
∗ Corresponding author: ramazanunlu@gumushane.edu.tr

Süleyman Demirel Üniversitesi Süleyman Demirel University
Fen Bilimleri Enstitüsü Dergisi Journal of Natural and Applied Sciences
Cilt 23, Sayı 2, 635-646, 2019 Volume 23, Issue 2, 635-646, 2019

DOI: 10.19113/sdufenbed.494396

A Comparative Study of Machine Learning and Deep Learning for Time Series Forecasting: A
Case Study of Choosing the Best Prediction Model for Turkey Electricity Production

Ramazan ÜNLÜ ∗1

Gümüşhane Üniversitesi, İktisadi ve İdari Bilimler Fakültesi, Yönetim Bilişim Sistemleri Bölümü, 29000, Gümüşhane
(ORCID: https://orcid.org/0000-0002-1201-195X)

(Alınış / Received: 10.12.2018, Kabul / Accepted: 30.07.2019, Online Yayınlanma / Published Online: 30.08.2019)

Keywords
Machine learning,
Deep learning,
LSTM,
Time series

Abstract: Over the last decades, Turkey pays special attention to electricity production
to afford its needs. Researchers applied different methodologies including statistical-
based and artificial intelligence-based to correctly predict the future amount of electricity
production, consumption, and demand. However,limited researchers focused on Turkey’s
electricity production prediction problem as a time series analysis. For this reason, we
tackle this problem by considering it as a time series analysis in this study. We have
used different methods including traditional machine learning algorithms Support Vector
Regression (SVR) and Multilayer Perceptrons (MLP) and a deep learning algorithm Long
Short-Term Memory (LSTM) to create a better model for Turkey monthly electricity
production dataset. Based on our findings LSTM outperforms SVR and MLP approaches
in terms of commonly used statistical error evaluation metrics

Zaman Serileri Tahminlenmesinde Makine Öğrenimi ve Derin Öğrenme Tekniklerinin
Kıyaslanması: Türkiye Elektirik Üretimi için En İyi Tahmin Modelinin Seçilmesine Yönelik

Bir Vaka Çalışması

Anahtar Kelimeler
Makine öğrenimi,
Derin öğrenme,
UKDH,
Zaman serileri

Özet: Son yıllarda Türkiye ihtiyaçlarını karşılayabilmek adına elektrik üretimine yoğun
bir şekilde dikkat vermektedir. Araştırmacılar elektrik üretim, tüketim ve talep mikarını
doğru bir şekilde tahmin etmek için istatistik ve yapay zeka tabanlı yöntemleride içeren
birçok farklı metod uygulamışlardır. Sınırlı sayıda araştırmacı Türkiye’nin elektrik üre-
tim tahminleme problemini bir zaman serisi analizi olarak irdelemiştir. Bu nedenle bu
çalışmada söz konusu problem zaman serileri analizi olarak ele alınmıştır. Bu açıdan
çalışmada hem Destek Vektör Makineleri (DVM) ve Çok Katmanlı Nöronlar (ÇKN) gibi
klasik makine öğrenimi yöntemleri hem de Uzun Kısa Dönemli Hafıza (UKDH) yöntemi
gibi derin öğrenme yöntemi Türkiye’nin üretmesi gereken aylık elektrik üretim miktarını
tahmin etmek için kullanılmıştır. Çalışmanın bulgularına dayalı olarak derin öğrenme
algoritması istatistiksel hata oranlarına göre diğer klasik makine öğrenimi yöntemlerinden
daha başarılı sonuçlar vermektedir.

1. Introduction

Prediction of energy sources is an important issue for the
governments, energy sector investors and other related
corporations. Creating a sufficient prediction model for
energy production, consumption or demand can help future
planning regarding energy sustainability which is a global
issue. Many countries have various sources to produce
energy to be able to afford their mandatory needs. While
developed countries have much more alternatives such as
natural gas, nuclear, wind, solar energy sources, etc. ,
developing countries, for example, Turkey, have limited
sources to produce the required amount of energy. That’s
why future planning in terms of the amount of energy is
becoming more vital to allocate potential sources in an

optimum way. Thus, researchers have been focused on
generating a better prediction model for energy context
over the decades.

When we talk about the energy, the first thing comes to
mind is possibly the electricity which might be produced
from many different sources and is a fundamental power
source for almost everything used in our daily life. There-
fore, electricity production planning is crucial for many
countries as well as Turkey. Turkey’s electricity produc-
tion and demand planning studies go back to 1960s led by
State Planning Organization. Before sophisticated predic-
tion methods proposed or well improved, simple statistical
methods like regression method are used for future plan-
ning over the years.

