

Mugla Journal of Science and Technology

198

FIRST-PERSON USER GAME SOFTWARE DESIGNING BASED ON RULE-BASED
ARTIFICIAL INTELLIGENCE TECHNIQUE

İlhan TARIMER*
Faculty of Technology, Muğla Sıtkı Koçman University, Muğla, itarimer@mu.edu.tr

https://orcid.org/0000-0002-7274-5680
Ömercan ŞEN

Faculty of Technology, Muğla Sıtkı Koçman University, Muğla, omersansen16@gmail.com

https://orcid.org/0000-0003-2382-0653
Received: 06.06.2018, Accepted: 16.10.2018
*Corresponding author

Research Article

DOI: 10.22531/muglajsci.449029

Abstract

In this study, a game designing based on rule-based artificial intelligence on a 3-D game engine has been developed. In the
existing computer games in which artificial intelligence is not used, it is seen that a fixed story is used. Since as a novelty
rule-based artificial intelligence is used in this game, the story of the game has been dynamically defined based on artificial
intelligence, different story combinations have been created within the developed game. The design of the game has been
edited according to the possible actions of the user. A main rule has been set in the content, this rule has been applied by
artificial intelligence, the animations and the existing rule-based artificial intelligence technique have been run in the
process. The important difference of this game in which the rule-based artificial intelligence technique is used is revealing
of story dynamically, and the progressing of game that depends on the first-person user (FPU).
Keywords: Rule-based artificial intelligence, first-person user (FPU), game.

KURAL TABANLI YAPAY ZEKÂ TEKNİĞİNE GÖRE BİRİNCİ ŞAHIS KULLANICILI
BİR OYUN YAZILIMI TASARIMI

Öz

Bu makalede, 3-B oyun motoru üzerinde, birinci şahıs kullanıcılı olarak kural tabanlı yapay zekâ tekniğine göre bir oyun
tasarımı geliştirilmiştir. Yapay zekânın kullanılmadığı mevcut bilgisayar oyunlarında sabit bir öykünün kullanıldığı
görülmektedir. Bu oyunda bir yenilik kural tabanlı yapay zekâ kullanıldığı için, geliştirilen bu oyunda yapay zekâya bağlı
olarak oyunun hikâyesi dinamik bir şekilde tanımlanmış ve oyun içerisinde farklı hikâye kombinasyonları oluşturulmuştur.
Bu oyunun tasarımı, kullanıcının yapması olası hamleler üzerine kurgulanmıştır. İçerikte ana bir kural belirlenmiş, bu kural
yapay zekâ ile uygulanmış, animasyonlar ve mevcut kurala dayalı yapay zekâ tekniği süreç içerisinde yürütülmüştür. Kural
tabanlı yapay zekâ tekniğinin kullanıldığı bu oyunun önemli farkı, hikâyelerin dinamik olarak ortaya çıkması ve oyunun
gidişatının birinci şahıs kullanıcıya bağlı olarak belli olmasıdır.
Anahtar Kelimeler: Kural tabanlı yapay zekâ, birinci şahıs kullanıcı, oyun
Cite
Tarımer, İ., Şen, Ö., (2018). “First-person user game software designing based on rule-based artificial intelligence
technique”, Mugla Journal of Science and Technology, 4(2), 198-204.

1. Introduction
From the past to the now, many maps and a lot of stories have
been designed. The internal structure of the games along with
the development of the game industry has changed. From the
past in which the rule-based artificial intelligence technique
begun to be used in the game, to the nowadays, stories are
mostly penetrated to the game dynamically. Therefore, it has
not need to create much stories. The game has a script which
was written in its own and dynamic narratives that can be
created by the present artificial intelligence within the game.
In the literature researches, we have seen several publications
regarding to 3D game designing. The reference [1] has
presented a 3D game designing and explored the challenges.
The reference [2] has discussed the scene optimizations for
mobile phones by using Unity 3D. In [3], the authors focused on
the use of 3D game engines with the emerging experience based

