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Abstract 

A new three-parameter lifetime model, called the inverted exponentiated Lomax (IEL) 

distribution is proposed. The IEL distribution is the inverse form of the exponentiated Lomax 

distribution. Some properties of the IEL distribution are established. The maximum likelihood 

and the asymptotic confidence interval estimators are obtained in presence of Type I censored 

samples. Two real data sets are employed to clarify the usefulness and flexibility of the IEL model 

with some known distributions.  
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1. INTRODUCTION 

 

The Lomax (L) distribution is a significant and widely used lifetime model. It has been employed in some 

areas, as; income, size of towns, queuing theory etc. It utilized for stochastic modeling of minimizing failure 

rate. The L distribution can be deduced as a special case from the compound gamma distribution [1]. The 

L distribution has been proposed as a substitutional to the exponential distribution for heavy-tailed data sets 

[2]. The L distribution has been applied in right censored data [3]. The record values of the L distribution 

have been proposed in [4,5].  Bayesian and non-Bayesian estimators of the sample size for L distribution, 

depending on Type-I censored (TIC) samples were discussed in [6]. The estimation of the L distribution 

under optimum step -stress accelerated life testing has been studied in [7].  The estimation of the L 

parameters depending on hybrid censoring samples has been considered in [8]. The estimation of the L 

distribution in accelerated life tests was discussed in [9]. Modified and extended versions of the L 

distribution are available such as; Marshall-Olkin extended-L distribution  [10,11], exponentiated Lomax 

(EL) distribution [12], transmuted EL (TEL) distribution [13], extended Poisson-L distribution [14], 

exponential L distribution [15], Weibull L distribution [16], power L distribution [17]. Furthermore, EL 

geometric distribution, power L Poisson distribution, exponentiated Weibull L distribution and inverse 

power L distribution have been discussed in [18-21]. 

 

The cumulative distribution function (cdf) and probability density function (pdf) of a random variable B 

has a L distribution, respectively, are   
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( ; , ) 1 (1 ) , , , 0,W b b b                                                                                                        (1) 

and 

  
( 1)( ; , ) (1 ) , , , 0.w b b b                                                                                                    (2) 

 

The EL has the following cdf and pdf (see [12]),  

 

 ( ; , , ) 1 (1 ) , , , , 0,W b b b


                                                                                            (3) 

 

and 

 

 
1
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                                                        (4) 

 

In reliability studies, life-tests are performed to observe the life of the experimental units put on test. In 

such a life test, some surviving units are eliminated or lost owing to time, cost restrictions and instant needs 

of the units for other purposes. Censored samples are known as the incomplete data that obtained from a 

life-test. Censored samples provide only portion of the information about the failure time of the units under 

study. Consequently, this information should not be neglected or addressed as a failure. Good estimation 

parameters would not be possible to make and thus doing a proper analysis in the absence of such data. The 

conventional TIC and Type-II censoring (TIIC) are the two widespread censored samples. TIC data occur 

when every unit of a system are spotted up to the date of completion of the inspection. In TIC scheme, the 

test is terminated at the fixed time of examination. In TIIC scheme, the test is terminated at a pre-fixed 

number items have failed.  

 

Lifetime distributions, in presence of censored sampling schemes, have been gained a great importance 

owing to their broad applications in disparate fields. So, our motivation here is to study the parameter 

estimation of the new three-parameter lifetime model, based on TIC samples. The new model is the inverse 

form of EL distribution; we call it the IEL. The remnant of the paper contains the following sections. The 

IEL distribution is provided in Section 2. Statistical properties are given in Section 3. Then, in Section 4, 

maximum likelihood (ML) and approximate confidence intervals (CIs) estimators under TIC samples are 

derived. Simulation studies are performed in Section 5. In addition, real data applications are performed in 

Section 6. The paper closed with a conclusion in Section 7. 