635

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

Not only public or official enterprises focus on to solve
the aforementioned problem, but studies in the literature
show researchers used the various methods to create elec-
tricity prediction model from electricity data. However,
researchers more interested in specifically electricity con-
sumption and demand in Turkey because of government
and their related branches put major emphasis on modeling
and predicting electricity consumption. From this context,
we can find various studies in the literature taking care of
solving the problem. In the study of Dilaver and Hunt, a
good grouping of method description developed to create
a prediction model is given for electricity data [1]. Those
are categorized as 1) causality studies, 2) relationship stud-
ies, and 3) forecast studies. Because our motivation is
creating a better prediction model we give our attention to
the forecast studies. Also, as we mentioned above, there
can be found many different studies around the world giv-
ing prominence to the forecasting model by using various
electricity dataset belongs to different regions or countries.
And yet our study specific to Turkey, we focus more on
researches used historical Turkey Electricity datasets.
In the study of Unler, Particle Swarm Optimization and
Ant Colony algorithm are used with different features such
as population, import, and export amount [2]. Ant Colony
Optimization for the purpose of generating and demand-
ing the amount of electricity is also used by [3]. Another
prediction technique called Grey Theory (GT) [4] which
can solve uncertain systems and imperfect information to
forecast Turkey’s electricity demand [5]. Similarly, Hamza-
cebi and Es used optimized GT to predict Turkey’s annual
electricity consumption [6].
Autoregressive Integrated Moving Average (ARIMA) and
seasonal ARIMA are used in the study of [7]. They have
used the methods not only to create a baseline prediction
model but also use them for future forecasting. Besides
this study, there exist various researches using statistical
methods such as ARIMA and Seasonal ARIMA [8–10]. In
addition to those specific papers, more detailed information
can be found in the survey paper proposed by [11].
As well as classical statistical methods, researchers have
also used more sophisticated techniques such as Machine
Learning Algorithms. Support Vector Machine (SVM)
is used by [12] in which the electricity consumption of
Turkey is modeled as a function of four socioeconomic in-
dicators, namely population, GNP, imports and exports. Ar-
tificial Neural Network (ANN) is another advance method
utilized for energy-related datasets [13, 14]. In those stud-
ies using the ANN method, a shallow network is created for
low dimensional datasets (i.e. ANN with one hidden layer
fed by 3 dimensional 32 samples [13]). As in the study
of [12], some others utilized different attributes forming
raw data and generate to find energy demand or production
instead of using the known energy values itself as time
series [14]. Another approach preferred is Fuzzy logic em-
ployed by [15]. Instead of using multiple attributes, gross
domestic product (GDP) and energy demand were selected
as input and output parameters respectively.
On the other hand, some researches convert electricity data
itself to the times series data to create a prediction model
without needing any additional information [1, 16, 17].

In the context of artificial intelligence, studies analyzing
electricity data as a time series are limited compared to the
classical methods. Time series analysis with a univariate
dataset (i.e. having only electricity production data) is not
as easy as using a tabular dataset. Based on our literature
review, articles proposed between 2005-2018 focuses on
Turkish Electricity production, demand, and consumption
forecasting problem, but there exist limited studies ap-
proaching the problem from a time-series perspective. On
the other hand, studies which take the problem as a time
series analysis have too bounded details on the data prepro-
cessing step [1, 16, 17]. More details and foundations of
the studies about Turkey’s electricity prediction task can be
found in the study of [1]. Also, notwithstanding advanced
methods such as SVR and ANN are well-performed tech-
niques for the prediction problems, more sophisticated
methods such as deep learning methodologies are not ap-
plied so far. That’s why it can be thought of as another gap
in the literature related to the used methods.

Machine learning (ML) models have been widely used and
new algorithms are developed in order to handle with un-
supervised and supervised learning problems over the last
decades [18–20]. During the recent years, deep learning
models have taken a lot of attention and various deepest
structures such as a deep neural network (DNN), deep be-
lief network(DBN), recurrent neural network(RNN), and
so on are proposed and make a huge impact on the field.
Although the core objective of those methods is the same
which is revealing hidden patterns from much more com-
plex dataset, the systematic of algorithms and targeted data
structure might be different. Generally speaking, a DNN is
similar to the MLP except that it might have many hidden
layers. Thanks to the advance in computational technology,
it is possible to solve a neural network system consisting of
many hidden layers. Due to its deepest structure scholars
called it as deep neural network. It is also the general name
of deeper neural network structures [21]. On the other
hand, some deep neural network approaches such as DBN
is designed for a more specific purpose. DBF is a genera-
tive model and it is trained by a series of stacked Restricted
Boltzmann Machines (RBMs). While a regular DNN is
a feed-forward neural network DBN has the undirected
connection between some layers. And, those undirected
layers are trained using an unsupervised learning algorithm
[22]. The reason behind training some layers is to obtain
good generalization while the number of hidden layers
increase in which regular DNN overfits [23]. Another deep
learning approach is RNN which is designed to be trained
on sequenced datasets. As different from DNN and DBN,
it has recurrent connections between units [24]. As we
mentioned above, RNN is specifically designed for the se-
quential datasets and it achieves a state of art performance
on important problems such as natural language process-
ing [25], speech recognition [26], and machine translation
[27].

For aforementioned reasons, we have used three differ-
ent methodologies including machine learning algorithms
SVR and ANN and Deep learning method LSTM with the
purpose of comparison of chosen methods based on error
rates for Turkey electricity production dataset.

636

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

The remainder of this article is organized as follows. In
Section 2, the details of the dataset and data preparation
step are described. In Section 3, we provide the results of
chosen methods in terms of given error evaluation metrics.
In final Section 4 we conclude and discuss our study as
well as a projection for future studies.

2. Material and Method

As different from statistical methods in a time series anal-
ysis, we need to prepare the dataset to effectively use a
machine learning algorithm. To do this, we can unroll the
process in three steps 1) restructure dataset 2) build the
model of experiment 3) run the model. The followed work-
flow is shown in Figure 1. Therefore, we have organized
the section in a way that explains each step in details. In the
next Section 2.1, we give the details and the visualization
of the dataset. Through the experiment, all data samples
are normalized. On the other hand, all the methods are
compared based on evaluation metrics are given in Table 1.
These are commonly used evaluation metrics used for the
regression problems.