design approach. In [4], the authors made a contribution to
smart game market.
The rule-based artificial intelligence algorithm technique is an
algorithm that allows player characters to be moved according
to a possible game style managed by the computer. The
movements of characters managed by computer cannot get out
of the existing rules. The solely option that can be made against
player’s attacks is to apply existing rules and to make artificial
intelligence to generate story dynamically within the play [5,
21]. Artificial intelligence programming is a process that it
calculates possible movements, which can be made by user,
then a new programming realizes after occurring new
circumstances [1]. Rule-based artificial intelligence algorithm
technique is used in survival games, in first-person games, and
in strategy and simulation games. This technic has been used

İlhan Tarımer, Ömercan Şen
First-person user game software designing based on rule-based artificial intelligence technique

199

since it operates over probabilities and it is open to be
developed in the study.
The animations, character controls, and menu designing are
seen in [6]. In [7] the importance of artificial intelligence is
declared. The map designing, adding new characters to game,
and how to create animations specified in [8]. In [9], the last
version of map, final animations and the last clone soldiers are
told.
In this study, it has been intended that the artificial intelligence
creates different game stories by using rule-based artificial
intelligence at the scenes and by taking the user as a basis. The
soldiers created by artificial intelligence monitors user
continually. The content of the developed game has had
partially mobile game features, and had partially computer
features; hence, it can be said that it is designed together with
different specifications from both two platforms.
In the developed game, there are 2 map designing’s. Soldier
characters are added to these maps according to rule-based
artificial intelligence; the animations of walking, running,
changing bullets and shooting are added to these soldier
characters. The system of gathering scores obtained from
executing the game is designed; a menu is created from the
scores gathered by the user and all the scores are accumulated
within the menu. The map designing is done within the game
engine by purchasing the necessary objects from Asset Store
[10]. The soldier objects, score enhancing and score reducing
objects are placed to the map.
The developed game has three hierarchical structures as
between character to character, between gun to camera, and
between character to camera [11]. The soldier designings and
animations in the game are made on the blender program; the
coding operations are made on C# [12]. The platforms of Unity
2D and 3D are sophisticated and multiple purpose game
engines that computer game can be designed; they support to
write codes on both C# and Java script with their drag and drop
functionality [5]. Animation designing of objects within the
game has been made by its game engine, and the physical
properties have been also added. At the game in which solid
object properties are used, the player is prevented from passing
through these objects [13]. It was emphasized over map
designing’s in the game. In [14], existing simulations and
physical features of animations were showed. Smed and
Hakonen recognized components, relationships, and aspects
common to all games [15]. Bettner and Terrano explained the
design architecture, implementation, and some of the lessons
learned creating the multi-player code for the Age of Empires
games in their paper [16].
 The content flow for this paper is as following: The design tools
and methods have been explained, and the game engine in
which we created our designing has been introduced in the
second section. The main algorithms of this study have been
given in the third section. The fourth section explains the
obtained findings and the evaluations. In the last section, the
results, and suggestions for future have been put forth.
In the design, game of the Age of Empires [17] has been taken
as a sample. In this game, a field pool was created and players
were offered the possibility to move in different combinations
in accordance with the rules set. The rest of other soldiers can
be actuated by giving a command to a single soldier. If the rule-
based artificial intelligence technique was not used, all the
soldiers would have to command separately.
Since this work is designed on a dynamic story, when the game
starts, the user draws the course of the stage and navigates in
three different routes on the map. When the user starts to the
game, the threshold value (distance) is activated to look at the
distance between artificial intelligence and itself. If the

threshold value captures the specified distance for user and
artificial intelligence, the rules that are programmed for
artificial intelligence are activated; then, they run towards the
user, fire to the user, operate the animations.

