Research Article
BibTex RIS Cite

THE DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE DESIGN OF INTERNAL COMBUSTION ENGINE RADIATORS AND IMPLEMENTATION

Year 2023, Volume: 31 Issue: 2, 644 - 662, 21.08.2023
https://doi.org/10.31796/ogummf.1224107

Abstract

In this study, a mathematical model and design procedure is developed for the design of Internal Combustion Engine radiators. In this model, the radiator is assumed to be a device consisting of finned tubes. The main element of the design is the determination of the length and number of tubes. By using the mathematical model and its application procedure, the physical dimensions of a radiator with 100 kW heat transfer capacity is investigated. It is determined that the optimum distance between the plane fins would be in the range of 0.85-1.05 mm and the air flow velocity would be in the range of 5-10 m/s. In these circumstances, the regime of the airflow between fins is laminar and, the heat transfer coefficient becomes about 100 W/m2 oC. If fins are processed of aluminum sheets with 0.25 mm thickness, the thermal efficiency of fins exceeds 90%. When the temperature difference between inflow and outflow of the radiator is assumed to be 15 oC, the optimum radiator volume becomes about 25 liters. If the temperature difference is assumed to be 10 °C, the radiator volume becomes 22.5 liters. According to the design dimensions, it was detected that the power of the air fan could be in the range of 1000-2000 W. In addition, it is found that the power of the water pump is below 10 W.