Table 1. Evaluation metrics and corresponding formula-
tions.

The formulation of evaluation metrics
Mean Absolute Error (MAE)

1
n ∑

n
i=1 |y− ỹ|

Root Absolute Error (MSE)
∑

n
i=1(y−y)2

n

Root Relative Squared Error (RMSE)√
∑

n
i=1(y−y)2

n

Correlation Coefficient (R2)(
n∑(yỹ)−∑y∑ ỹ√

n(∑y2)−(∑y)2−
√

n∑(ỹ2)−(∑ ỹ)2

)2

2.1. Preperation of the dataset

In our experiment, we have used a real data set obtained
from TEIAS (Turkish Electricity Transmission Corpora-
tion) website https://www.teias.gov.tr to apply and com-
pare machine learning algorithms. The data set shows
monthly electricity production from January 1975 to De-
cember 2017. It is a univariate sequential data as shown in
Figure 2.
We can see in Figure 2 the data is not stationary. In other
words, there exist an increasing trend in the data and that
does not make predictions easy. Therefore, we should
remove trends from the data. One easiest way of doing that
is differencing the data. That can verbally be described
as the observation from the previous time step (t-1) is
subtracted from the current observation (t). Finally, we
will have differenced data. The following Figure 3 shows
the data without any trend.

Removing trends from the data make it easy to analyze.
However, before utilizing chosen algorithms we need to
prepare the dataset to which chosen algorithms can be
applied.
To simply illustrate the process of the preparation step, as-
sume that we are given a dataset X = {xi}m

n , where xi ∈ R ,
which is suitable to utilize a machine learning algorithm.
This dataset can be illustrated as in matrix Equation 1.
In this dataset, input x11,x12, . . . ,x1m yields the output y1,
input x21,x22, . . . ,x2m yields the output y2 and so on. How-
ever, a time series dataset does not look like the described
one above. Therefore, we need to reconstruct it to apply
a machine learning algorithm. A toy time-series data or
sequential data X = {xi}, where xi ∈ R, which is also a
column vector shown in the matrix below.

x11 x12 x13 . . . x1m
x21 x22 x23 . . . x2m
...

...
...

...
...

xn1 xn2 xn3 . . . xnm

=

y1
y2
...

yn

 (1)

As different from the previous dataset, the sequence of the
observations is crucial and highly influence the result of
the forecast problem. We can think x2 is the result of x1,
x3 is the results of x2 and so on.

X =

x1
x2
...

xn

 (2)

To reconstruct the dataset, we might create some lags
which can be thought as the input data. There is no clear
answer to the question of how many lags need to be cre-
ated to get the optimum result. However, the grid search
method can be applied to find the best possible solution.
The dataset above can be reconstructed based on creating
1 lag as shown in the following matrix.

x1 x2
x2 x3
...

...
xn NaN

 (3)

In the example above, the raw dataset is the input data and
created lag has become the output data. One needs to note
that the last data sample xn does not yield an output because
the result of it is not given. In that point, xn can be used as
input to forecast xn+1 and xn+1 is used to forecast xn+2 and
so on. This given toy example is for the univariate time
series and we can extend this procedure for the multivariate
dataset. So, let say we are given raw data consist of two
features as shown in the matrix below.

x11 x12
x21 x22
...

...
xn1 xn2

 (4)

As following the procedure above, the reconstructed
dataset will be as shown in the matrix below. Features

637

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

Figure 1. Illustration of the work-flow.

Figure 2. Turkey electricity production from January
1975 to December 2017. There are 516 months between
these dates.

in the raw dataset desired to be forecasted will be the out-
put of reconstructed dataset, and all other features will be
the input data.

x11 x12 x21 x22
x21 x22 x31 x32
...

...
...

...
x(n−1)1 x(n−1)2 xn1 xn2

xn1 xn2 NaN NaN

 (5)

One of the necessities of the construction process to be able
to run the experiment is removing NaN values which are
created as a result of unknown prior values. After removing
them we are ready to apply any machine learning algorithm
and as we mentioned above we utilized one classical ML
method and one Deep Learning methods given in Section
2 in details.
After following the described procedure, we can now trans-
form the dataset given at the beginning of the section. To
concretely illustrate, assume we have created 1 lag and 4
lags for the given dataset. Following matrices show the re-
constructed electricity dataset used through our experiment.
We represent the only head of the dataset for readability
convenience.

Figure 3. The dataset transformed by differencing pro-
cess.

−181.29
122.40
−42.5

7.0
−1.60
54.90
11.79
55.10

4.5
106.59

...

1-lag−−→

−181.29 122.40
122.40 −42.5
−42.5 7.0

7.0 −1.60
−1.60 54.90
54.90 11.79
11.79 55.10
55.10 4.5

4.5 106.59
106.59 42.1

...
...

−181.29
122.40
−42.5

7.0
−1.60
54.90
11.79
55.10

4.5
106.59

...

4-lags−−−→

−181.29 122.40 −42.5 7.0
122.40 −42.5 7.0 −1.60
−42.5 7.0 −1.60 54.90

7.0 −1.60 54.90 11.79
−1.60 54.90 11.79 55.10
54.90 11.79 55.10 4.5
11.79 55.10 4.5 106.59
55.10 4.5 106.59 42.1

...
...

