Research Article
BibTex RIS Cite

Krank kaydırmalı bir stirling motorunun termodinamik performansının nodal analiz ile incelenmesi

Year 2024, Volume: 39 Issue: 3, 1473 - 1484, 20.05.2024
https://doi.org/10.17341/gazimmfd.1270104

Abstract

Petrolün yaygın biçimde enerji kaynağı olarak kullanımı iklim değişikliği, çevre ve atmosfer kirlenmesi, canlı varlıkların yaşam koşullarının yok olması gibi bir takım olumsuz gelişmeleri doğurmuştur. Bu olumsuz gelişmelerin önüne geçilebilmesi için güneş enerjisi, nükleer enerji ve jeotermal enerji gibi temiz ve tükenmez enerjilerin kullanımının yaygınlaştırılması gerekmektedir. Bu enerjilerin kullanımının yaygınlaştırılabilmesi için her türlü ısıyı mekanik enerjiye dönüştürebilen bir makinenin geliştirilmesi gerekmektedir. Bu amaçla geliştirilmeye çalışılan makinelerden birisi de Stirling motorlarıdır. Stirling motorları hâlihazırda endüstriyel boyutta kullanılan bir makine olmamakla birlikte, üzerinde en çok araştırma yapılan enerji dönüşüm makinelerinden birisidir. Bu araştırmada, krank kaydırma esasına göre çalışan alfa tipi bir Stirling motorunun termodinamik performansı; iş akışkanı olan Helyumun kütlesi, silindirlerin uzunluğu, krank kaydırmanın miktarı, silindirlerin rölatif konumu, biyellerin uzunlukları ve ısıtıcı sıcaklığına bağlı olarak incelenmiştir. Yapılan incelemede kullanılan matematik model; kinematik ilişkiler, termodinamiğin birinci kanunu, ideal gazların hal denklemi, kütlenin korunumu yasası ve Schmidt formülünden oluşmaktadır. Helyum kütlesi 3,5 g, ısıtıcı sıcaklığı 800 K, silindir tepesi ile krank merkezi arasındaki uzaklık 328,5 mm, biyel uzunluğu 171 mm ve krank kaçıklığı 40 mm olarak atandığında; iş 223 J, ortalama basınç 24,9 bar, motor gücü 3,55 kW ve ısıl verim %52 olarak belirlenmiştir.