References

  • Altınışık, K. 2003. Uygulamalarla Isı Transferi, Nobel Yayın Dağıtım, İstanbul. Erişim adresi: https://www.nobelyayin.com/
  • Amrutkar P.S., and Patil S. R., 2013, Automotive radiator performance–Review, International Journal of Engineering and Advanced Technology, 2(3): 563-565. Erişim adresi: https://www.ijeat.org/
  • Arora N., and Gupta M., 2020, An updated review on application of nanofluids in flat tubes radiators for improving cooling performance, Renewable and Sustainable Energy Reviews, 134, 110242. Doi: https://doi.org/10.1016/j.rser.2020.110242
  • Belhadj A., Bouchenafa R., and Saim R., 2018, A numerical study of forced convective flow in microchannels heat sinks with periodic expansion-constriction cross section, Journal of Thermal Engineering, 4(3): 1912-1925. Erişim adresi: https://eds.yildiz.edu.tr/journal-of-thermal-engineering/
  • El-Genk M. S., and Pourghasemi M., 2019, Nusselt number and development length correlations for laminar flows of water and air in microchannels, International Journal of Heat and Mass Transfer, 133, 277-294. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.077
  • Gamrat G., Favre-Marinet M., and Asendrych D., 2005, Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels, International Journal of Heat and Mass Transfer, 48(14): 2943-2954. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.006
  • Incropera F. P., DeWitt D. P., Bergman T. L., and Lavine A. S., 1996, Fundamentals of heat and mass transfer (Sixth Ed.), Wiley, New York. Erişim adresi: https://www.wiley.com/en-gb
  • Ipci D., Karabulut H., ve Cinar C., 2016, Radyatör hava kanallarında tam gelişmiş akış ve ısı transferinin incelenmesi, Isı Bilimi ve Tekniği Dergisi, 36(2): 119-133. Erişim adresi: https://dergipark.org.tr/tr/pub/isibted
  • Ipci, D., 2018, Taşıt radyatörlerinde bulunan dar kanallarda akış ve ısı transferinin incelenmesi, Doktora Tezi. Gazi Üniversitesi, Ankara, Türkiye. Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Jadidi A., 2013, Karbon çelik malzemelerin fırında sert lehimlemesine etki eden parametrelerin deneysel olarak optimizasyonu, Doktora Tezi, Dokuz Eylül Üniversitesi, İzmir, Türkiye. Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Jain J., Rajagopal T., Selvaraj A., and Devaraj E., 2022, Cross-flow radiator design using CFD for FSAE car cooling system and its experimental validation using the GEMS data acquisition system, SAE Technical Paper, 2022-01-0374. Doi: https://doi.org/10.4271/2022-01-0374
  • Junjanna G. C., Kulasekharan N., and Purushotham H. R., 2012, Performance improvement of a louver-finned automobile radiator using conjugate thermal CFD analysis, International Journal of Engineering Research & Technology, 1(8): 1-13. Erişim adresi: https://www.ijert.org/
  • Kakac S., Yener Y., and Pramuanjaroenkij A., 2013, Convective heat transfer (Second Ed), CRC press, Boca Raton. Erişim adresi: https://taylorandfrancis.com/
  • Karabulut H., Ipci D., and Cinar C., 2016, Numerical solution of fully developed heat transfer problem with constant wall temperature and application to isosceles triangle and parabolic ducts, Applied Thermal Engineering, 102, 115-124. Doi: https://doi.org/10.1016/j.applthermaleng.2016.03.129
  • Kundu B., Simlandi S., and Das P. K., 2011, Analytical techniques for analysis of fully developed laminar flow through rectangular channels, Heat and mass transfer, 47(10): 1289-1299. Doi: https://doi.org/10.1007/s00231-011-0790-z
  • Lee P. S., and Garimella S. V., 2006, Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios, International Journal of Heat And Mass Transfer, 49(17-18): 3060-3067. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.011
  • Morad M. M. A., and Alrajhi J., 2014, The effect of high temperature on engine performance in Kuwait conditions, Journal of Mechanical Engineering and Automation, 4(2): 55-62. Doi: https://doi.org/10.5923/j.jmea.20140402.02
  • Mukkamala Y., 2017, Contemporary trends in thermo-hydraulic testing and modeling of automotive radiators deploying nano-coolants and aerodynamically efficient air-side fins, Renewable And Sustainable Energy Reviews, 76, 1208-1229. Doi: https://doi.org/10.1016/j.rser.2017.03.106
  • Oliet C., Oliva A., Castro J., and Perez-Segarra C. D., 2007, Parametric studies on automotive radiators, Applied Thermal Engineering, 27(11-12): 2033-2043. Doi: https://doi.org/10.1016/j.applthermaleng.2006.12.006
  • Peyghambarzadeh S. M., Hashemabadi S. H., Naraki M., and Vermahmoudi Y., 2013, Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator, Applied Thermal Engineering, 52(1): 8-16. Doi: https://doi.org/10.1016/j.applthermaleng.2012.11.013
  • Priyadarsini C. I., Reddy T. R., and Devi P. A., 2022, Design and performance analysis of automotive radiator using computational fluid Dynamics, International Journal of Mechanical Engineering, 7. Erişim adresi: https://kalaharijournals.com/
  • Sahar A. M., Wissink J., Mahmoud M. M., Karayiannis T. G., and Ishak M. S. A., 2017, Effect of hydraulic diameter and aspect ratio on single phase flow and heat transfer in a rectangular microchannel, Applied Thermal Engineering, 115, 793-814. Doi: https://doi.org/10.1016/j.applthermaleng.2017.01.018
  • Sandu V., 2016, Experimental study on diesel engine fitted with visco fan drive, Bulletin of the Transilvania University of Brasov. Engineering Sciences. Series I, 9(1): 1. Erişim adresi: https://webbut.unitbv.ro/index.php/Bulletin
  • Sidik N. A. C., Yazid M. N. A. W. M., and Mamat R., 2015, A review on the application of nanofluids in vehicle engine cooling system, International Communications in Heat and Mass Transfer, 68, 85-90. Doi: https://doi.org/10.1016/j.icheatmasstransfer.2015.08.017
  • Starace G., Fiorentino M., Longo M. P., and Carluccio E., 2017, A hybrid method for the cross flow compact heat exchangers design, Applied Thermal Engineering, 111, 1129-1142. Doi: https://doi.org/10.1016/j.applthermaleng.2016.10.018
  • Trivedi P. K., and Vasava N. B., 2012, Effect of variation in pitch of tube on heat transfer rate in automobile radiator by CFD analysis, International Journal of Engineering and Advanced Technology, 1(6): 180-3. Erişim adresi: https://www.ijeat.org/
  • Vahidinia F., and Miri M., 2015, The effect of Reynolds number on the thermal and hydrodynamic characteristics of turbulence flow of the nanofluid in the heat exchanger, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3): 2109-2119. Erişim adresi: http://csj.cumhuriyet.edu.tr/tr/
  • Wang, T., Jagarwal, A., Wagner, J. R., and Fadel, G., 2015, Optimization of an automotive radiator fan array operation to reduce power consumption, IEEE/ASME Transactions on Mechatronics, 20(5): 2359-2369. Doi: https://doi.org/10.1109/TMECH.2014.2377655