638

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

The last column of the constructed data is the output of the
corresponding sample. For instance, in the case of creating
4 lags, the output of the sample [−181.5,122.40,−42.5] is
[7.0] , the output of sample [122.40,−42.5,7.0] is [1.60]
and so on. By doing this, our dataset is constructed to
be suitable for the application of any machine learning
method.

2.2. Algorithms

Through this study, we are being motivated to create an
algorithmic pool to make a better comparison. For this
reason, we chose three different algorithms Support Vector
Regression (SVR), Multilayer Perceptrons (MLP), Long
Short Term Memory (LSTM) with the aim of having a
different mathematical theory behind them. By doing this,
we can bring individual strengths of the algorithms into
the forefront. Each of them is explained in details during
the following subtitles.
Support Vector Regression: Support vector ma-
chines(SVMs) is a well-known supervised learning algo-
rithm proposed by [28]. The method is first design for
the binary classification problem which can be linearly
separable. Then it is extended to use for the regression
problems named as Support Vector Regression (SVR) [29].
To mathematically formulate it assume we have a training
dataset(x1,y2),,(xl ,yl), where each xi ∈ Rn,yi ∈ R the
decision function is given by Equation 6.

f (x) = wφ(x)+b (6)

With respect to w ∈ Rn and b ∈ R, where φ denotes a non-
linear mapping from Rn to high dimensional space.
To ensure f (x) is as flat as possible, we need to find it with
the minimal norm value as shown in Equation 7.

J(w) =
1
2
||w|| (7)

Subject to all residuals having a value less than ε; or, in
equation form:

wφ(xi)+b− yi ≤ ε (8)

We can infer that it is not possible to meet this condition
for the all points. So, we can add slack varibles ξ+ and ξ−

to provide some flexibility and rewrite the formulations as
shown below in Equation 9:

J(w) =
1
2
||w||+C

n

∑
i
(ξ++ξ

−) (9)

subject to:

yi− (wφ(xi)+b)≤ ε +ξ
+

(wφ(xi)+b)− yi ≤ ε +ξ
−

ξ
+ ≥ 0

ξ
− ≥ 0

where C is a constant value that control the penalty values
imposed to the variable which lies outside the ε margin and
help to avoid being overfitting. Finally, we can compute
the loss function that ignores the error if the predicted

value is less than or equal to ε . Thus, it can be formulated
as below

Lε =

{
0, if |(wφ(xi)+b)− yi| ≤ ε

|(wφ(xi)+b)− yi|− ε, otherwise
(10)

For the mathematical convenience, the optimization
problem described above can be solved in dual form.

Multi Layer Perceptrons: Artificial neural network or
called Multilayer perceptrons (MLP) is commonly used
method to retrive the nonlinear relation from the data [30–
33]. It is structed by stacked fully connected neurons or
called perceptrons. It consists some layers named as in-
put,hidden, and output as shown in Figure 4. Data enters
to the system from input layers, and input values are for-
warded to neurons in the next layer. The value of the each
neuron is the linear combination of the values of the nodes
from the previous layer. This process is called as feed
forwerded neural networks. Then the system works from
output layer to the input layer to omptimize weights by
taking partial derivatives. This method is named as back
propagation. To mathematically describe, the output of nth

neuron in lth layer is calculated as the linear combination
of the previous layer such that:

o = yn
l = wT x+b (11)

where wT is the connection weight The value of the node is
transformed by an activation function. There exist different
activation functions in the literature. We have used the
sigmoid one which transfom the value as being 1 or 0
based on the Equation 12.

σ(x) =
1

1− e−(wT x+b)
(12)

After calculation the value of each node, we need to ad-
just the weights that minimize the error which can be
calculated based on the Equation 13 for given dataset
D = {(x1, t1),(x2, t2), . . . ,(xd , td), ..,(xm, tm)}

E[~w] =
1
2 ∑

d∈D
(td−od) (13)

Finally to adjust wi as wi := wi +∆wi, we need to utilize
following partial derivatived procedure simultaneously for
each wi.

∆wi =−η
∂E
∂wi

(14)

where η is the learning rate, ∆wi is the adjusment value.
After taking the derivatives, we can wrap up the adjustment
rules as shown in Equation 15

∆wi =−η ∑
d∈D

(td−od)xid (15)

One needs to note that, because our problem is a regression
problem, there will be only one neuron in the output layer
of the MLP model.

639

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

Figure 4. MLP structure. It consists of three kinds of
layers; Input, Hidden, and Output layers.

Long-Short Term Memory: Long Short-Term Memory
(LSTM) networks are an extension for recurrent neural
networks (RNN) developed by [34]. The neural network
described in the previous title has forward connections.
Each layer connects to the next layer and final hidden layer
connects to the output layer. As different from the tradi-
tional neural network, LSTM is well suited to remember
what is important things learned from experiences previ-
ously occurred. To start from very beginning, assume have
a given sequential dataset X = {x(i)<t>,y(i)<t>} where i
represent ith example, t is the position of the sample in
a sequence and y(i)<t> is the true output for the ith ex-
ample in t position. To understand LSTM structure in
details , we first need to look at the RNN and Gated
Recurrent Unit (GRN). Assume we are given a dataset
X = {x<1>,x<2>, . . . ,x<t>, . . . ,x<Tx>} (i.e X is a sentence
and x<t> is the tth word in that sentence). RNN takes the
information from x<t> and activation value a<t−1> from
the previous time step to help prediction with y<t>. The
simple structure of an RNN is shown in Figure 5.

