Research Article
BibTex RIS Cite

The Control of Pseudomonas syringae pv. tomato, Causing Bacterial Spot Disease in Tomato, by Different Plant Essential Oils

Year 2024, Volume: 11 Issue: 2, 381 - 388, 30.04.2024
https://doi.org/10.30910/turkjans.1427806

Abstract

Seed-borne Pseudomonas syringae pv. tomato causes bacterial spot disease in tomatoes and causes serious economic losses by affecting yield and quality in tomato cultivation. In this study, the effect of essential oils obtained by distillation from Mentha longifolia, Thymus migricus, Salvia hydrangea and Artemisia absinthium and Achillea arabica plants on the control of P. syringae pv. tomato was investigated. The antibacterial activities of plant essential oils against P. syringae pv. tomato were tested by the in vitro agar disk diffusion method. Additionally, minimum inhibitory concentrations at which plant essential oils inhibit the growth of Pst 76 were determined. It was determined that all oils created an inhibition zone between 4.0-30.0 mm against the disease agent and the highest activity was obtained from application with the oil of the T. migricus plant. It was determined that the oils obtained from T. migricus and M. longifolia plants had higher antimicrobial activity than methylmycin in the control group. In line with the results obtained, disease control with essential oils has been seen as an alternative method that can be included in integrated control programs.