References

  • 1. Fayyazbakhsh A., Bell M.L., Zhu X., Mei X., Koutný M., Hajinajaf N., Zhang Y., Engine emissions with air pollutants and greenhouse gases and their control technologies, Journal of Cleaner Production, 376, 134260, 1-19, 2022.
  • 2. Holechek J.L., Geli H.M., Sawalhah M.N., Valdez R., A global assessment: can renewable energy replace fossil fuels by 2050, Sustainability, 14 (8), 4792, 2022.
  • 3. Karabulut H., Nodal thermodynamic analysis of a three-cylinder gamma-type Stirling engine and a conventional gamma-type Stirling engine and performance comparison, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 45-56, 2023.
  • 4. Karabulut H., Çınar C., Aksoy F., Yücesu H.S., Improved Stirling engine performance through displacer surface treatment, International Journal of Energy Research, 34 (3), 275-283, 2010.
  • 5. Ranieri S., Prado G.A., MacDonald B.D., Efficiency reduction in Stirling engines resulting from sinusoidal motion, Energies, 11 (11), 2887, 2018.
  • 6. Alfarawi S., Thermodynamic analysis of rhombic‐driven and crank‐driven beta‐type Stirling engines, International Journal of Energy Research, 44 (7), 5596-5608, 2020.
  • 7. Çınar C., Aksoy F., Solmaz H., Yılmaz E., Uyumaz A., Manufacturing and testing of an α-type Stirling engine, Applied Thermal Engineering, 130, 1373-1379, 2018.
  • 8. Karabulut H., Okur M., Ozdemir A.O. Performance prediction of a Martini type of Stirling engine, Energy Conversion and Management, 179, 1-12, 2019.
  • 9. Jiang Z., Xu J., Yu G., Yang R., Wu Z., Hu J., Zhang L., Luo E. A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery, Applied Energy, 329, 120242, 1-13, 2023.
  • 10. Erol D., Yaman H., Doğan B., A review development of rhombic drive mechanism used in the Stirling engines, Renewable and Sustainable Energy Reviews, 78, 1044-1067, 2017.
  • 11. Schneider T., Müller D., Karl J., A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power, Renewable and Sustainable Energy Reviews, 134, 110288, 1-16, 2020.
  • 12. Zare S., Tavakolpour-Saleh A.R., Aghahosseini A., Sangdani M.H., Mirshekari R., Design and optimization of Stirling engines using soft computing methods: a review, Applied Energy, 283, 116258, 1-20, 2021.
  • 13. Ahmed F., Huang H., Ahmed S., Wang X., A comprehensive review on modeling and performance optimization of Stirling engine, International Journal of Energy Research, 44 (8), 6098-6127, 2020.
  • 14. Snyman H., Harms T.M., Strauss J.M., Design analysis methods for Stirling engines, Journal of Energy in Southern Africa, 19 (3), 4-19, 2008.
  • 15. Schmidt G., The theory of Lehmann's calorimetric machine, Zeitschrift Des Vereines Deutscher Ingenieure, 15 (1), 98-112, 1871.
  • 16. Laazaar K., Boutammachte N., New approach of decision support method for Stirling engine type choice towards a better exploitation of renewable energies, Energy Conversion and Management, 223, 113326, 1-15, 2020.
  • 17. Thombare D.G., Verma S.K., Technological development in the Stirling cycle engines, Renewable and Sustainable Energy Reviews, 12 (1), 1-38, 2008.
  • 18. Cheng C.H., Yang H.S., Optimization of geometrical parameters for Stirling engines based on theoretical analysis, Applied Energy, 92, 395-405, 2012.
  • 19. Tlili I., Sa’ed A., Thermodynamic evaluation of a second order simulation for Yoke Ross Stirling engine. Energy Conversion and Management, 68, 149-160, 2013.
  • 20. Alberti F., Crema L., Design of a new medium-temperature Stirling engine for distributed cogeneration applications, Energy Procedia, 57, 321-330, 2014.
  • 21. Podešva J., Poruba Z., The Stirling engine mechanism optimization, Perspectives in Science, 7, 341-346, 2016.
  • 22. Tihonov E., Bazykin V., Mukhanov N., Gerasimova O., Soloviev S., Parameterization of the “alpha” type Stirling engine mechanism for use in the timber industry, In IOP Conference Series: Earth and Environmental Science, 574 (1), 012081, 1-9, 2020.
  • 23. Islas S., Beltran-Chacon R., Velázquez N., Leal-Chávez D., López-Zavala R., Aguilar-Jimenez J.A., A numerical study of the influence of design variable interactions on the performance of a Stirling engine system, Applied Thermal Engineering, 170, 115039, 1-14, 2020.
  • 24. Karabulut H., Çınar C., Oztürk E., Yücesu H.S., Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism, Renewable Energy, 35 (1), 138-143, 2010.
  • 25. Karabulut H., Solmaz H., Okur M., Şahin F., Dynamic and thermodynamic analysis of gamma type free-piston Stirling engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (2), 265-273, 2013.
  • 26. Karabulut H., Çınar C., Topgül T., Uysal L.K. Combined dynamic and thermodynamic investigation of a crank-shifted alpha-type Stirling engine, Arabian Journal for Science and Engineering, 1-16, 2021.
  • 27. Shendage D.J., Kedare S.B., Bapat S.L., An analysis of beta type Stirling engine with rhombic drive mechanism, Renewable Energy, 36 (1), 289-297, 2011.
  • 28. Karabulut H., Okur M., Cinar C., Mechanical configuration and thermodynamic analysis of an alpha-type Stirling engine with crank-shifted driving mechanism, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 46 (2), 431-448, 2022.
  • 29. Gholamalizadeh E., Chung J.D., Exergy analysis of a pilot parabolic solar dish-Stirling system, Entropy, 19 (10), 509, 2017.
  • 30. Tanaka M., Yamashita I., Chisaka F., Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow, JSME International Journal. Ser. 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 33 (2), 283-289, 1990.
  • 31. Duzgun M., Karabulut H., Thermal performance analysis of a Stirling engine energized with exhaust gas of a Diesel engine, Isı Bilimi ve Tekniği Dergisi, 41 (2), 249-263, 2021.
  • 32. Karabulut H., Okur M., Halis S., Altin M., Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism, Energy, 168, 169-181, 2019.
Year 2024, Volume: 39 Issue: 3, 1473 - 1484, 20.05.2024
https://doi.org/10.17341/gazimmfd.1270104