İÇTEN YANMALI MOTORLARDA KULLANILAN RADYATÖRLERİN TASARIMI İÇİN BİR MATEMATİK MODEL GELİŞTİRİLMESİ VE UYGULAMASI

Year 2023, Volume: 31 Issue: 2, 644 - 662, 21.08.2023
https://doi.org/10.31796/ogummf.1224107

Abstract

Bu çalışmada, içten yanmalı motorlar için yassı su boruları ve düzlem kanatçıklardan oluşan bir radyatörün matematik modeli ve tasarım yöntemi geliştirilmiştir. Geliştirilen matematik modelde radyatörün kanatçıklı borulardan oluştuğu kabul edilmekte ve tasarım işinin özünü kanatçıklı boruların uzunluğunun ve sayısının belirlenmesi oluşturmaktadır. Geliştirilen matematik model ve tasarım yöntemi kullanılarak 100 kW ısı transferi kapasitesi olan bir radyatörün fiziki boyutları araştırılmıştır. Düzlem kanatçıkların arasındaki en uygun mesafenin 0.85-1.05 mm aralığında ve hava akış hızının 5-10 m/s aralığında olabileceği belirlenmiştir. Bu durumda, kanatçıkların arasındaki hava akışı laminer rejimde gerçekleşmekte olup, kanatçıkların yüzeyindeki ısı taşınım katsayısı 100 W/m2K civarında olmaktadır. Kanatçıkların yapımında 0.25 mm kalınlığında alüminyum levha kullanıldığında, kanatçıkların ısıl verimi %90 ın üzerine çıkmaktadır. Motor soğutma suyunun radyatöre giriş ve radyatörden çıkış sıcaklıkları arasındaki fark 15 °C kabul edildiğinde radyatörün en uygun hacmi 25 litre olarak belirlenirken, sıcaklık farkı 10 °C yapıldığında 22.5 litre olarak belirlenmektedir. Tasarım ölçülerine göre hava fanı gücünün 1000-2000 W aralığında olabileceği belirlenmiştir. Ayrıca, su devirdaim pompası gücünün 10 W ın altında kaldığı tespit edilmiştir.