References

  • Akgül, A. 1993. Baharat bilimi ve teknolojisi. Gıda Teknolojisi Derneği Yayınları, 15, 111-113.
  • Balestra, G.M., Heydari, A., Ceccarelli, D., Ovidi, E. and Quattrucci, A. 2009. Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Protection, 28, 807-811. doi.org/10.1016/j.cropro.2009.06.004
  • Başer, H.C.K., Demirci, B., Kirimer, N., Satil, F. and Tümen, G. 2002. The essential oils of Thymus migricus and T. fedtschenkoi var. handelii from Turkey. Flavour and Fragrance Journal, 17(1), 41-45. doi.org/10.1002/ffj.1036
  • Bezić, N., Skočibušić, M., Dunkić, V. and Radonić, A. 2003. Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological. Evaluation of Natural Product Derivatives. 17(9), 1037-1040. doi.org/10.1002/ptr.1290
  • Bozkurt, İ.A., Soylu, S., Kara, M. and Soylu, E.M. 2020. Chemical composition and antibacterial activity of essential oils isolated from medicinal plants against gall forming plant pathogenic bacterial disease agents. KSU Journal of Agricalture and Nature, 23(6), 1474-1482. doi.org/10.18016/ksutarimdoga.vi.723544
  • Chacón-Hernández, J., Arredondo-Valdés, R., Reyes-Zepeda, F., Hernández-Castillo, F.D., Anguiano-Cabello, J.C., Heinz-Castro, R.T. and Mora-Ravelo, S.G. 2020. In vitro antibacterial activity of Magnolia tamaulipana against tomato phytopathogenic bacteria. Plant Protection Science 56, 268-274.
  • Churklam, W., Chaturongakul, S., Ngamwongsatit, B. and Aunpad, R. 2020. The Mechanisms of action of carvacrol and its synergism with nisin against listeria monocytogenes on Sliced Bologna Sausage. Food Control 108, 106864. doi.org/10.1016/j.foodcont.2019.106864
  • Çopuroğlu, Ö. 2013. Antimicrobial Activities of Some Endemic Plant Species from Nigde Region. Master's Thesis, Niğde University.
  • da Silva, E.O.D., Samuel, J.M. and Eduardo, A. 2014. Essential oils for the control of bacterial speck in tomato crop. African Journal of Agricultural Research 9(34), 2624-2629. doi.org/10.5897/AJAR2014.8918
  • da Silva, R.S., de Oliveira, M.M.G., de Melo, J.O., Blank, A.F., Corrêa, C.B., Scher, R. and Fernandes, R.P.M. 2019. Antimicrobial activity of Lippia gracilis essential oils on the plant pathogen Xanthomonas campestris pv. campestris and their effect on membrane integrity. Pesticide biochemistry and physiology 160, 40-48. doi.org/10.1016/j.pestbp.2019.06.014
  • Dönmez, M.F., Şahin, B.U., Bozhüyük, A.U., 2020. Satureja Türlerinden Elde Edilen Uçucu Yağ ve Ekstrelerinin Fasulyede Bakteriyel Patojenlere Karşı Antibakteriyel Etkisi. Journal of Agriculture 3(2), 57-70
  • Dorman, H.J.D. and Deans, S.G. 2000. Antimicrobial agents from plants, antibacterial activity of plant volatile oils. Journal of Applied Microbiology 88(2), 308–316. doi.org/10.1046/j.1365-2672.2000.00969.x
  • Ebrahimi, M. and Ranjbar, S. 2016. Essential oils of Salvia hydrangea DC. ex Benth. from Kiasar-Hezarjarib regions, Iran-impact of environmental factors as quality determinants. Journal of Medicinal plants and By-product 5(2), 159-167. doi.org/10.22092/jmpb.2016.109392
  • Eriş, M. 2006. Determination of antibacterial potentials of essential oils and main constituents against bacterial disease agents of tomato. Master's Thesis, Mustafa Kemal University, Hatay.
  • Erler, F. 2000. Investigations on the using potential of essential oil components the control of insects and mites. Dissertation, Akdeniz University, Türkiye.
  • Farimaz, A., Horuz, S. and Aysan, Y. 2014. Çeşitli bitki aktivatörleri ve ticari gübrelerin karpuz bakteriyel meyve lekesi hastalığına etkisi. Türkiye Biyolojik Mücadele Dergisi 5(1),31-38.
  • Figueiredo, A.C., Barroso, J.G., Pedro, L.G. and Scheffer, J.J. 2008. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance Journal 23(4), 213-226. doi.org/10.1002/ffj.1875
  • Ghavam, M., Manca, M.L., Manconi, M. and Bacchetta, G. 2020. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Scientific Reports 10(1), 1-10. doi.org/10.1038/s41598-020-73193-y
  • Granata, T., Alfa, M., Giuffrida, D., Rando, R. and Dugo, G. 2011. Contamination of the food products by lead, cadmium and copper in the area at risk of Gela (Sicily). Epidemiologia e Prevenzione 35(2), 94-100.
  • Kachur, K. and Suntres, Z. 2019. The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition 60(18), 3042-3053. doi.org/10.1080/10408398.2019.1675585
  • Kaya, K., Sertkaya, E., Üremiş, İ. and Soylu, S. 2018. Determination of chemical composition and fumigant ınsecticidal activities of essential oils of some medicinal plants against the adults of cowpea weevil, Callosobruchus maculatus. KSU Journal of Agricalture and Nature 21(5), 708-714. doi.org/10.18016/ksudobil.386176
  • Kokoskova, B., Pavela, R. and Pouvova, D. 2011. Effectiveness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants. Journal of Plant Pathology 93(1), 133-139. doi.org/10.1400/169633
  • Liu, Q.C., Qiao, K. and Zhang, S.A. 2019. Potential of a small molecule carvacrol in management of vegetable diseases. Molecules 24(10), 1932. doi.org/10.3390/molecules24101932
  • Loziene, K. and Venskutonis, P.R. 2005. Influence of environmental and genetic factors on the stability of essential oil composition of Thymus pulegioides. Biochemical Systematics and Ecology 33(5), 517-525.