 

2. INVERTED EXPONENTIATED LOMAX DISTRIBUTION 

 

The importance of inverted distributions appears in applications related to many areas such as; 

econometrics, biological and engineering sciences, medical research and life testing. So, the main aim here 

is to introduce the IEL as the inverse form of the EL distribution. 

 

The cdf of the IEL distribution, denoted by IEL  , , ,    is derived, using the inverse transformation

Z= 1/ B , in (3) as follows 

 

   ; , , 1 1 1 ; , , , 0.F z z
z




     


     
 

                                                                (5) 

 

The corresponding pdf is obtained as follows 

 

   
1

1

2; , , 1 1 1 ; , , , 0.f z z
z zz
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The reliability function and hazard rate function (hrf) of the IEL distribution are given, respectively, as 

follows: 

   ; , , 1 1 ,R z
z




  


   
 

 
and 
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Further, the reversed-hrf and cumulative hrf of Z are obtained as follows 
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and 

 

     ; , , ln ; , , ln 1 1 .H z R z
z


      



      
 

 
 

Figures 1(a) and 1(b) display some potential shapes of the pdf and hrf of the IEL for different values of the 

parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear from Figure 1(a) that the shapes of the IEL pdf are flexible for some selected parameter values. 

Also, as seen from Figure 1(b) that the behavior of the hrf are decreasing, reversed J-shaped, increasing and 

up-side-down. 

 

3. STATISTICAL PROPERTIES 

 

Statistical properties of the IEL distribution including; moments, quantile measures, Rényi entropy, and 

distribution of order statistics (OS) are derived. 

 

  

  
       (a)       (b) 

Figure 1. (a) the pdf plots and (b) the hrf plots of IEL for some selected values of parameters 
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3.1 Moments 

 

The kth moment about zero for the IEL distribution, using pdf (6), is derived as follows 
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Then Equation (7) convert to 
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By using the geralized binomial series, then  
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The kth central moment ( k ) of Z is given by 

 

   1 1
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To check how the mean and variance change for different parameters values, numerical results are provided 

via Mathcad (14). Table 1 gives the mean and variance of the IEL distribution for diverse parameter values. 

From Table 1, it can be detected that both values of the mean and variance of the IEL decrease as the values 

of  increase and increase as the values of  and increase. 
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Table 1. Mean and variance of IEL distribution for diverse values of ,  and  

α λ 

θ=3 

 

θ=4 

 

θ=4.5 

 

θ=5 

 

1           
2

1  
1           

2

1  
1               

2

1  
1           

2

1  

  

0.5 

  

1 0.159     0.157 0.09        0.039 0.072       0.023 0.059     0.015 

2 0.318     0.628 0.181      0.154 0.144       0.093 0.118     0.06 

3 0.477     1.413 0.271      0.347 0.217       0.209 0.178     0.136 

  

1.5 

  

1 0.891     1.771 0.628      0.554 0.552       0.376 0.494     0.273 

2 1.782     7.084 1.256      2.214 1.103       1.503 0.987     1.093 

3 2.673     15.94 1.885      4.982 1.655       3.381 1.481     2.458 

  

3.5 

  

1 2.564   10.011 1.928      3.265 1.739       2.263 1.595     1.679 

2 5.128   40.042 3.855    13.058 3.479       9.051 3.19       6.717 

3 7.691   90.095 5.783    29.381 5.218     20.365 4.785   15.114 

 

Furthermore, we can get the moment generating function from moments in such a way, where, it is easy to 

show that 
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One can obtain the moments about zero, 
1 2, ,...   from the previous equation, where,

1 2(0), (0),....Z ZM M     
  

 

3.2 Quantile Function 

 

We can determine the quantile function of Z ~  , ,IEL     with pdf (6), where; 
1( ) ( )Q u F u  as: 

 

 

1
1

1

( ) 1 1 1 ,Q u u





 

        
 

                                                                                                        (9) 

