f o r e a c h s e N . Then 

x l - x l = Z K , ~ x ! | + s u p« •0 

as s, t—» co , Hence we obtain 

as s, t —y co , for each k e N . Therefore ( x k ) = (x[, x k , . . . ) is a Cauchy sequence in C, the set o f 

complex numbers. Since C is complete, it is convergent. 

l i m s x s

k = x k 

say, for each k e N . Since (x s ) is a Cauchy sequence, for each e>0, there exists N=N(e) such 

that | | x s - x ' l l <s for all s , t>N. Hence 

Z k s - x ; | < f and ! £ A " < x j ; - x i ) 

for all k e N and for all s,t > N . So we have 

m m 

¡=1 i = i 

and 

l i m ±±A'»(xl-x[) i j A m ( x i - x k ) 

for all s > N . This implies that j jx s - x | < 2e for all s > N , that is, x s - » x as s- i - co where 

x=(Xk). Since 

t n 

< x N - x + 

n k = 1 

n k = l 

< C O 

we obtain x e C r o ( A m ) . Therefore C ( C ( A m ) i s a Banach space. In the same way it can be 

shown that C p ( A m ) is a Banach space w i t h norm (1). 
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Furthermore x e C p ( A m ) i f and only i f ||xj < co, 1 < p < co. Since C p ( A m ) (1 < p < » ) is 

a Banach space with continuous coordinates, that is, | |x s - x | -»-0 implies j x s - xj ->• 0 for 

e a c h k e N , as s —><» , it is a BK-space. 

I f we take m = l and m=0 in Theorem 1.1 we have the following results, respectively. 

Corollary 1.2 ([5]): The space C p (1 < p < co ) is a Banach space. 

Corollary 1.3 {[4]): The space X p ( I < p < co ) is a Banach space. 

N o w let us define the operator 

s : C p ( A m ) - > C p ( A m ) , x sx = (0 ,0 , . . . x m + l , x n i + 2 , . . . ) 

It is clear that s is a bouded linear operator on C p ( A m ) . Furthermore the set 

s ( C p ( A n , ) ) = s C p ( A ' " ) - { x = ( x t ) : x e C p ( A m ) , x , = x2 = ... = x m = 0} 

is a subspace o f C p ( A m ) , ( 1 < p < co ). 

N o w we give some inclusion relations between these sequence spaces. 

Theorem 1.4; I f 1 < p < q, then C p ( A m ) c C„-(A m ) 

Proof: The inequality 

( I X D ' * ( S K I p r , ( o < P < q ) 

k = l k=1 

[5] gives the proof. 

Theorem 1.5 : The inclusion C p ( A m " ' ) c C ( A m ) , 1 < p < co, is strict. 
Proof: Let x = ( x k ) e C D ( A m _ 1 ) , 1 < p < c o . Then 

1 n 

^ 2 > " x k 

1 n  

n k = i 

1 S A " - x u , 
n k= i 

It is known that, for 1 < p < co, 

|a + b | p < 2 p ( | a | p + | b | p ) 

Hence, for 1 < p < co, 

i n 

^ A » x k 

n k= ] 

< M ^ A " ' - x , n k = . 

i n 

^ S A - x . 
n k= l 

where M = 2 P . Then , for each positive integer r, we get 
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z 
Ï I = I 

Now, as r - » c o 

Z 

1 " 

¡1 tl 

1 " 
1 Z A " ' x l n 

M Z 

1 n 

» fc = f 

1 n 

Z 

n f™ 

1 ^ 
Za" < CO 

Thus C p ( A m ~ ' ) c C p ( A m ) (1 < p < co). The inclusion is strict since the sequence 

x = ( k m _ 1 ) , for example, belongs to C p ( A m ) , but does not belong to C ^ A " 1 - 1 ) f o r l < p < c o . 

Similarly, it can be easily shown that C œ ( A m " ' ) c C œ ( A m ) . To see that C ^ A ' ^ V C ^ A " 1 ) , 

we define the sequence ( x k ) by x k = k m , (k= l ,2 , . . . ) . Then ( x k ) is a member o f C ^ A " 1 ) , but not 

a m e m b e r o f Cm(Am~() . N o w c ( A m ) c / „ ( A m ) c C a ( A r o ) and the inclusion is strict since the 

sequence ( x k ) belongs to C r o ( A m ) , but does not belong to / „ ( A m ) , where 

Í V k , k = n 2 

A m x k = i , n = l , 2 , . . . 

i 0 , n 2 

Note that C p ( A n i ) a n d c ( A m ) , overlap but neither one contains the other. Actually the 

sequence ( x k ) by x k = k m , is an element o f c ( A m ) , but is not an element o f C p ( A m } , Moreover 

the sequence ( x k ) = ( ( - 0 k ) , (k=l,2,. . .> belongs to C p ( A m ) , but does not belong to c ( A m ) . 

Remark : C p ( A m ) (1 < p < co) need not to be sequence algebra. We give a counter 

example ( m > 2 ) . Let x=(k) , y = ( k m " ! ) . Clearly x ,ye C p ( A m ) (1 < p < co), x .ye? C p ( A m ) . 

I f we define 

O p ( A m ) = x - ( x k ) : ¿ í - £ | A m x k f ) <oo, l < p « o 

O i r ( A m ) = lx = ( x l ) : s u p n i y l A m x k | < c o , n > 11 

then these spaces are normed spaces under the fol lowing norms respectively. 

= Z W Z ~ Z K x , 
n = l V n k - I 

1 

, 1 < p <co 
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and 

Z 
in 

,-l + sup . i - Z | A M x t 

i) 

Clearly O p ( A m ) c C p ( A m ) , 1 < p < «>. On the other hand, it is easily seen that 

O p ( A m - ' ) c O p ( A m ) , l < p ^ . 