  • Lucas, G.C., Alves, E., Pereira, R.B., Perina, F.J. and de Souza, R.M. 2012. Antibacterial activity of essential oils on Xanthomonas vesicatoria and control of bacterial spot in tomato. Pesquisa Agropecuária Brasileira 47(39), 351-359. doi.org/10.1590/S0100-204X2012000300006
  • Mamadalieva, N.Z., Akramov, D.K., Ovidi, E., Tiezzi, A., Nahar, L., Azimova, S.S. and Sarker, S.D. 2017. Aromatic medicinal plants of the Lamiaceae family from Uzbekistan: Ethnopharmacology, essential oils composition, and biological activities. Medicines (Basel) 4(1), 8. doi.org/10.3390/medicines4010008
  • Mengulluoglu, M. and Soylu, S. 2012. Antibacterial activities of essential oils extracted from medicinal plants against seedborne bacterial disease agent, Acidovorax avenae subsp. citrulli. Research on Crops 13(2), 641-646.
  • McCarter, S.M., Jones, J.B., Gitaitis, R.D. and Smitley, D.R. 1983. Survival of Pseudomonas syringae pv. tomato in association with tomato seed, soil, host tissue and epiphytic weed hosts in Georgia. Phytopathology 73(10), 1393-1398.
  • Morteza-Semnani, K. and Akbarzadeh, M. 2005. Essential oils composition of Iranian Artemisia absinthium L. and Artemisia scoparia Waldst. et Kit. Journal of Essential oil Research 17(3), 321-322. doi.org/10.1080/10412905.2005.9698918
  • Nazzaro, F., Fratianni, F., Coppola, R. and Feo, V.D. 2017. Essential oils and antifungal activity. Pharmaceuticals 1,: 86.
  • Nguyen, H.T. and Németh, Z.É. 2016. Sources of variability of wormwood (Artemisia absinthium L.) essential oil. Journal Of Applied Research on Medicinal and Aromatic Plants 3(4), 143-150. doi.org/10.1016/j.jarmap.2016.07.005
  • Radaelli, M., Silva, B.P.D., Weidlich, L., Hoehne, L., Flach, A., Costa, L.A.M.A.D. and Ethur, E.M. 2016. Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens. Brazilian Journal Of Microbiology 47, 424-430. doi.org/10.1016/j.bjm.2015.10.001
  • Rahimmalek, M., Tabatabaei, B.E.S., Etemadi, N., Goli, S.A.H., Arzani, A. And Zeinali, H. 2009. Essential oil variation among and within six Achillea species transferred from different ecological regions in Iran to the field conditions. Industrial Crops and Products 29(2-3), 348-355. doi.org/10.1016/j.indcrop.2008.07.001
  • Regassa, D., Tigre, W. and Shiferaw, A. 2016. Tomato (Lycopersicon esculentum mill.) varieties evaluation in Borana zone, Yabello district, southern Ethiopia. Journal of Plant Breeding and Crop Science 8(10), 206–210. http://doi.org/10.5897/JPBCS2015.0543
  • Rustaiyan, A., Masoudi, S. and Jassbi, A.R. 1997. Essential Oil of Salvia hydrangea DC. ex Benth. Journal of Essential Oil Research 9(5), 599-600. doi.org/10.1080/10412905.1997.9700787
  • Sagnard, F., Barberot, C. and Fady, B. 2002. Structure of genetic diversity in Abies alba Mill. from southwestern Alps: multivariate analysis of adaptive and non-adaptive traits for conservation in France. Forest Ecology and Management 157(1-3), 175-189. doi.org/10.1016/S0378-1127(00)00664-2
  • Senatore, F., De Fusco, R. and De Feo, V. 1997. Essential oils from Salvia spp. (Lamiaceae). I. Chemical composition of the essential oils from Salvia glutinosa L. growing wild in Southern Italy. Journal of Essential Oil Research 9(2), 151-157. doi.org/10.1080/10412905.1997.9699452
  • Sonboli, A., Kanani, M.R., Yousefzadi, M. and Mojarad, M. 2009. Chemical composition and antibacterial activity of the essential oil of Salvia hydrangea from two localities of Iran. Journal of Medicinal Plants 8(30), 20-172.
  • Temel, I., Dönmez, M. F., and Temtek, E. (2023). Control of bacterial cancer and wilt agent Clavibacter michiganensis subsp. michiganensis using different plant essential oils. Journal of Essential Oil Bearing Plants, 26(4), 814-829.
  • Temtek, E. 2021. Control of Acidovorax citrulli caused bacterial fruit blotch disease on melon by some plant essential oils in vitro conditions. Master's Thesis, Iğdır University, Turkey.
  • Toncer, O., Basbag, S., Karaman, S., Diraz, E. and Basbag, M. 2010. Chemical composition of the essential oils of some Achillea species growing wild in Turkey. International Journal of Agriculture and Biology 12(4), 527-530.
  • Turhan, D. 2015. Investigation of the antimicrobial effect of some essential oils against Staphylococcus aureus and Escherichia coli. Master's Thesis, İstanbul Teknik University, Turkey.
  • Umarusman, M.A. 2018. Investigation of the antibacterial effects of different plant extracts against pea bacterial leaf blight disease caused by Pseudomonas syringae pv. pisi. Master's Thesis, Çukurova University, Turkey.
  • Uppalapati, S.R., Ishiga, Y., Wangdi, T., Urbanczyk-Wochniak, E., Ishiga, T., Mysore, K.S. and Bender, C.L. 2008. Pathogenicity of Pseudomonas syringae pv. tomato on tomato seedlings: phenotypic and gene expression analyses of the virulence function of coronatine. Moleculer Plant-Microbe 21, 383-395.
  • Xin, X.F. and He, S.Y. 2013. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annual review of phytopathology 51, 473-498.
  • Yong, A.L., Ooh, K.F., Ong, H.C., Chai, T.T. and Wong, F.C. 2015. Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts. Food Chemistry 186,32-36. doi.org/10.1016/j.foodchem.2014.11.103