 

where, u, has the uniform random variable in the interval (0,1). Individually, the first quartile, second and 

third quartile are obtained by substituting u=0.25, 0.5 and u=0.75 in (9). The Bowley skewness ( BS ); (see 

[22]), based on quantiles, is given by 

 

           0.75 2 0.5 0.25 0.75 0.25 .BS Q Q Q Q Q   
 

 

Further, the Moors kurtosis ( MK ); (see [23]) is defined as 

 

             0.875 0.625 0.375 0.125 0.75 0.25 ,MK Q Q Q Q Q Q    
 

 

where Q (.) denotes the quantile function. The graphs of BS and MK are given below for different values 

of the parameters. Figures 2 and 3 display plots of BS and MK for selected values of   as function of   

and for selected values of  as function of . These plots demonstrate that the BS  reduces for increasing 
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value of   for fixed   and when the value of   increases for fixed . From these figures, we reveal that 

the MK  curves have considerable flexibility.  

 

 

 

 

Figure 2. Skewness of the IEL with different values of α and θ 

 

  

Figure 3. Kurtosis of the IEL with different values of α and θ 

 

3.3 Rényi Entropy  

 

Entropy has been utilized in disparate directions, for instance; science and engineering. Furthermore, it is 

a measure of variation of the uncertainty. The Rényi entropy of a random variable Z, for 0,  and 1,  is 

formulated as 
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The Rényi entropy of IEL distribution is obtained by inserting pdf (6) in (10) as follows 
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Using binomial expansion, we obtain 
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After simplification, the formula becomes 
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3.4 Distribution of Order Statistics 

 

The pdf of the qth OS of the IEL distribution is determined. Let    1 2 ( ),... nZ Z Z   be the OS for a random 

sample 
1 2,Z ,...,ZnZ  of size n from the IEL distribution. It is recognized that, the pdf of the qth OS (see 

[24]) is defined by  
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Inserting cdf (5) and pdf (6) in (11), we obtain  
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As specifically, the pdf of the smallest OS; (1)Z , can be obtained as: 
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As well, the pdf of the largest OS; ( )nZ , can be obtained as: 
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4. PARAMETER ESTIMATION  

 

 The point and approximate CI estimators of the IEL population parameters, under TIC scheme, are 

obtained using ML technique. 

 

Let  (1) (2) ( )... rZ Z Z    be a TIC sample of size r whose life time's follow the IEL distribution (6) are 

placed on a life test and the test is stopped at specified time T before all n items have failed. The log-

likelihood function, based on TIC, is  
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, so for simplicity, we write 
iS instead of ( )iS . The partial derivatives with 

respect to the parameters are obtained as: 
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and 
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Then the ML estimators of the population parameters are the solution of non-linear Equations (13) - (15) 

after setting them equal zeros. These equations are very difficult to obtain, so iterative procedures are used.   

  Further, in case of interval estimation, the 3 3  observed information matrix    u vI I   for

   , , ,u v    is considered. It is known that, under the regularity condition, the asymptotic properties 

of the ML method ensure that:     1

3
ˆ 0,dn N I    as n  where 

d   means the 

convergence in distribution, with mean  0 0,0,0
T

   and 3 3   variance-covariance matrix  1I    then, 

the  1  00 1 %  CIs for , ,    and   are given, respectively, as follows  

 

 2

2

ˆ ˆ ,Z    2

2

ˆ ˆZ    and  2

2

ˆ ˆ ,Z    

 

where 

2

Z
 is the  100 1 2   th standard normal percentile and 

2 ’s denote the diagonal elements of 

 1I   corresponding to the model parameters.  

 

5. SIMULATION STUDY 

 

In this section, a numerical study is presented to examine the behavior of the estimators for different 

parameter values. The behavior of the estimates of unknown parameters is measured by their mean square 

errors (MSEs), relative biases (RBs), standard errors (SEs), lower confidence bound (LCB), upper 

confidence bound (UCB), and length of 95% CIs. The numerical procedures are formed as follows: 
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Step (1): 1000 random sample of sizes 50, 100, 150, 200, 250 and 300 are selected, these random samples 

are generated from the IEL distribution.  