Figure 5. Simple RNN structure for sequential dataset.

Based on the structure of the RNN we can build the formu-
lation of the RNN as shown in Equations 16 and 17.

a<t> = g(Waaa<t−1>+Waxx<t>+ba) (16)

where a<t> is the activation value in time step t, g is the
choosen activation function, Waa is the parameter for the
activation values, Wax is parameters for the input values,
an ba is the bias value. By using the value of a<t>, the
prediction of the corresponding sample y<t> can be made
based on Equation 17.

ŷ<t> = g(Wyaa<t>+by) (17)

where Wyaa is the paremeters for the activations and by is
the bias value.
After forward feeding the neural network, the parameters
can be optimized using backpropagation algorithm with
the aim of minimizing loss function which is given in
Equations 18 and 19.

L<t>(ŷ<t>,h<t>) =−y<t>logŷ<t>− (1− y<t>)logŷ<t>

(18)
This is the Loss value for the specified sample x<t>. Thus,
we can calculate overall loss value based on following
Equation 19

L(ŷ<t>,h<t>) =
Tx

∑
t=1

(ŷ<t>,y<t>) (19)

Now, we can go through the GRU before explaining the
LSTM structure. Basic GRU cell structure is given in
Figure 6

Figure 6. Simple RNN structure for sequential dataset.

GRU is the modification of the RNN hidden unit. The
idea behind the GRU is remembering valuable information
belongs to the input data until using that. So, assume that
c<t> which is equal to a<t> is the memory cell in the neural
network structure used to save some crucial information.
We need to decide over every time step whether to change
the value of c<t>. In other words, we need to ask the
question of whether we should update the information
reserved still need to be remembered. To do this, we first

640

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

need to calculate candidate memory cell value ĉ<t> as
shown in Equation 20.

ĉ<c> = g(Wccc<t−1>+Wcxx<t>+bc) (20)

where g is the activation function, Wcc and Wcx the parame-
ters for the memory cell values and input data respectively,
c<t−1> is the memory cell value from previous time step.
The crucial problem in this point deciding if that is the
correct time to update the memory cell value. To decide
this, we define a parameter Γu named as update gate which
takes either 1 or 0 meaning "update" and "do not update"
respectively. The formulation of Γu is as in Equation 21.

Γu = g(Wuxc<t−1>+Wuxx<t>+bu) (21)

where g is the activation function, Wuc and Wux are the
paremeters for memory cell value and input data respec-
tively during the update calculation. Finally c<t> value
can be overwrited as in Equation 22

c<t> := Γuĉ<t>+(1−Γu)c<t−1> (22)

Note that if the Γu is equal to 1 c<t> = ĉ<t> meaning that
update c<t>, otherwise c<t> = c<t> meaning that do not
update. The whole process of GRU is illustrated as in
Figure 6.
We can now go forward to LSTM which is an even slightly
more powerful and more general version of GRU. The
assumption c<t> = a<t> is no longer valid anymore. Also,
we define two new parameters Γ f and Γo named as forget
gate and output gate respectively. Revised formulation of
the LSTM is shown in Equations 23,24,25,26,27 and 28.

ĉ<t> = g(Wcaa<t−1>+Wcxx<t>+bc) (23)

Γu = g(Wuaa<t−1>+Wuxx<t>+bu) (24)

Γ f = g(Wf aa<t−1>+Wf xx<t>+b f) (25)

Γo = g(Woaa<t−1>+Woxx<t>+bo) (26)

c<t> = Γuĉ<t>+Γ f c<t−1> (27)

a<t> = Γoc<t> (28)

As we can see that rule of overwriting c<t> based on Equa-
tion 22 is not valid anymore, instead we imply the formula
given in Equation 23 and activation a<t> is calculated
based on Equation 28 instead of equaling it to c<t>. The
simple structure of LSTM cell is shown in Figure 7.

2.3. K-Fold Cross-Validation

K-fold cross-validation is a method which optimizes the
calculation time and variance. The input data as randomly
are parted to k groups (named as fold). Each group is used
for test and remaining for the training processes [35]. In
other words, the algorithm tries to learn and test itself in k
times. Finally, the performance of the method is calculated

Figure 7. The LSTM cell structure for the sequential
dataset.

⊗
and

⊕
represents element-wise multiplica-

tion and summation processes respectively.

as the average evaluation metric (i.e. average accuracy for
the classification problem) [36]. Cross-validation struc-
ture is illustrated in Figure 8. Now, assume we are given
a dataset D which is randomly split k different subsets
(D1,D2,Dk) such that:

k⋃
i=1

D1,D2,,Dk = D (29)

During the prediction process, as we mentioned above each
Di is saved for the testing and remaining is saved for the
training process. It is repeated until each subset of the data
is used as a test set (i.e. for the 10-folds cross-validation
this process repeated 10 times). Finally, the performance
of the predictor is calculated as the average of k runs.

p∗= ∑
k
i=1 pi

k
(30)

where (pi, i = 1,2,k) is the performance of predictor
in ith iteration.