Abstract

References

  • 1. Fayyazbakhsh A., Bell M.L., Zhu X., Mei X., Koutný M., Hajinajaf N., Zhang Y., Engine emissions with air pollutants and greenhouse gases and their control technologies, Journal of Cleaner Production, 376, 134260, 1-19, 2022.
  • 2. Holechek J.L., Geli H.M., Sawalhah M.N., Valdez R., A global assessment: can renewable energy replace fossil fuels by 2050, Sustainability, 14 (8), 4792, 2022.
  • 3. Karabulut H., Nodal thermodynamic analysis of a three-cylinder gamma-type Stirling engine and a conventional gamma-type Stirling engine and performance comparison, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 45-56, 2023.
  • 4. Karabulut H., Çınar C., Aksoy F., Yücesu H.S., Improved Stirling engine performance through displacer surface treatment, International Journal of Energy Research, 34 (3), 275-283, 2010.
  • 5. Ranieri S., Prado G.A., MacDonald B.D., Efficiency reduction in Stirling engines resulting from sinusoidal motion, Energies, 11 (11), 2887, 2018.
  • 6. Alfarawi S., Thermodynamic analysis of rhombic‐driven and crank‐driven beta‐type Stirling engines, International Journal of Energy Research, 44 (7), 5596-5608, 2020.
  • 7. Çınar C., Aksoy F., Solmaz H., Yılmaz E., Uyumaz A., Manufacturing and testing of an α-type Stirling engine, Applied Thermal Engineering, 130, 1373-1379, 2018.
  • 8. Karabulut H., Okur M., Ozdemir A.O. Performance prediction of a Martini type of Stirling engine, Energy Conversion and Management, 179, 1-12, 2019.
  • 9. Jiang Z., Xu J., Yu G., Yang R., Wu Z., Hu J., Zhang L., Luo E. A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery, Applied Energy, 329, 120242, 1-13, 2023.
  • 10. Erol D., Yaman H., Doğan B., A review development of rhombic drive mechanism used in the Stirling engines, Renewable and Sustainable Energy Reviews, 78, 1044-1067, 2017.
  • 11. Schneider T., Müller D., Karl J., A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power, Renewable and Sustainable Energy Reviews, 134, 110288, 1-16, 2020.
  • 12. Zare S., Tavakolpour-Saleh A.R., Aghahosseini A., Sangdani M.H., Mirshekari R., Design and optimization of Stirling engines using soft computing methods: a review, Applied Energy, 283, 116258, 1-20, 2021.
  • 13. Ahmed F., Huang H., Ahmed S., Wang X., A comprehensive review on modeling and performance optimization of Stirling engine, International Journal of Energy Research, 44 (8), 6098-6127, 2020.
  • 14. Snyman H., Harms T.M., Strauss J.M., Design analysis methods for Stirling engines, Journal of Energy in Southern Africa, 19 (3), 4-19, 2008.
  • 15. Schmidt G., The theory of Lehmann's calorimetric machine, Zeitschrift Des Vereines Deutscher Ingenieure, 15 (1), 98-112, 1871.
  • 16. Laazaar K., Boutammachte N., New approach of decision support method for Stirling engine type choice towards a better exploitation of renewable energies, Energy Conversion and Management, 223, 113326, 1-15, 2020.
  • 17. Thombare D.G., Verma S.K., Technological development in the Stirling cycle engines, Renewable and Sustainable Energy Reviews, 12 (1), 1-38, 2008.
  • 18. Cheng C.H., Yang H.S., Optimization of geometrical parameters for Stirling engines based on theoretical analysis, Applied Energy, 92, 395-405, 2012.
  • 19. Tlili I., Sa’ed A., Thermodynamic evaluation of a second order simulation for Yoke Ross Stirling engine. Energy Conversion and Management, 68, 149-160, 2013.
  • 20. Alberti F., Crema L., Design of a new medium-temperature Stirling engine for distributed cogeneration applications, Energy Procedia, 57, 321-330, 2014.
  • 21. Podešva J., Poruba Z., The Stirling engine mechanism optimization, Perspectives in Science, 7, 341-346, 2016.
  • 22. Tihonov E., Bazykin V., Mukhanov N., Gerasimova O., Soloviev S., Parameterization of the “alpha” type Stirling engine mechanism for use in the timber industry, In IOP Conference Series: Earth and Environmental Science, 574 (1), 012081, 1-9, 2020.
  • 23. Islas S., Beltran-Chacon R., Velázquez N., Leal-Chávez D., López-Zavala R., Aguilar-Jimenez J.A., A numerical study of the influence of design variable interactions on the performance of a Stirling engine system, Applied Thermal Engineering, 170, 115039, 1-14, 2020.
  • 24. Karabulut H., Çınar C., Oztürk E., Yücesu H.S., Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism, Renewable Energy, 35 (1), 138-143, 2010.
  • 25. Karabulut H., Solmaz H., Okur M., Şahin F., Dynamic and thermodynamic analysis of gamma type free-piston Stirling engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (2), 265-273, 2013.
  • 26. Karabulut H., Çınar C., Topgül T., Uysal L.K. Combined dynamic and thermodynamic investigation of a crank-shifted alpha-type Stirling engine, Arabian Journal for Science and Engineering, 1-16, 2021.
  • 27. Shendage D.J., Kedare S.B., Bapat S.L., An analysis of beta type Stirling engine with rhombic drive mechanism, Renewable Energy, 36 (1), 289-297, 2011.
  • 28. Karabulut H., Okur M., Cinar C., Mechanical configuration and thermodynamic analysis of an alpha-type Stirling engine with crank-shifted driving mechanism, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 46 (2), 431-448, 2022.
  • 29. Gholamalizadeh E., Chung J.D., Exergy analysis of a pilot parabolic solar dish-Stirling system, Entropy, 19 (10), 509, 2017.
  • 30. Tanaka M., Yamashita I., Chisaka F., Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow, JSME International Journal. Ser. 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 33 (2), 283-289, 1990.
  • 31. Duzgun M., Karabulut H., Thermal performance analysis of a Stirling engine energized with exhaust gas of a Diesel engine, Isı Bilimi ve Tekniği Dergisi, 41 (2), 249-263, 2021.
  • 32. Karabulut H., Okur M., Halis S., Altin M., Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism, Energy, 168, 169-181, 2019.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