Step (2): Values of the unknown parameters ( , ,   ) are selected as Set1= ( 0.5, 0.8, 2),    

Set2= ( 0.3, 2, 1.5)     , Set3= ( 1.5, 0.5, 0.4)     and Set4= ( 2, 1.5, 0.8).    

The termination time is selected as T=0.3. 

Step (3): The MSEs, RBs, SEs for all samples sizes and for all selected sets of parameters are computed. 

Furthermore, the LCB, UCB and length with confidence level 0.95 for all samples sizes and for all selected 

sets of parameters are calculated. 

 

Numerical outcomes are reported in Tables 2 to 5. Based on these tables, we can detect the following about 

the performance of the estimated parameters:  

1. For all sets of parameters, SEs of all parameters decrease as the sample sizes increase (see Tables 2, 3 

and Figure 5). 

2. The MSEs and RBs of ,   and    decrease as the sample sizes increase for different selected sets of 

parameters (see Tables 2, 3 and Figure 4). 

3. The MSEs and SEs of   are smaller than the corresponding MSEs and SEs for the other estimates of 

  and   in almost all of the cases (see Table 2). 

 

  

Figure 4. MSEs for Set1 Figure 5. SEs for Set3 

 

4. As it seems from Figure 6, the SEs of   for all sets of parameters have the smallest values for the same 

sample size. Also, it is clear that Set 1 has the smallest SEs corresponding to the other sets of 

parameters.  

5. For all sets, it is clear that the length of CIs for the model parameters decreases as sample size increases 

(see Tables 4, 5 and Figure 7). 

6. As it seems from Figure 7, the length of ,   and   decreases as the sample sizes increase for different 

selected sets of parameters (see also, Tables 4 and 5). 
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Figure 6. SEs of   for all set of parameters Figure 7. Lengths for Set4 

 

7. As it seems from Figures 8 and 9, the MSEs of  and   for all sets have the smallest values for the 

same sample size. Also, it is clear that the Sets 1 and 2 have the smallest MSEs corresponding to other 

sets of parameters. 

 

 

  

Figure 8. MSEs of   for all set of 

parameters 

Figure 9. MSEs of   for all set of 

parameters 
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Table 2. MSEs , RBs and SEs for Set1 and Set 2 of the IEL distribution via TIC 

n Properties 

 0.5, 0.8,  2       0.3,  2,  1.5      

̂  ̂  ̂  ̂  ̂  ̂  

50 

MSE 0.0294 0.0383 0.0847 0.0091 0.4532 0.0773 

RB 0.3410 0.2435 0.1392 0.3142 0.3354 0.1803 

SE 0.0004 0.0004 0.0017 0.0130 0.0580 0.0650 

100 

MSE 0.0225 0.0298 0.0474 0.0079 0.2339 0.0225 

RB 0.2994 0.2135 0.1043 0.2963 0.2395 0.0949 

SE 0.0001 0.0002 0.0006 0.0067 0.0660 0.0480 

150 

MSE 0.0192 0.0172 0.0238 0.0073 0.2041 0.0186 

RB 0.2770 0.1616 0.0734 0.2853 0.2239 0.0876 

SE 0.0000 0.0001 0.0003 0.0005 0.0590 0.0370 

200 

MSE 0.0183 0.0099 0.0070 0.0070 0.1704 0.0154 

RB 0.2704 0.1217 0.0362 0.2781 0.2046 0.0803 

SE 0.0000 0.0001 0.0002 0.0034 0.0540 0.0310 

250 

MSE 0.0177 0.0080 0.0043 0.0069 0.0876 0.0082 

RB 0.2659 0.1094 0.0272 0.2706 0.1459 0.0579 

SE 0.0000 0.0001 0.0000 0.0027 0.0490 0.0260 

300 

MSE 0.0173 0.0028 0.0012 0.0065 0.0498 0.0047 

RB 0.2630 0.0624 0.0055 0.2680 0.1093 0.0431 

SE 0.0000 0.0001 0.0001 0.0008 0.0010 0.0000 

 