II. Dual Spaces 

In this section we give Kothe-Toeplitz duals o f Cm(Am) and O ^ A " 1 ) 

Lemma 2.1 ; x e s C ^ A " 1 ) implies SUp k k ' ^ A ^ X j - ^ c o . 

Proof is tr ivial . 

Lemma 2.2 : ([I]). sup k k _ 1 | A m - l X k [ <co implies SUpk k ~ " ' | x k | <co . 

Corollary 2.3 : x e s C r o ( A m ) implies sup k k ~ m j x k j < c o . 

Definition 2.4 : ([2]) Let X be a sequence space and define 

Then X ° is called the a- dual spaces o f X . X ° is also called Kothe-Toeplitz dual 

space. It is easy to show that 0 c X a . I f X c Y , then Y a c X a . It is clear that X c X o a . I f X - X a a 

then X is called a a-space. In particular, an ct-space is called a Kothe space or a perfect 

sequence space. 

Lemma 2.5: [sC„(Am)]° = i a = (a t ) : £ k m |ak | < oo 

Proof: Let U , =-^a = ( a k ) : X k m | a k | < c o l I f a e U | , t h e n 

Z|a k x k | = ik" ! |a k |Ck-m |x k |)<co 
k = l k = l 

for each x e s C J A " 1 ) , by Corollary 2.3. Hence as [sC^CA™)]" 

Let a e [ sC . ( A m )f . Then J |a k x k | < co for each a e s C „ ( A m ) . 

For the sequence x=(Xk), defined by 
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X,. = 

0, k < m 

k m , k > m 
(2.1) 

we may write 

i K = i k \ + d k \ < « > 
k = ] k = l ' b = l ' 

This implies a e U | . 

Theorem 2.6. [sC^ ( A m ) ] " - [c„ ( A m )f 

Proof Since s C ^ A 1 " ) c C ^ A " 1 ) , then [ c m ( A m j j * c [ s C a ) ( A m ) J \ 

Let ae [ s C 0 9 ( A m ) ] a and x e C ^ f A " 1 ) . I f we take the sequence x = ( x u ) , 

x k , k < m 

x k , k > m 

where x'=(xV) e S C w ( A m ) . Then we may write 

k=J k = l k = ! 

This implies that a e [c, ( A r a ) ] " . 

Theorem 2.7: [o^A™ )f = [ c f f i (A m ) f . 

Proof is t r iv ia l . 

Theorem 2.S : For X ^ O ^ A " 1 ) or C „ ( A m ) 

[ X ] n n = {a = ( a t ) : sup k k - m | a k | <°o} 

Proof is t r iv ia l . 

Corollary 2.9 : X is not perfect. 

IILMatrix Transformations 

Let A = ( a n k ) be an infinite matrix o f complex numbers a n k (n,k =1 ,2, ...) and X , Y be 

two subsets o f the space o f complex sequences we write formally 

A n ( x ) = E a n k x k ( n = l , 2 , . . . ) , (3) 

k = l 

and say that the matrix A = (a n k ) defines a matrix transformations from X into Y and i t is 

denoted by wr i t ing A e ( X , Y ) . I f each series in (3) converges and ( (A n (x ) ) e Y whenever 
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(XkJeX. Furthennore, let (X ,Y ) be the set o f ali infinite matrices A = (a n k ) which map the 

sequence space X into the sequence space Y. We now determine the matrices o f classes 

(E ,C p (A m ) ) , 1 < p < co, where E denotes one o f the sequence spaces /„„ all bounded complex 

sequences, and c, all convergent complex sequences. 

Theorem 3.1 ; A e { E , C p ( A m ) ) , 1 < p < co, i f and only i f 

0 Z | a n k | < 0 ° ' f ° r e a c h n 
k=l 

i i ) B e (E, / p ) 

w h e r e B = ( b i k ) = i ( A m - ' a l k - A m - , a i > u ) . 
i 

Proof: Sufficiency is tr ivial . 

Necessity: Suppose that A = (a [ l k) maps E into C p ( A m ) , (1 < p < co) then the series 
CO 

A n ( x ) = y > n k x k 

is convergent for each n and for all x e E and (A„(x ) )e C p ( A m ) . Since E p = / / for E=/«, or c, then 

we get ( i ) . Furthermore, since ( A n ( x ) ) e C p ( A m ) , 

1 n=l 
= 1 T ( A m - l A 1 ( x ) - A , B - , A i + l ( x ) < C O 

for all x e E anf for 1 < p < co. "Whereas 

T ( A m - ' A 1 ( x ) - A " , - | A ^ ( x ) ) = 2 j f ( A m - , a I k - A m - , a i + l i k ) x k 
= i 1 

for x e E. I f we now set 

B i ( x ) = ^ r ( A " | - ! a 1 k - A m - , a i + i ; t ) x k 

Then (B;(x)) e / p , (1 < p < co). So that B e (E,/ p ) where 

B ^ C b n i ) = i ( A ' " - , a l k - A " 1 - | a i + u ) 
1 

for all i , k. Hence the necessity is proved. 

Theorem 3.2 : A e (E ,C«(A m ) ) , i f and only i f 

0 X | a n k | < 0 ° ' for each n 
k=l 

i i ) B e {E,L) 

where B = ( b i k ) = I ( A i n - , a l k - A n , - , a i + u ) . 
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Proof is t r ivial . 

Corollary 3.3 ([5]) : A e ( E , C p ) , I < p < co, i f and only i f 

CO 

•) Z | a n k J < c o ' for each n 
k=l 

Ü) B e ( E , / p ) 

where B = ( b i k ) = - ( a l k - a i + l k ) for a l l i ,k. 
i 
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