Research Article
BibTex RIS Cite

Nano Fiber Reinforced Nanocomposite Production and Characterization

Year 2019, Volume: 1 Issue: 1, 10 - 19, 18.04.2019

Abstract

The present study investigates the effect of various
fabricated nanofiber such as
poly-vinyl-alcohol (PVA) ile
poly-vinyl-pyrrolidone (PVP)
nanofibers mat to interlaminar features. E-glass/epoxy
composite materials are produced by Vacuum Assisted Resin Transfer Molding (VARTM)
method, interleaving PVA and PVP electrospun nanofiber mat in each laminate
consisted of eight ply. Tensile tests are carried out for nanomodified
composite materials. Also, after tensile tests, the fracture surfaces area of
both composite materials are studied using scanning electron microscobe (SEM).
Results reveal that PVA and PVP nanofiber mat was not adequately impregnated
with epoxy.

References

  • S.S. Wicks, R.G. de Villoria, B.L. Wardle, Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes, Composites Science and Technology. 70 (2010) 20–28. doi:10.1016/J.COMPSCITECH.2009.09.001.
  • L. Tong, A.P. Mouritz, M.K. Bannister, 3D fibre reinforced polymer composites, Elsevier, 2002. doi:10.1016/B978-0-08-043938-9.X5012-1.
  • T.K. Tsotsis, A. Markus, AST composite wing program work Unit IV-design, analysis, and manufacturing studies, 1999.
  • F. Larsson, Damage tolerance of a stitched carbon/epoxy laminate, Composites Part A: Applied Science and Manufacturing. 28 (1997) 923–934. doi:10.1016/S1359-835X(97)00063-8.
  • K.A. Dransfield, L.K. Jain, Y.-W. Mai, On the effects of stitching in CFRPs—I. mode I delamination toughness, Composites Science and Technology. 58 (1998) 815–827. doi:10.1016/S0266-3538(97)00229-7.
  • I.K. Partridge, D.D.R. Cartié, Delamination resistant laminates by Z-Fiber® pinning: Part I manufacture and fracture performance, Composites Part A: Applied Science and Manufacturing. 36 (2005) 55–64. doi:10.1016/J.COMPOSITESA.2004.06.029.
  • S.K. Sharma, B. V. Sankar, Effect of Stitching on Impact and Interlaminar Properties of Graphite/Epoxy Laminates, Journal of Thermoplastic Composite Materials. 10 (1997) 241–253. doi:10.1177/089270579701000302.
  • A.. Mouritz, C. Baini, I. Herszberg, Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites, Composites Part A: Applied Science and Manufacturing. 30 (1999) 859–870. doi:10.1016/S1359-835X(98)00197-3.
  • J.R. Reeder, Stitching vs. a Toughened Matrix: Compression Strength Effects, Journal of Composite Materials. 29 (1995) 2464–2487. doi:10.1177/002199839502901805.
  • X. Zhang, L. Hounslow, M. Grassi, Improvement of low-velocity impact and compression-after-impact performance by z-fibre pinning, Composites Science and Technology. 66 (2006) 2785–2794. doi:10.1016/J.COMPSCITECH.2006.02.029.
  • C.A. Steeves, N.A. Fleck, In-plane properties of composite laminates with through-thickness pin reinforcement, International Journal of Solids and Structures. 43 (2006) 3197–3212. doi:10.1016/J.IJSOLSTR.2005.05.017.
  • A.P. Mouritz, Review of z-pinned composite laminates, Composites Part A: Applied Science and Manufacturing. 38 (2007) 2383–2397. doi:10.1016/J.COMPOSITESA.2007.08.016.
  • P.K. Sinha, Composite materials and structures, Composite Centre of Excellence, AR&DB, Department of Aerospace Engineering IIT Kharagpur. (2006).
  • M. Biron, Thermosets and composites: technical information for plastics users, (2004). https://hrcak.srce.hr/index.php?show=clanak_download&id_clanak_jezik=9288 (erişim 27 Ocak 2019).
  • V.C.S. Chandrasekaran, M.H. Santare, P. Krishnan, S.G. Advani, Amino Functionalization of MWNTs and Their Effect on ILSS of Hybrid Nanocomposites, Composite Interfaces. 18 (2011) 339–355. doi:10.1163/092764411X584478.
  • J.-J. Luo, I.M. Daniel, Characterization and modeling of mechanical behavior of polymer/clay nanocomposites, Composites Science and Technology. 63 (2003) 1607–1616. doi:10.1016/S0266-3538(03)00060-5.
  • D. Schmidt, D. Shah, E.P. Giannelis, New advances in polymer/layered silicate nanocomposites, Current Opinion in Solid State and Materials Science. 6 (2002) 205–212. doi:10.1016/S1359-0286(02)00049-9.
  • F.H. Gojny, M.H.G. Wichmann, B. Fiedler, W. Bauhofer, K. Schulte, Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites, Composites Part A: Applied Science and Manufacturing. 36 (2005) 1525–1535. doi:10.1016/J.COMPOSITESA.2005.02.007.
  • J. Njuguna, K. Pielichowski, J. Alcock, Epoxy‐based fibre reinforced nanocomposites, Wiley Online Library. 9 (2007) 835–847. https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.200700118 (erişim 27 Ocak 2019).
  • A. Formhals, Process and apparatus for preparing artificial threads, 1934. https://ci.nii.ac.jp/naid/10029238153/ (erişim 27 Ocak 2019).
  • G.S. Kozanoğlu, Elektrospinning yöntemiyle nanolif üretim teknolojisi, İstanbul Teknik Üniversitesi, 2006. http://polen.itu.edu.tr/bitstream/11527/4631/1/3923.pdf
  • A. Süslü, M. Özdemir, Ç. Tekmen, E. Çelik, Ü. Cöcen, Gümüş katkılı TiO2 nanofiberlerin elektro-eğirme yöntemi ile üretilmesi ve karakterizasyonu, Anadolu University Journal of Sciences & Technology. 10 (2009) 277–284. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=44455220&site=eds-live&authtype=ip,uid.
  • M. Uyaner, M. Kara, Dynamic response of laminated composites subjected to low-velocity impact, Journal of Composite Materials. 41 (2007) 2877–2896. doi:10.1177/0021998307079971.
  • V. Eskizeybek, A. Yar, A. Avcı, CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness, Composites Science and Technology. 157 (2018) 30–39. doi:10.1016/J.COMPSCITECH.2018.01.021.