Figure 8. :Cross validation model for k=10.

3. Results

In this section, we provide results of all chosen algorithms
and comparison of them in terms of selected error metrics.

641

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

As we mentioned in Section 2, there is no clear way to
decide how many lags to get the best possible solution.
Therefore, we have created lags ranging from 1 to 20 for
comparison purpose. All experiments are conducted with
Python version of 3.6 with Scikit-learn and Keras libraries
and performed on Intel Core i7, 2.7 GHz with 16 of RAM
in a 64-bit platform. Finally, the dataset is normalized as
usual before running the algorithms.

Figure 9 shows the comparison of all three methods con-
cerning MAE error metrics. As it can be seen that the
LSTM method gives a better result than the other two
methods MLP and SVR. The SVR and LSTM method
behave similarly in terms of the number of lags. With the
small number of lags, they do not learn well enough, and
error decreases while the number of lags increases to some
point. After that, the SVR method does not enhance itself
and LSTM performance starts to decrease.

Figure 9. Comparison of MAE scores.

As it should be expected the same thing is happening for
other error metrics, the following Figures 10 and 11 shows
the performance of methods in terms of MSE and RMSE.

Figure 10. Comparison of MSE scores.

Figure 11. Comparison of RMSE scores.

We can see the same pattern through the number of lags.
LSTM method again outperforms the other two methods.
On the other hand, MLP gives the best result using some
number of lags such as lag=4, however, there is no robust-
ness through the different lags. It is highly sensitive to
the number of lags so that might be a crucial problem in
terms of choosing the optimum lag number. On the con-
trary, LSTM and SVR are more robust. They learn better
and better by increasing the number of lags to some point.
After that, the SVR method stays stable and LSTM starts
to yields poor result.
The reason behind that might be an effect of the small and
high number of lags in the learning process. With the small
number of lags, the performance of each algorithm is very
poor because algorithms do not learn enough from back in
the history of the data. On the other hand, with the high
number of lags provide to algorithms chance of learning
from the past of the data enough. However, going back
too much will misguide methods due to the meaningful
relationship between the current and past data will be di-
minished. Thus, choosing the number of lags such that
giving enough information from the past while keeping
its influence to current time maximum helps to get the
possible result.
By using maximum meaningful information back in the
history of the data can yield the predictions which mostly
related to current time data called ground true outputs. The
following Figure 12 shows the R2 score between the predic-
tions of all three methods and known true values. LSTM
method captures the best relation in general in comparison
to the other two methods.

Figure 12. Comparison of R2 scores.

642

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

So far, we give the comparison figures to create a visually
better understanding. The following Tables 2 , 3, and 4
show overall results of methods MLP, SVR, and LSTM
respectively in terms of MAE, MSE, RMSE , and R2 evalu-
ation metrics in details for each lags. The best performance
for each metric is bolded. As we pointed out before, the
number of lags highly effect the performance of the meth-
ods. While MLP does not produce a stable results as the
number of lags increase, SVR and LSTM leverage their
performance until some points. Then, their performance re-
duce because of high dimension of the data (i.e increasing
number of lags increases the dimension of data).

Table 2. The error rates of MLP method for different
lags.

Lags MAE MSE RMSE R2

Lag-1 1342.16 2833446.8 1683.28 0.8
Lag-2 1343.47 2835498 1683.89 0.8
Lag-3 1347.89 2857622.99 1690.45 0.8
Lag-4 929.04 1462929.51 1209.52 0.89
Lag-5 1349.86 2859035.66 1690.87 0.8
Lag-6 982.47 1581702.33 1257.66 0.88
Lag-7 1112.97 2025346.21 1423.15 0.86
Lag-8 1346.33 2855400.56 1689.79 0.8
Lag-9 981.49 1580526.44 1257.19 0.89

Lag-10 1344.66 2853948.82 1689.36 0.8
Lag-11 1367.36 2909293.26 1705.67 0.79
Lag-12 1348.41 2861808.26 1691.69 0.79
Lag-13 688.34 831057.75 911.62 0.94
Lag-14 737.31 944260.15 971.73 0.93
Lag-15 1357.55 2882366.3 1697.75 0.79
Lag-16 739.27 891317.4 944.1 0.94
Lag-17 1357.32 2884360.06 1698.34 0.79
Lag-18 753.69 912913.83 955.47 0.93
Lag-19 683.69 778465.28 882.31 0.94
Lag-20 689.38 807424.36 898.57 0.94

Table 3. The error rates of SVR method for different
lags.

Lags MAE MSE RMSE R2

Lag-1 1315.89 2788474.6 1669.87 0.8
Lag-2 1264.34 2527743.54 1589.89 0.82
Lag-3 1164.25 2126850.81 1458.37 0.84
Lag-4 1118.25 2012922.23 1418.77 0.85
Lag-5 1120.23 2000213.65 1414.29 0.85
Lag-6 1097.92 1907059.41 1380.96 0.86
Lag-7 1029.1 1772126.83 1331.21 0.87
Lag-8 1000.68 1646982.14 1283.35 0.88
Lag-9 1029.92 1678488.57 1295.56 0.87

Lag-10 953.42 1409385.62 1187.18 0.9
Lag-11 950.04 1405610.85 1185.58 0.9
Lag-12 812.08 1183322.2 1087.81 0.91
Lag-13 812.48 1183361.07 1087.82 0.91
Lag-14 819.33 1201854.56 1096.29 0.91
Lag-15 830.28 1207597.39 1098.91 0.91
Lag-16 828.73 1207207.95 1098.73 0.91
Lag-17 828.82 1210439.38 1100.2 0.91
Lag-18 817.5 1167423.28 1080.47 0.91
Lag-19 819.88 1173491.32 1083.28 0.91
Lag-20 812.53 1171159.29 1082.2 0.91

Table 4. The error rates of LSTM method for different
lags.