Table 3. MSEs, RBs and SEs for Set3 and Set 4 of the IEL distribution via TIC 

n Properties 

 1.5,  0.5,  0.4       2,  1.5,  0.8      

̂  ̂  ̂  ̂  ̂  ̂  

50 

MSE 0.1738 0.3377 0.0016 0.4805 0.9579 0.0154 

RB 0.2742 1.1608 0.0890 0.3445 0.6512 0.1464 

SE 0.0680 0.0280 0.0180 0.0760 0.0600 0.0410 

100 

MSE 0.0227 0.2545 0.0004 0.1607 0.7940 0.0080 

RB 0.0971 1.0077 0.0411 0.1993 0.5932 0.1086 

SE 0.0390 0.0250 0.0093 0.0420 0.0460 0.0220 

150 

MSE 0.0038 0.2517 0.0002 0.0715 0.7082 0.0052 

RB 0.0366 1.0022 0.0320 0.1328 0.5604 0.0878 

SE 0.0290 0.0240 0.0065 0.0310 0.0400 0.0150 

200 

MSE 0.0017 0.2343 0.0001 0.0603 0.6830 0.0041 

RB 0.0227 0.9672 0.0244 0.1222 0.5506 0.0788 

SE 0.0220 0.0200 0.0049 0.0230 0.0310 0.0110 

250 

MSE 0.0004 0.2312 0.0001 0.0486 0.6575 0.0033 

RB 0.0520 0.9611 0.0213 0.1098 0.5403 0.0714 

SE 0.0190 0.0180 0.0040 0.0190 0.0270 0.0090 

300 

MSE 0.0003 0.2272 0.0001 0.0467 0.5695 0.0026 

RB 0.0174 0.9529 0.0174 0.1077 0.5029 0.0630 

SE 0.0160 0.0150 0.0033 0.0170 0.0240 0.0075 
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Table 4. LCB, UCB and Length of the estimates for Set 1 and Set 2 of the IEL distribution  

n Properties 

 0.5, 0.8,  2       0.3,  2,  1.5      

LCB UCB Length LCB UCB Length 

50 

  0.6650 0.6760 0.0110 0.3680 0.4200 0.0520 

  0.6000 0.6110 0.0110 0.9426 1.2160 0.2734 

  1.6980 1.7450 0.0470 1.1030 1.3560 0.2530 

100 

  0.6480 0.6520 0.0040 0.3760 0.4020 0.0260 

  0.6240 0.6340 0.0097 1.3920 1.6500 0.2590 

  1.7790 1.8040 0.0250 1.2640 1.4510 0.1870 

150 

  0.6370 0.6400 0.0022 0.3770 0.3940 0.0180 

  0.6670 0.6740 0.0067 1.4360 1.6680 0.2320 

  1.8460 1.8610 0.0150 1.2970 1.4410 0.1440 

200 

  0.6340 0.6360 0.0014 0.3770 0.3900 0.0130 

  0.7000 0.7050 0.0055 1.4850 1.6970 0.2120 

  1.9220 1.9330 0.0110 1.3200 1.4390 0.1200 

250 

  0.6320 0.6330 0.0010 0.3760 0.3860 0.0110 

  0.7100 0.7150 0.0047 1.6120 1.8050 0.1930 

  1.9410 1.9500 0.0090 1.3620 1.4650 0.1030 

300 

  0.6310 0.6320 0.0008 0.3760 0.3850 0.0088 

  0.7480 0.7520 0.0039 1.6930 1.8690 0.1760 

  1.9850 1.9930 0.0073 1.3900 1.4810 0.0910 

 