Nano Elyaf Takviyeli Nanokompozit Üretimi ve Karakterizasyonu

Year 2019, Volume: 1 Issue: 1, 10 - 19, 18.04.2019

Abstract

Bu çalışma polivinilalkol (PVA)
ve polivinilpirolidon (PVP
) den elde edilen nano liflerin kompozitin tabakalar
arasına olan etkisini incelemektedir. E-camı/epoksi kompozit malzemelerin
arasına
PVA ve PVP elektro eğirme nano elyaf yerleştirilerek Vakum
Destekli Reçine Transferi Kalıplama (VARTM) yöntemi ile kompozit malzeme
üretimi gerçekleştirilmiştir. Nano elyaf ile modifiye edilmiş kompozit
malzemelerin çekme testleri yapılmıştır. Ayrıca çekme testinden sonra kompozit
malzemelerin kırılma yüzeyleri SEM ile incelenmiştir. Bu çalışma,
PVA
ve PVP
nano
elyafların epoksi ile yeteri kadar ıslanmadığını göstermektedir.

References

  • S.S. Wicks, R.G. de Villoria, B.L. Wardle, Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes, Composites Science and Technology. 70 (2010) 20–28. doi:10.1016/J.COMPSCITECH.2009.09.001.
  • L. Tong, A.P. Mouritz, M.K. Bannister, 3D fibre reinforced polymer composites, Elsevier, 2002. doi:10.1016/B978-0-08-043938-9.X5012-1.
  • T.K. Tsotsis, A. Markus, AST composite wing program work Unit IV-design, analysis, and manufacturing studies, 1999.
  • F. Larsson, Damage tolerance of a stitched carbon/epoxy laminate, Composites Part A: Applied Science and Manufacturing. 28 (1997) 923–934. doi:10.1016/S1359-835X(97)00063-8.
  • K.A. Dransfield, L.K. Jain, Y.-W. Mai, On the effects of stitching in CFRPs—I. mode I delamination toughness, Composites Science and Technology. 58 (1998) 815–827. doi:10.1016/S0266-3538(97)00229-7.
  • I.K. Partridge, D.D.R. Cartié, Delamination resistant laminates by Z-Fiber® pinning: Part I manufacture and fracture performance, Composites Part A: Applied Science and Manufacturing. 36 (2005) 55–64. doi:10.1016/J.COMPOSITESA.2004.06.029.
  • S.K. Sharma, B. V. Sankar, Effect of Stitching on Impact and Interlaminar Properties of Graphite/Epoxy Laminates, Journal of Thermoplastic Composite Materials. 10 (1997) 241–253. doi:10.1177/089270579701000302.
  • A.. Mouritz, C. Baini, I. Herszberg, Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites, Composites Part A: Applied Science and Manufacturing. 30 (1999) 859–870. doi:10.1016/S1359-835X(98)00197-3.
  • J.R. Reeder, Stitching vs. a Toughened Matrix: Compression Strength Effects, Journal of Composite Materials. 29 (1995) 2464–2487. doi:10.1177/002199839502901805.
  • X. Zhang, L. Hounslow, M. Grassi, Improvement of low-velocity impact and compression-after-impact performance by z-fibre pinning, Composites Science and Technology. 66 (2006) 2785–2794. doi:10.1016/J.COMPSCITECH.2006.02.029.
  • C.A. Steeves, N.A. Fleck, In-plane properties of composite laminates with through-thickness pin reinforcement, International Journal of Solids and Structures. 43 (2006) 3197–3212. doi:10.1016/J.IJSOLSTR.2005.05.017.
  • A.P. Mouritz, Review of z-pinned composite laminates, Composites Part A: Applied Science and Manufacturing. 38 (2007) 2383–2397. doi:10.1016/J.COMPOSITESA.2007.08.016.
  • P.K. Sinha, Composite materials and structures, Composite Centre of Excellence, AR&DB, Department of Aerospace Engineering IIT Kharagpur. (2006).
  • M. Biron, Thermosets and composites: technical information for plastics users, (2004). https://hrcak.srce.hr/index.php?show=clanak_download&id_clanak_jezik=9288 (erişim 27 Ocak 2019).
  • V.C.S. Chandrasekaran, M.H. Santare, P. Krishnan, S.G. Advani, Amino Functionalization of MWNTs and Their Effect on ILSS of Hybrid Nanocomposites, Composite Interfaces. 18 (2011) 339–355. doi:10.1163/092764411X584478.