Domateste Bakteriyel Leke Hastalığına Neden Olan Pseudomonas syringae pv. tomato'nun Farklı Bitki Uçucu Yağları ile Kontrolü

Year 2024, Volume: 11 Issue: 2, 381 - 388, 30.04.2024
https://doi.org/10.30910/turkjans.1427806

Abstract

Tohum kaynaklı Pseudomonas syringae pv. tomato domateste bakteriyel leke hastalığına neden olmakta ve domates yetiştiriciliğinde verim ve kaliteyi etkileyerek ciddi ekonomik kayıplara yol açmaktadır. Bu çalışmada, Mentha longifolia, Thymus migricus, Salvia hydrangea, Artemisia absinthium ve Achillea arabica bitkilerinden distilasyon yoluyla elde edilen uçucu yağların P. syringae pv. tomato'nun kontrolü üzerindeki etkisi araştırılmıştır. Bitki uçucu yağlarının P. syringae pv. tomato'ya karşı antibakteriyel aktiviteleri in vitro agar disk difüzyon yöntemi ile test edilmiştir. Ayrıca, bitki uçucu yağlarının Pst 76'nın büyümesini engellediği minimum inhibitör konsantrasyonlar belirlenmiştir. Tüm yağların hastalık etmenine karşı 4.0-30.0 mm arasında bir inhibisyon zonu oluşturduğu ve en yüksek aktivitenin T. migricus bitkisinin yağı ile yapılan uygulamadan elde edildiği belirlenmiştir. Kontrol grubunda T. migricus ve M. longifolia bitkilerinden elde edilen yağların metilmisine göre daha yüksek antimikrobiyal aktiviteye sahip olduğu tespit edilmiştir. Elde edilen sonuçlar doğrultusunda, uçucu yağlar ile hastalık kontrolü, entegre mücadele programlarına dahil edilebilecek alternatif bir yöntem olarak görülmüştür.