References

  • Altınışık, K. 2003. Uygulamalarla Isı Transferi, Nobel Yayın Dağıtım, İstanbul. Erişim adresi: https://www.nobelyayin.com/
  • Amrutkar P.S., and Patil S. R., 2013, Automotive radiator performance–Review, International Journal of Engineering and Advanced Technology, 2(3): 563-565. Erişim adresi: https://www.ijeat.org/
  • Arora N., and Gupta M., 2020, An updated review on application of nanofluids in flat tubes radiators for improving cooling performance, Renewable and Sustainable Energy Reviews, 134, 110242. Doi: https://doi.org/10.1016/j.rser.2020.110242
  • Belhadj A., Bouchenafa R., and Saim R., 2018, A numerical study of forced convective flow in microchannels heat sinks with periodic expansion-constriction cross section, Journal of Thermal Engineering, 4(3): 1912-1925. Erişim adresi: https://eds.yildiz.edu.tr/journal-of-thermal-engineering/
  • El-Genk M. S., and Pourghasemi M., 2019, Nusselt number and development length correlations for laminar flows of water and air in microchannels, International Journal of Heat and Mass Transfer, 133, 277-294. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.077
  • Gamrat G., Favre-Marinet M., and Asendrych D., 2005, Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels, International Journal of Heat and Mass Transfer, 48(14): 2943-2954. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.006
  • Incropera F. P., DeWitt D. P., Bergman T. L., and Lavine A. S., 1996, Fundamentals of heat and mass transfer (Sixth Ed.), Wiley, New York. Erişim adresi: https://www.wiley.com/en-gb
  • Ipci D., Karabulut H., ve Cinar C., 2016, Radyatör hava kanallarında tam gelişmiş akış ve ısı transferinin incelenmesi, Isı Bilimi ve Tekniği Dergisi, 36(2): 119-133. Erişim adresi: https://dergipark.org.tr/tr/pub/isibted
  • Ipci, D., 2018, Taşıt radyatörlerinde bulunan dar kanallarda akış ve ısı transferinin incelenmesi, Doktora Tezi. Gazi Üniversitesi, Ankara, Türkiye. Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Jadidi A., 2013, Karbon çelik malzemelerin fırında sert lehimlemesine etki eden parametrelerin deneysel olarak optimizasyonu, Doktora Tezi, Dokuz Eylül Üniversitesi, İzmir, Türkiye. Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Jain J., Rajagopal T., Selvaraj A., and Devaraj E., 2022, Cross-flow radiator design using CFD for FSAE car cooling system and its experimental validation using the GEMS data acquisition system, SAE Technical Paper, 2022-01-0374. Doi: https://doi.org/10.4271/2022-01-0374
  • Junjanna G. C., Kulasekharan N., and Purushotham H. R., 2012, Performance improvement of a louver-finned automobile radiator using conjugate thermal CFD analysis, International Journal of Engineering Research & Technology, 1(8): 1-13. Erişim adresi: https://www.ijert.org/
  • Kakac S., Yener Y., and Pramuanjaroenkij A., 2013, Convective heat transfer (Second Ed), CRC press, Boca Raton. Erişim adresi: https://taylorandfrancis.com/
  • Karabulut H., Ipci D., and Cinar C., 2016, Numerical solution of fully developed heat transfer problem with constant wall temperature and application to isosceles triangle and parabolic ducts, Applied Thermal Engineering, 102, 115-124. Doi: https://doi.org/10.1016/j.applthermaleng.2016.03.129
  • Kundu B., Simlandi S., and Das P. K., 2011, Analytical techniques for analysis of fully developed laminar flow through rectangular channels, Heat and mass transfer, 47(10): 1289-1299. Doi: https://doi.org/10.1007/s00231-011-0790-z
  • Lee P. S., and Garimella S. V., 2006, Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios, International Journal of Heat And Mass Transfer, 49(17-18): 3060-3067. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.011
  • Morad M. M. A., and Alrajhi J., 2014, The effect of high temperature on engine performance in Kuwait conditions, Journal of Mechanical Engineering and Automation, 4(2): 55-62. Doi: https://doi.org/10.5923/j.jmea.20140402.02
  • Mukkamala Y., 2017, Contemporary trends in thermo-hydraulic testing and modeling of automotive radiators deploying nano-coolants and aerodynamically efficient air-side fins, Renewable And Sustainable Energy Reviews, 76, 1208-1229. Doi: https://doi.org/10.1016/j.rser.2017.03.106
  • Oliet C., Oliva A., Castro J., and Perez-Segarra C. D., 2007, Parametric studies on automotive radiators, Applied Thermal Engineering, 27(11-12): 2033-2043. Doi: https://doi.org/10.1016/j.applthermaleng.2006.12.006
  • Peyghambarzadeh S. M., Hashemabadi S. H., Naraki M., and Vermahmoudi Y., 2013, Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator, Applied Thermal Engineering, 52(1): 8-16. Doi: https://doi.org/10.1016/j.applthermaleng.2012.11.013
  • Priyadarsini C. I., Reddy T. R., and Devi P. A., 2022, Design and performance analysis of automotive radiator using computational fluid Dynamics, International Journal of Mechanical Engineering, 7. Erişim adresi: https://kalaharijournals.com/
  • Sahar A. M., Wissink J., Mahmoud M. M., Karayiannis T. G., and Ishak M. S. A., 2017, Effect of hydraulic diameter and aspect ratio on single phase flow and heat transfer in a rectangular microchannel, Applied Thermal Engineering, 115, 793-814. Doi: https://doi.org/10.1016/j.applthermaleng.2017.01.018
  • Sandu V., 2016, Experimental study on diesel engine fitted with visco fan drive, Bulletin of the Transilvania University of Brasov. Engineering Sciences. Series I, 9(1): 1. Erişim adresi: https://webbut.unitbv.ro/index.php/Bulletin
  • Sidik N. A. C., Yazid M. N. A. W. M., and Mamat R., 2015, A review on the application of nanofluids in vehicle engine cooling system, International Communications in Heat and Mass Transfer, 68, 85-90. Doi: https://doi.org/10.1016/j.icheatmasstransfer.2015.08.017
  • Starace G., Fiorentino M., Longo M. P., and Carluccio E., 2017, A hybrid method for the cross flow compact heat exchangers design, Applied Thermal Engineering, 111, 1129-1142. Doi: https://doi.org/10.1016/j.applthermaleng.2016.10.018
  • Trivedi P. K., and Vasava N. B., 2012, Effect of variation in pitch of tube on heat transfer rate in automobile radiator by CFD analysis, International Journal of Engineering and Advanced Technology, 1(6): 180-3. Erişim adresi: https://www.ijeat.org/
  • Vahidinia F., and Miri M., 2015, The effect of Reynolds number on the thermal and hydrodynamic characteristics of turbulence flow of the nanofluid in the heat exchanger, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3): 2109-2119. Erişim adresi: http://csj.cumhuriyet.edu.tr/tr/
  • Wang, T., Jagarwal, A., Wagner, J. R., and Fadel, G., 2015, Optimization of an automotive radiator fan array operation to reduce power consumption, IEEE/ASME Transactions on Mechatronics, 20(5): 2359-2369. Doi: https://doi.org/10.1109/TMECH.2014.2377655
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Halit Karabulut 0000-0001-6211-5258