A. Onur Özdemir 0000-0002-6475-1976

Halit Karabulut 0000-0001-6211-5258

Early Pub Date January 19, 2024
Publication Date May 20, 2024
Submission Date March 24, 2023
Acceptance Date August 9, 2023
Published in Issue Year 2024 Volume: 39 Issue: 3

Cite

APA Özdemir, A. O., & Karabulut, H. (2024). Krank kaydırmalı bir stirling motorunun termodinamik performansının nodal analiz ile incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1473-1484. https://doi.org/10.17341/gazimmfd.1270104
AMA Özdemir AO, Karabulut H. Krank kaydırmalı bir stirling motorunun termodinamik performansının nodal analiz ile incelenmesi. GUMMFD. May 2024;39(3):1473-1484. doi:10.17341/gazimmfd.1270104
Chicago Özdemir, A. Onur, and Halit Karabulut. “Krank kaydırmalı Bir Stirling Motorunun Termodinamik performansının Nodal Analiz Ile Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 3 (May 2024): 1473-84. https://doi.org/10.17341/gazimmfd.1270104.
EndNote Özdemir AO, Karabulut H (May 1, 2024) Krank kaydırmalı bir stirling motorunun termodinamik performansının nodal analiz ile incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1473–1484.
IEEE A. O. Özdemir and H. Karabulut, “Krank kaydırmalı bir stirling motorunun termodinamik performansının nodal analiz ile incelenmesi”, GUMMFD, vol. 39, no. 3, pp. 1473–1484, 2024, doi: 10.17341/gazimmfd.1270104.
ISNAD Özdemir, A. Onur - Karabulut, Halit. “Krank kaydırmalı Bir Stirling Motorunun Termodinamik performansının Nodal Analiz Ile Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (May 2024), 1473-1484. https://doi.org/10.17341/gazimmfd.1270104.
JAMA Özdemir AO, Karabulut H. Krank kaydırmalı bir stirling motorunun termodinamik performansının nodal analiz ile incelenmesi. GUMMFD. 2024;39:1473–1484.
MLA Özdemir, A. Onur and Halit Karabulut. “Krank kaydırmalı Bir Stirling Motorunun Termodinamik performansının Nodal Analiz Ile Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 3, 2024, pp. 1473-84, doi:10.17341/gazimmfd.1270104.
Vancouver Özdemir AO, Karabulut H. Krank kaydırmalı bir stirling motorunun termodinamik performansının nodal analiz ile incelenmesi. GUMMFD. 2024;39(3):1473-84.