References

  • Akgül, A. 1993. Baharat bilimi ve teknolojisi. Gıda Teknolojisi Derneği Yayınları, 15, 111-113.
  • Balestra, G.M., Heydari, A., Ceccarelli, D., Ovidi, E. and Quattrucci, A. 2009. Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Protection, 28, 807-811. doi.org/10.1016/j.cropro.2009.06.004
  • Başer, H.C.K., Demirci, B., Kirimer, N., Satil, F. and Tümen, G. 2002. The essential oils of Thymus migricus and T. fedtschenkoi var. handelii from Turkey. Flavour and Fragrance Journal, 17(1), 41-45. doi.org/10.1002/ffj.1036
  • Bezić, N., Skočibušić, M., Dunkić, V. and Radonić, A. 2003. Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological. Evaluation of Natural Product Derivatives. 17(9), 1037-1040. doi.org/10.1002/ptr.1290
  • Bozkurt, İ.A., Soylu, S., Kara, M. and Soylu, E.M. 2020. Chemical composition and antibacterial activity of essential oils isolated from medicinal plants against gall forming plant pathogenic bacterial disease agents. KSU Journal of Agricalture and Nature, 23(6), 1474-1482. doi.org/10.18016/ksutarimdoga.vi.723544
  • Chacón-Hernández, J., Arredondo-Valdés, R., Reyes-Zepeda, F., Hernández-Castillo, F.D., Anguiano-Cabello, J.C., Heinz-Castro, R.T. and Mora-Ravelo, S.G. 2020. In vitro antibacterial activity of Magnolia tamaulipana against tomato phytopathogenic bacteria. Plant Protection Science 56, 268-274.
  • Churklam, W., Chaturongakul, S., Ngamwongsatit, B. and Aunpad, R. 2020. The Mechanisms of action of carvacrol and its synergism with nisin against listeria monocytogenes on Sliced Bologna Sausage. Food Control 108, 106864. doi.org/10.1016/j.foodcont.2019.106864
  • Çopuroğlu, Ö. 2013. Antimicrobial Activities of Some Endemic Plant Species from Nigde Region. Master's Thesis, Niğde University.
  • da Silva, E.O.D., Samuel, J.M. and Eduardo, A. 2014. Essential oils for the control of bacterial speck in tomato crop. African Journal of Agricultural Research 9(34), 2624-2629. doi.org/10.5897/AJAR2014.8918
  • da Silva, R.S., de Oliveira, M.M.G., de Melo, J.O., Blank, A.F., Corrêa, C.B., Scher, R. and Fernandes, R.P.M. 2019. Antimicrobial activity of Lippia gracilis essential oils on the plant pathogen Xanthomonas campestris pv. campestris and their effect on membrane integrity. Pesticide biochemistry and physiology 160, 40-48. doi.org/10.1016/j.pestbp.2019.06.014
  • Dönmez, M.F., Şahin, B.U., Bozhüyük, A.U., 2020. Satureja Türlerinden Elde Edilen Uçucu Yağ ve Ekstrelerinin Fasulyede Bakteriyel Patojenlere Karşı Antibakteriyel Etkisi. Journal of Agriculture 3(2), 57-70
  • Dorman, H.J.D. and Deans, S.G. 2000. Antimicrobial agents from plants, antibacterial activity of plant volatile oils. Journal of Applied Microbiology 88(2), 308–316. doi.org/10.1046/j.1365-2672.2000.00969.x
  • Ebrahimi, M. and Ranjbar, S. 2016. Essential oils of Salvia hydrangea DC. ex Benth. from Kiasar-Hezarjarib regions, Iran-impact of environmental factors as quality determinants. Journal of Medicinal plants and By-product 5(2), 159-167. doi.org/10.22092/jmpb.2016.109392
  • Eriş, M. 2006. Determination of antibacterial potentials of essential oils and main constituents against bacterial disease agents of tomato. Master's Thesis, Mustafa Kemal University, Hatay.
  • Erler, F. 2000. Investigations on the using potential of essential oil components the control of insects and mites. Dissertation, Akdeniz University, Türkiye.
  • Farimaz, A., Horuz, S. and Aysan, Y. 2014. Çeşitli bitki aktivatörleri ve ticari gübrelerin karpuz bakteriyel meyve lekesi hastalığına etkisi. Türkiye Biyolojik Mücadele Dergisi 5(1),31-38.
  • Figueiredo, A.C., Barroso, J.G., Pedro, L.G. and Scheffer, J.J. 2008. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance Journal 23(4), 213-226. doi.org/10.1002/ffj.1875