Regaip Menküç 0000-0002-2108-2418

A. Onur Özdemir 0000-0002-6475-1976

Emre Yıldırım 0000-0002-2528-2740

Early Pub Date August 21, 2023
Publication Date August 21, 2023
Acceptance Date May 9, 2023
Published in Issue Year 2023 Volume: 31 Issue: 2

Cite

APA Karabulut, H., Menküç, R., Özdemir, A. O., Yıldırım, E. (2023). İÇTEN YANMALI MOTORLARDA KULLANILAN RADYATÖRLERİN TASARIMI İÇİN BİR MATEMATİK MODEL GELİŞTİRİLMESİ VE UYGULAMASI. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(2), 644-662. https://doi.org/10.31796/ogummf.1224107
AMA Karabulut H, Menküç R, Özdemir AO, Yıldırım E. İÇTEN YANMALI MOTORLARDA KULLANILAN RADYATÖRLERİN TASARIMI İÇİN BİR MATEMATİK MODEL GELİŞTİRİLMESİ VE UYGULAMASI. ESOGÜ Müh Mim Fak Derg. August 2023;31(2):644-662. doi:10.31796/ogummf.1224107
Chicago Karabulut, Halit, Regaip Menküç, A. Onur Özdemir, and Emre Yıldırım. “İÇTEN YANMALI MOTORLARDA KULLANILAN RADYATÖRLERİN TASARIMI İÇİN BİR MATEMATİK MODEL GELİŞTİRİLMESİ VE UYGULAMASI”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, no. 2 (August 2023): 644-62. https://doi.org/10.31796/ogummf.1224107.
EndNote Karabulut H, Menküç R, Özdemir AO, Yıldırım E (August 1, 2023) İÇTEN YANMALI MOTORLARDA KULLANILAN RADYATÖRLERİN TASARIMI İÇİN BİR MATEMATİK MODEL GELİŞTİRİLMESİ VE UYGULAMASI. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 2 644–662.
IEEE H. Karabulut, R. Menküç, A. O. Özdemir, and E. Yıldırım, “İÇTEN YANMALI MOTORLARDA KULLANILAN RADYATÖRLERİN TASARIMI İÇİN BİR MATEMATİK MODEL GELİŞTİRİLMESİ VE UYGULAMASI”, ESOGÜ Müh Mim Fak Derg, vol. 31, no. 2, pp. 644–662, 2023, doi: 10.31796/ogummf.1224107.
ISNAD Karabulut, Halit et al. “İÇTEN YANMALI MOTORLARDA KULLANILAN RADYATÖRLERİN TASARIMI İÇİN BİR MATEMATİK MODEL GELİŞTİRİLMESİ VE UYGULAMASI”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/2 (August 2023), 644-662. https://doi.org/10.31796/ogummf.1224107.
JAMA Karabulut H, Menküç R, Özdemir AO, Yıldırım E. İÇTEN YANMALI MOTORLARDA KULLANILAN RADYATÖRLERİN TASARIMI İÇİN BİR MATEMATİK MODEL GELİŞTİRİLMESİ VE UYGULAMASI. ESOGÜ Müh Mim Fak Derg. 2023;31:644–662.
MLA Karabulut, Halit et al. “İÇTEN YANMALI MOTORLARDA KULLANILAN RADYATÖRLERİN TASARIMI İÇİN BİR MATEMATİK MODEL GELİŞTİRİLMESİ VE UYGULAMASI”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 31, no. 2, 2023, pp. 644-62, doi:10.31796/ogummf.1224107.
Vancouver Karabulut H, Menküç R, Özdemir AO, Yıldırım E. İÇTEN YANMALI MOTORLARDA KULLANILAN RADYATÖRLERİN TASARIMI İÇİN BİR MATEMATİK MODEL GELİŞTİRİLMESİ VE UYGULAMASI. ESOGÜ Müh Mim Fak Derg. 2023;31(2):644-62.

20873  13565  13566 15461  13568    14913