Table 5. LCB, UCB and Length of the estimates for Set 3 and Set 4 of the IEL distribution 

n Properties 

 1.5,  0.5,  0.4       2,  1.5,  0.8      

LCB UCB Length LCB UCB Length 

50 

  1.7780 2.0450 0.2670 2.5400 2.8380 0.2990 

  1.0250 1.1360 0.1110 2.3590 2.5950 0.2360 

  0.4000 0.4710 0.0710 0.8380 0.9970 0.1590 

100 

  0.3980 0.4350 0.1520 2.3160 2.4810 0.1640 

  0.9540 1.0540 0.1000 2.3000 2.4800 0.1800 

  0.3980 0.4350 0.0370 0.8450 0.9290 0.0850 

150 

  1.4990 1.6110 0.1120 2.2050 2.3260 0.1200 

  0.9530 1.0490 0.0960 2.2620 2.4190 0.1570 

  0.4000 0.4260 0.0250 0.8410 0.8990 0.0580 

200 

  1.4900 1.5780 0.0880 2.1980 2.2900 0.0920 

  0.9430 1.0240 0.0800 2.2650 2.3870 0.1230 

  0.4000 0.4190 0.0190 0.8410 0.8850 0.0440 

250 

  1.4710 1.5440 0.0730 2.1820 2.2570 0.0760 

  0.9460 1.0150 0.0700 2.2580 2.3630 0.1050 

  0.4010 0.4160 0.0160 0.8400 0.8750 0.0350 

300 

  1.4750 1.5360 0.0610 2.1820 2.2490 0.0670 

  0.9470 1.0060 0.0590 2.2070 2.3010 0.0940 

  0.4010 0.4130 0.0130 0.8650 0.8650 0.0290 
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6. REAL DATA APPLICATIONS 

 

We fit the IEL distribution to two different real data sets and we check the behavior with those of the inverse 

L (IL), TEL, inverted exponentiated Rayleigh (IER), inverse Weibull (IW) and Kumarswamy 

exponentiated L (KEL). In each real data set, the ML estimates and their corresponding SEs of the model 

parameters are obtained. The model selection is conducted using; -2 log-likelihood (-2logl), Akaike 

information criterion (AIC), the consistent AIC (CAIC), Bayesian information criterion (BIC), Hannan-

Quinn information criterion (HQIC), Cramer-von Mises (W*) statistic, Kolmogorov-Smirnov (K-S) 

statistic, and Anderson-Darling (A*) statistic.  However, the better distribution corresponds to the smaller 

values of the previous measures.  Furthermore, the histogram and the estimated pdf for the models are 

displayed for each data set. Moreover, the empirical cdf and estimated pdf for the models are displayed for 

both real data. 

 

Data Set 1: The first data set represents the number of million revolutions of the 23 ball bearings before 

failure ([25]). Table 6 gives the ML estimates of the model parameters and their SEs (in the parentheses) 

for 23 ball bearings before failure. The results in Table 7 indicate that the IEL model is suitable for this 

data set based on the selected criteria. The IEL model has the smallest goodness of fit measures.  

 

Table 6. ML estimates and SEs for the first data 

Distribution ̂  ̂  ̂  ̂  ̂  â   b̂  

IEL 51.071 12.299 5.018 - - - - 

 (10.069) (1.558) (1.696) - - - - 

IL 119.394 - 0.461 - - - - 

 (299.793) - (0.892) - - - - 

TEL 0.491 2.671 21.538 0.036 - - - 

 (0.547) (1.163) (27.976) (0.046) - - - 

IER - - 0.605917 - 946.054337 - - 

 - - (0.146) - (325.895) - - 

IW 48.575 - 1.834 - - - - 

 (5.866) - (0.269) - - - - 

KEL 2.325 0.565 48.382 - - 1.282 31.478 

 (7.064) ((0.44) (65.078) - - (1.724) (75.744) 