  • J.-J. Luo, I.M. Daniel, Characterization and modeling of mechanical behavior of polymer/clay nanocomposites, Composites Science and Technology. 63 (2003) 1607–1616. doi:10.1016/S0266-3538(03)00060-5.
  • D. Schmidt, D. Shah, E.P. Giannelis, New advances in polymer/layered silicate nanocomposites, Current Opinion in Solid State and Materials Science. 6 (2002) 205–212. doi:10.1016/S1359-0286(02)00049-9.
  • F.H. Gojny, M.H.G. Wichmann, B. Fiedler, W. Bauhofer, K. Schulte, Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites, Composites Part A: Applied Science and Manufacturing. 36 (2005) 1525–1535. doi:10.1016/J.COMPOSITESA.2005.02.007.
  • J. Njuguna, K. Pielichowski, J. Alcock, Epoxy‐based fibre reinforced nanocomposites, Wiley Online Library. 9 (2007) 835–847. https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.200700118 (erişim 27 Ocak 2019).
  • A. Formhals, Process and apparatus for preparing artificial threads, 1934. https://ci.nii.ac.jp/naid/10029238153/ (erişim 27 Ocak 2019).
  • G.S. Kozanoğlu, Elektrospinning yöntemiyle nanolif üretim teknolojisi, İstanbul Teknik Üniversitesi, 2006. http://polen.itu.edu.tr/bitstream/11527/4631/1/3923.pdf
  • A. Süslü, M. Özdemir, Ç. Tekmen, E. Çelik, Ü. Cöcen, Gümüş katkılı TiO2 nanofiberlerin elektro-eğirme yöntemi ile üretilmesi ve karakterizasyonu, Anadolu University Journal of Sciences & Technology. 10 (2009) 277–284. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=44455220&site=eds-live&authtype=ip,uid.
  • M. Uyaner, M. Kara, Dynamic response of laminated composites subjected to low-velocity impact, Journal of Composite Materials. 41 (2007) 2877–2896. doi:10.1177/0021998307079971.
  • V. Eskizeybek, A. Yar, A. Avcı, CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness, Composites Science and Technology. 157 (2018) 30–39. doi:10.1016/J.COMPSCITECH.2018.01.021.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mesut Uyaner 0000-0003-2743-2340

Adem Yar This is me 0000-0002-1432-9590

Publication Date April 18, 2019
Acceptance Date February 5, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Uyaner, M., & Yar, A. (2019). Nano Elyaf Takviyeli Nanokompozit Üretimi ve Karakterizasyonu. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 1(1), 10-19.
AMA Uyaner M, Yar A. Nano Elyaf Takviyeli Nanokompozit Üretimi ve Karakterizasyonu. NEJSE. April 2019;1(1):10-19.
Chicago Uyaner, Mesut, and Adem Yar. “Nano Elyaf Takviyeli Nanokompozit Üretimi Ve Karakterizasyonu”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 1, no. 1 (April 2019): 10-19.
EndNote Uyaner M, Yar A (April 1, 2019) Nano Elyaf Takviyeli Nanokompozit Üretimi ve Karakterizasyonu. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 1 1 10–19.
IEEE M. Uyaner and A. Yar, “Nano Elyaf Takviyeli Nanokompozit Üretimi ve Karakterizasyonu”, NEJSE, vol. 1, no. 1, pp. 10–19, 2019.
ISNAD Uyaner, Mesut - Yar, Adem. “Nano Elyaf Takviyeli Nanokompozit Üretimi Ve Karakterizasyonu”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 1/1 (April 2019), 10-19.
JAMA Uyaner M, Yar A. Nano Elyaf Takviyeli Nanokompozit Üretimi ve Karakterizasyonu. NEJSE. 2019;1:10–19.
MLA Uyaner, Mesut and Adem Yar. “Nano Elyaf Takviyeli Nanokompozit Üretimi Ve Karakterizasyonu”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 1, no. 1, 2019, pp. 10-19.
Vancouver Uyaner M, Yar A. Nano Elyaf Takviyeli Nanokompozit Üretimi ve Karakterizasyonu. NEJSE. 2019;1(1):10-9.

17157           17158