  • Ghavam, M., Manca, M.L., Manconi, M. and Bacchetta, G. 2020. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Scientific Reports 10(1), 1-10. doi.org/10.1038/s41598-020-73193-y
  • Granata, T., Alfa, M., Giuffrida, D., Rando, R. and Dugo, G. 2011. Contamination of the food products by lead, cadmium and copper in the area at risk of Gela (Sicily). Epidemiologia e Prevenzione 35(2), 94-100.
  • Kachur, K. and Suntres, Z. 2019. The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition 60(18), 3042-3053. doi.org/10.1080/10408398.2019.1675585
  • Kaya, K., Sertkaya, E., Üremiş, İ. and Soylu, S. 2018. Determination of chemical composition and fumigant ınsecticidal activities of essential oils of some medicinal plants against the adults of cowpea weevil, Callosobruchus maculatus. KSU Journal of Agricalture and Nature 21(5), 708-714. doi.org/10.18016/ksudobil.386176
  • Kokoskova, B., Pavela, R. and Pouvova, D. 2011. Effectiveness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants. Journal of Plant Pathology 93(1), 133-139. doi.org/10.1400/169633
  • Liu, Q.C., Qiao, K. and Zhang, S.A. 2019. Potential of a small molecule carvacrol in management of vegetable diseases. Molecules 24(10), 1932. doi.org/10.3390/molecules24101932
  • Loziene, K. and Venskutonis, P.R. 2005. Influence of environmental and genetic factors on the stability of essential oil composition of Thymus pulegioides. Biochemical Systematics and Ecology 33(5), 517-525.
  • Lucas, G.C., Alves, E., Pereira, R.B., Perina, F.J. and de Souza, R.M. 2012. Antibacterial activity of essential oils on Xanthomonas vesicatoria and control of bacterial spot in tomato. Pesquisa Agropecuária Brasileira 47(39), 351-359. doi.org/10.1590/S0100-204X2012000300006
  • Mamadalieva, N.Z., Akramov, D.K., Ovidi, E., Tiezzi, A., Nahar, L., Azimova, S.S. and Sarker, S.D. 2017. Aromatic medicinal plants of the Lamiaceae family from Uzbekistan: Ethnopharmacology, essential oils composition, and biological activities. Medicines (Basel) 4(1), 8. doi.org/10.3390/medicines4010008
  • Mengulluoglu, M. and Soylu, S. 2012. Antibacterial activities of essential oils extracted from medicinal plants against seedborne bacterial disease agent, Acidovorax avenae subsp. citrulli. Research on Crops 13(2), 641-646.
  • McCarter, S.M., Jones, J.B., Gitaitis, R.D. and Smitley, D.R. 1983. Survival of Pseudomonas syringae pv. tomato in association with tomato seed, soil, host tissue and epiphytic weed hosts in Georgia. Phytopathology 73(10), 1393-1398.
  • Morteza-Semnani, K. and Akbarzadeh, M. 2005. Essential oils composition of Iranian Artemisia absinthium L. and Artemisia scoparia Waldst. et Kit. Journal of Essential oil Research 17(3), 321-322. doi.org/10.1080/10412905.2005.9698918
  • Nazzaro, F., Fratianni, F., Coppola, R. and Feo, V.D. 2017. Essential oils and antifungal activity. Pharmaceuticals 1,: 86.
  • Nguyen, H.T. and Németh, Z.É. 2016. Sources of variability of wormwood (Artemisia absinthium L.) essential oil. Journal Of Applied Research on Medicinal and Aromatic Plants 3(4), 143-150. doi.org/10.1016/j.jarmap.2016.07.005
  • Radaelli, M., Silva, B.P.D., Weidlich, L., Hoehne, L., Flach, A., Costa, L.A.M.A.D. and Ethur, E.M. 2016. Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens. Brazilian Journal Of Microbiology 47, 424-430. doi.org/10.1016/j.bjm.2015.10.001
  • Rahimmalek, M., Tabatabaei, B.E.S., Etemadi, N., Goli, S.A.H., Arzani, A. And Zeinali, H. 2009. Essential oil variation among and within six Achillea species transferred from different ecological regions in Iran to the field conditions. Industrial Crops and Products 29(2-3), 348-355. doi.org/10.1016/j.indcrop.2008.07.001