 

Table 7. Goodness of fit measures for the first data 

Distribution -2LogL AIC BIC CAIC HQIC 𝑊∗ 𝐴∗ K-S 
P-

value 

IEL 226.046 232.046 235.452 233.309 232.902 0.030 0.190 0.088 0.994 

IL 243.577 247.577 249.848 248.177 248.149 0.274 3.927 0.305 0.027 

TEL 228.764 236.764 241.306 238.986 237.906 0.048 0.354 0.108 0.950 

IER 238.411 242.411 244.682 243.011 242.982 0.117 1.297 0.276 0.060 

IW 231.561 235.561 237.832 236.161 236.132 0.066 0.520 0.190 0.810 

KEL 226.120 236.120 241.797 239.649 237.547 0.031 0.192 1.000 0.000 

 

It is also clear from Figure 10 that the IEL distribution provides a better fit and therefore be one of the best 

models for this data set. 
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Data Set 2: The second data set represents remission times (in months) of a random sample of 128 bladder 

cancer patient’s [26]. Table 8 gives the ML estimates of the model parameters and their SEs (in the 

parentheses) for the 128 bladder cancer patient’s. The results in Table 9 indicate that the IEL model is 

suitable for this data set based on the selected criteria. The IEL model has the smallest values corresponding 

to other models. 

 

Table 8. ML estimates and SEs for the second data 

 

 

Table 9. Goodness of fit measures for the second data 

 

 

  

 

 

Figure 10. Estimated pdfs and cdfs of models for 23 ball bearings before failure 

Distribution ̂  ̂  ̂  ̂  ̂   â   b̂   

IEL 30.214 5.079 1.083 - - - - 

 (3.464) (0.046) (0.106) - - - - 

IL 1.531 - 2.782 - - - - 

 (0.304) - (0.818) - - - - 

TEL 0.257 6.482 1.107 0.02 - - - 

 (0.315) (1.098) (0.231) (0.001774) - - - 

IER - - 0.183 - 0.094 - - 

 - - (0.018) - (0.02) - - 

IW 2.287 - 0.69 - - - - 

 (0.312) - (0.042) - - - - 

KEL 3.172 0.087 1.43 - - 2.138 78.45 

 (5.013) (0.038) (0.297) - - (0.444) (29.662) 

Distribution -2LogL AIC BIC CAIC HQIC 𝑊∗ 𝐴∗ K-S P-value 

IEL 801.096 807.096 815.652 807.290 810.573 0.051 0.341 0.046 0.948 

IL 824.528 828.528 834.232 828.624 830.845 0.414 3.131 0.103 0.133 

TEL 842.018 850.018 861.426 850.343 854.653 0.058 0.377 0.256 0.000 

IER 938.469 942.469 948.174 942.565 944.787 1.634 8.940 0.313 0.000 

IW 857.352 861.352 867.056 861.448 863.669 0.944 5.508 0.995 0.005 

KEL 816.565 824.565 835.973 824.891 829.201 0.382 2.163 1.000 0.000 
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Figure 11. Estimated pdfs and cdfs of models for 128 bladder cancer  patient’s 

 

It is also clear from Figure 11 that the IEL distribution provides a better fit and therefore be one of the best 

models for this data set. 

 

7. CONCLUDING REMARKS 

 

In this paper, three–parameter model, called the inverted exponentiated Lomax distribution is proposed and 

discussed. Some of statistical properties of the subject model for instance, quantile measures, moments, 

Rényi entropy and distribution of OS are obtained. The ML method is implemented for estimating 

population parameter depending on TIC sample. Also, the approximate CIs are obtained. The simulation 

study is implemented to check the performance of the estimators. Practical relevance and applicability of 

the IEL distribution are illustrated via real data sets. The real life application indicates that the IEL model 

produces a good fit than the other competitive models.  
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