Lags MAE MSE RMSE R2

Lag-1 1313.49 2786239.3 1669.2 0.8
Lag-2 1185.48 2316925.14 1522.14 0.84
Lag-3 1061.45 1829924.74 1352.75 0.89
Lag-4 973.74 1758285.52 1326 0.87
Lag-5 945.5 1585439.01 1259.14 0.89
Lag-6 886.48 1332626.53 1154.39 0.9
Lag-7 788.37 1272171.72 1127.91 0.91
Lag-8 932.25 1461408.05 1208.89 0.89
Lag-9 850.01 1207662.77 1098.94 0.91

Lag-10 711.33 811535.25 900.85 0.94
Lag-11 657.95 752604.17 867.53 0.95
Lag-12 569.92 586025 765.52 0.96
Lag-13 507.6 511054.27 714.88 0.96
Lag-14 718.88 825223.67 817.74 0.94
Lag-15 679.99 732359.11 855.78 0.95
Lag-16 783.9 904106.27 950.85 0.94
Lag-17 940.17 1387581.99 1177.96 0.91
Lag-18 860.96 1113159.15 1055.06 0.92
Lag-19 910.37 1288234.26 1135 0.91
Lag-20 909.39 1283639.83 1132.98 0.91

In addition to given error figures and tables, we provide the
following Figures 13, 14, and 15 illustrating the actual and
predicted values for each method. Due to the high number
of lags which ranging from 1 to 20, we only illustrate the
one that gives the minimum RMSE score.

643

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

Figure 13. Comparison of actual values and predicted
values by LSTM .

Figure 14. Comparison of actual values and predicted
values by MLP.

Figure 15. Comparison of actual values and predicted
values by SVR.

4. Discussion and Conclusion

In this study, we have focused on how to convert a se-
quential dataset to a dataset to which a supervised learning
algorithm can be applied. Also, we have compared three
different methods in terms of various evaluation metrics
which are commonly used in regression problems. Based
on the results given in Section 3, the deep learning method
LSTM outperforms the other two approaches in terms of
all evaluation metrics in the majority of the number of lags.
Table 5 shows the average performance of all methods
regarding chosen evaluation metrics

Table 5. The average error rates of three methods across
all lags.

Lags MAE MSE (1000s) RMSE R2

MLP 1090.13 2022.45 1381.62 0.86
LSTM 855.543 1279.50 1104.68 0.91
SVR 971.28 1599.09 1251.54 0.88

Through the number of lags, the MLP method fluctuates
too much so that yields the worst performance in general.
On the other hand, LSTM is the most successful method
algorithm among the others it is more robust to the number
of lags compare to MLP method. Although SVR cannot
outperform the LSTM method in the majority of the lags,
it still gives acceptable results when using the high number
of lags. Table 6 illustrates how many times each algorithm
gives better results than others for all given evaluation
metrics. For example, LSTM method outperforms others
by giving the best performance for all metrics 14 times,
MLP 5 times, and SVR 1 time. One needs to note that,
this finding is only for the best performance comparison,
so it is not possible to infer SVR is the worst method. If
we look at the comparison between SVR and MLP, we can
conclude the SVR outperform MLP method regarding the
average evaluation scores as shown in Table 7.

Table 6. Number of the best performance of each algo-
rithm.

Method MLP SVR LSTM
The best performance 5 1 14

Table 7. Number of the best performance of SVR and
MLP algorithms.

Method MLP SVR
The best performance 8 12

As details given in Section 3, a too small and too big
number of lags highly alter the performance of methods
because of the lack of enough information or meaningful
information from the past of the data. For future research,
finding a way to choose the optimum number of lags before
setting up the experiment can save from computational
time and might yield optimum performance. Also, we have
proved that deep learning algorithm is the best candidate
for future forecasting to be able to get the prediction with
the minimum error.

References

[1] Zafer Dilaver and Lester C Hunt. Industrial electricity
demand for turkey: a structural time series analysis.
Energy Economics, 33(3):426–436, 2011.

[2] Alper Ünler. Improvement of energy demand fore-
casts using swarm intelligence: The case of turkey
with projections to 2025. Energy Policy, 36(6):1937–
1944, 2008.

[3] M Duran Toksarı. Estimating the net electricity en-
ergy generation and demand using the ant colony
optimization approach: case of turkey. Energy Policy,
37(3):1181–1187, 2009.

644

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

[4] Yi Lin, Mian-yun Chen, and Sifeng Liu. Theory of
grey systems: capturing uncertainties of grey infor-
mation. Kybernetes, 33(2):196–218, 2004.

[5] Diyar Akay and Mehmet Atak. Grey prediction with
rolling mechanism for electricity demand forecasting
of turkey. Energy, 32(9):1670–1675, 2007.

[6] Coskun Hamzacebi and Huseyin Avni Es. Forecast-
ing the annual electricity consumption of turkey using
an optimized grey model. Energy, 70:165–171, 2014.