  • Regassa, D., Tigre, W. and Shiferaw, A. 2016. Tomato (Lycopersicon esculentum mill.) varieties evaluation in Borana zone, Yabello district, southern Ethiopia. Journal of Plant Breeding and Crop Science 8(10), 206–210. http://doi.org/10.5897/JPBCS2015.0543
  • Rustaiyan, A., Masoudi, S. and Jassbi, A.R. 1997. Essential Oil of Salvia hydrangea DC. ex Benth. Journal of Essential Oil Research 9(5), 599-600. doi.org/10.1080/10412905.1997.9700787
  • Sagnard, F., Barberot, C. and Fady, B. 2002. Structure of genetic diversity in Abies alba Mill. from southwestern Alps: multivariate analysis of adaptive and non-adaptive traits for conservation in France. Forest Ecology and Management 157(1-3), 175-189. doi.org/10.1016/S0378-1127(00)00664-2
  • Senatore, F., De Fusco, R. and De Feo, V. 1997. Essential oils from Salvia spp. (Lamiaceae). I. Chemical composition of the essential oils from Salvia glutinosa L. growing wild in Southern Italy. Journal of Essential Oil Research 9(2), 151-157. doi.org/10.1080/10412905.1997.9699452
  • Sonboli, A., Kanani, M.R., Yousefzadi, M. and Mojarad, M. 2009. Chemical composition and antibacterial activity of the essential oil of Salvia hydrangea from two localities of Iran. Journal of Medicinal Plants 8(30), 20-172.
  • Temel, I., Dönmez, M. F., and Temtek, E. (2023). Control of bacterial cancer and wilt agent Clavibacter michiganensis subsp. michiganensis using different plant essential oils. Journal of Essential Oil Bearing Plants, 26(4), 814-829.
  • Temtek, E. 2021. Control of Acidovorax citrulli caused bacterial fruit blotch disease on melon by some plant essential oils in vitro conditions. Master's Thesis, Iğdır University, Turkey.
  • Toncer, O., Basbag, S., Karaman, S., Diraz, E. and Basbag, M. 2010. Chemical composition of the essential oils of some Achillea species growing wild in Turkey. International Journal of Agriculture and Biology 12(4), 527-530.
  • Turhan, D. 2015. Investigation of the antimicrobial effect of some essential oils against Staphylococcus aureus and Escherichia coli. Master's Thesis, İstanbul Teknik University, Turkey.
  • Umarusman, M.A. 2018. Investigation of the antibacterial effects of different plant extracts against pea bacterial leaf blight disease caused by Pseudomonas syringae pv. pisi. Master's Thesis, Çukurova University, Turkey.
  • Uppalapati, S.R., Ishiga, Y., Wangdi, T., Urbanczyk-Wochniak, E., Ishiga, T., Mysore, K.S. and Bender, C.L. 2008. Pathogenicity of Pseudomonas syringae pv. tomato on tomato seedlings: phenotypic and gene expression analyses of the virulence function of coronatine. Moleculer Plant-Microbe 21, 383-395.
  • Xin, X.F. and He, S.Y. 2013. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annual review of phytopathology 51, 473-498.
  • Yong, A.L., Ooh, K.F., Ong, H.C., Chai, T.T. and Wong, F.C. 2015. Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts. Food Chemistry 186,32-36. doi.org/10.1016/j.foodchem.2014.11.103
There are 46 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Research Article
Authors

Mesude Figen Dönmez 0000-0002-7992-8252

Işıl Temel 0000-0001-5968-3609

Esat Temtek 0000-0002-0149-129X

Early Pub Date April 30, 2024
Publication Date April 30, 2024
Submission Date January 30, 2024
Acceptance Date March 7, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Dönmez, M. F., Temel, I., & Temtek, E. (2024). The Control of Pseudomonas syringae pv. tomato, Causing Bacterial Spot Disease in Tomato, by Different Plant Essential Oils. Türk Tarım Ve Doğa Bilimleri Dergisi, 11(2), 381-388. https://doi.org/10.30910/turkjans.1427806