[7] Volkan Ş Ediger and Sertac Akar. Arima forecasting
of primary energy demand by fuel in turkey. Energy
Policy, 35(3):1701–1708, 2007.

[8] Erkan Erdogdu. Natural gas demand in turkey. Ap-
plied Energy, 87(1):211–219, 2010.

[9] Jun-song Jia, Jing-zhu Zhao, Hong-bing Deng, and
Jing Duan. Ecological footprint simulation and pre-
diction by arima modelâC”a case study in henan
province of china. Ecological Indicators, 10(2):538–
544, 2010.

[10] Ali Sait Albayrak. Arima forecasting of primary
energy production and consumption in turkey: 1923-
2006. Enerji, piyasa ve düzenleme, 1(1):24–50, 2010.

[11] Samuel Asuamah Yeboah, Manu Ohene, TB Wereko,
et al. Forecasting aggregate and disaggregate energy
consumption using arima models: a literature sur-
vey. Journal of Statistical and Econometric Methods,
1(2):71–79, 2012.

[12] Kadir Kavaklioglu. Modeling and prediction of
turkeyâC™s electricity consumption using support
vector regression. Applied Energy, 88(1):368–375,
2011.

[13] Yetis Sazi Murat and Halim Ceylan. Use of arti-
ficial neural networks for transport energy demand
modeling. Energy policy, 34(17):3165–3172, 2006.

[14] Adnan Sozen, Erol Arcaklioglu, and Mehmet Ozkay-
mak. Modelling of turkey’s net energy consumption
using artificial neural network. International Jour-
nal of Computer Applications in Technology, 22(2-
3):130–136, 2005.

[15] Serhat Kucukali and Kemal Baris. TurkeyâC™s
short-term gross annual electricity demand forecast
by fuzzy logic approach. Energy policy, 38(5):2438–
2445, 2010.

[16] Coşkun Hamzaçebi. Forecasting of turkey’s net elec-
tricity energy consumption on sectoral bases. Energy
policy, 35(3):2009–2016, 2007.

[17] Ujjwal Kumar and VK Jain. Time series models
(grey-markov, grey model with rolling mechanism
and singular spectrum analysis) to forecast energy
consumption in india. Energy, 35(4):1709–1716,
2010.

[18] Ramazan Ünlü and Petros Xanthopoulos. Estimating
the number of clusters in a dataset via consensus
clustering. Expert Systems with Applications, 125:33–

39, 2019.

[19] Ramazan Ünlü and Petros Xanthopoulos. A weighted
framework for unsupervised ensemble learning based
on internal quality measures. Annals of Operations
Research, 276(1-2):229–247, 2019.

[20] Amanpreet Singh, Narina Thakur, and Aakanksha
Sharma. A review of supervised machine learning
algorithms. In 2016 3rd International Conference
on Computing for Sustainable Global Development
(INDIACom), pages 1310–1315. IEEE, 2016.

[21] Jürgen Schmidhuber. Deep learning in neural net-
works: An overview. Neural networks, 61:85–117,
2015.

[22] Yuming Hua, Junhai Guo, and Hua Zhao. Deep belief
networks and deep learning. In Proceedings of 2015
International Conference on Intelligent Computing
and Internet of Things, pages 1–4. IEEE, 2015.

[23] Geoffrey E Hinton, Simon Osindero, and Yee-Whye
Teh. A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554, 2006.

[24] Mike Schuster and Kuldip K Paliwal. Bidirectional
recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681, 1997.

[25] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. Recurrent neural
network based language model. In Eleventh annual
conference of the international speech communica-
tion association, 2010.

[26] Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. Speech recognition with deep recurrent neu-
ral networks. In 2013 IEEE international conference
on acoustics, speech and signal processing, pages
6645–6649. IEEE, 2013.

[27] Nal Kalchbrenner and Phil Blunsom. Recurrent con-
tinuous translation models. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1700–1709, 2013.

[28] Vladimir Vapnik. Statistical learning theory. 1998,
volume 3. Wiley, New York, 1998.

[29] Harris Drucker, Christopher JC Burges, Linda Kauf-
man, Alex J Smola, and Vladimir Vapnik. Support
vector regression machines. In Advances in neural in-
formation processing systems, pages 155–161, 1997.

[30] Richard Lippmann. An introduction to computing
with neural nets. IEEE Assp magazine, 4(2):4–22,
1987.

[31] Teuvo Kohonen. Self-organization and associative
memory, volume 8. Springer Science & Business
Media, 2012.

[32] David E Rumelhart and James L McClelland. Parallel
distributed processing: explorations in the microstruc-
ture of cognition. volume 1. foundations. 1986.

[33] Teuvo Kohonen. An introduction to neural comput-
ing. Neural networks, 1(1):3–16, 1988.

645

R. Ünlü / Time Series Analysis with Deep Learning and Traditional Machine Learning Methods

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[35] Jiawei Han, Jian Pei, and Micheline Kamber. Data

mining: concepts and techniques. Elsevier, 2011.

[36] Ian H Witten, Eibe Frank, Mark A Hall, and Christo-
pher J Pal. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2016.

646

	Introduction
	Material and Method
	Preperation of the dataset
	Algorithms
	K-Fold Cross-Validation

	Results
	Discussion and Conclusion