2. The Tools and the Methods
Artificial intelligence software(s) are the intelligent systems,
which were created by the software designers (programmers)
that are used in non-organic systems. The fundamental topics
of artificial intelligence are knowledge representation,
inference and learning. Artificial intelligence is regarded to
intelligent computer systems, and it can be defined as an
intelligent system that is also based to the calculations.
Artificial intelligence completely and accurately manages the
designed system without any human intervention.
Artificial intelligence, which is almost available in all games
programming, generally uses rule-based algorithm technics.
Lopes and Bidarra have put soldiers and soldier animations to
the maps. They made the artificial intelligence to produce
movements against the possible user movements [18].
Systems using artificial intelligence have a certain learning
cycle. At the end of the learning process, the elements of
artificial intelligence evolve to respond to changing situations.
The success of the developed artificial intelligence system is
measured according to the successful responses to variable and
dynamic problems.
The algorithmic map of the game is created firstly, while a game
is designing by rule-based artificial intelligence. The first rule in
this map is to make a distance-based work between user and
artificial intelligence. The animations based to the distance such
as running, walking, and shooting are executed. In order to
execute these animations, the distance is taken as a basis in the
part of artificial intelligence coding. The soldiers (and their
animations) that are working (mobilizing) depending on the
distance between the user and the object(s) can follow the user
until the game over in case of the user keeps the certain
distance interval. It is possible to make changes to able to tell
story in the game. Depending the user’s possible movements,
both game flow and story of the game are changed dynamically,
since the game is designed as considering the user.

2.1. Unity 3D

Game engines creates backstage of video games. From paint
and draw studies up to the mathematics which control every
corner of the screens, this engine decides to everything [19]. In
this context, Unity is defined as a game development platform
for computers and mobile devices. In the Unity 3D game engine
which converts the written codes to visuals, C# and Java script,
are used as programming languages. Through Asset Store
application market, open source applications can be
downloaded and they can be run inside the game engine. The
Asset Store gives a lot of material such as objects, object
animations, maps, characters that are already ready to use for
designing [10, 20].
Unity 3D is a game engine that runs with drag and drop logics.
In this game engine, what the object to desire executing the
written codes, should go over the object, and click on it by drag
and drop function. Unity 3D that is known (being) at the
forefront with the survival and simulation games, has recently
come to the forefront with mobile games as well. With offering
both open sources, and fast and easy map designing’s, the
designers can create games quick and to use quite easy within
Unity 3D. Both hierarchical structure and one-to-one
relationship of objects are quite important in this game engine.
It is very important to collect existing a lot of objects under one
object, to make them as whole. Objects are not independent of

İlhan Tarımer, Ömercan Şen
First-person user game software designing based on rule-based artificial intelligence technique

200

each other [21]. In [22], Chen discussed improving interactive
experiences in game design.

3. Rule-Based Artificial Intelligence Technique
Map, Flow Diagram and The Program’s

Structure
The functions, parameters, vector definitions and object
definitions were given in the programming section of rule-
based artificial intelligence technique. The less number of
functions have used in the programming, since avoiding long
term compiling problem. In order to know how much bullets
and lives are there for the first-person user during playing, the
texts have been created to shoot at a target in a certain interval.
These have been programmed to be visible by using texts.

Artificial Intelligence Algorithm

Input: Parameters, gameobject, getcomponent

Output: Sahne.exe(Windows, Mac, Linux)

1:

Void Start()

kalanmermi = 120;

zaman = maxzaman;

hasar = Random.Range (5,15);

2:

Void Update()

mermiyazi.text = ""+mermi+"/"+toplammermi;
if (Input.GetMouseButton (0) && mermi > 0 && shoottime

<= Time.time) {

 shoottime = Time.time + firerate;

 mermi--;
 muzzleflash.emit = true;

3:
Void OnTriggerEnter(Collider nesne)
If(nesne.gameobject.tag==”Azaltici”)

Destroy(nesne.gameobject)

4:

 Public ParticleEmitter muzzleFlash

muzzleFlash.emit= true;
muzzleFlash.emit=false;

5:
 Public Gameobject klonasker
GetComponent<Animation>().Play("Run");

6: Vector3 pozisyon

7: GetComponent<Animation>().Play
8: Vector3.Distance

9: Application.Loadlevel()
10: Void OyunDevami

Void Start(): For beginning, character’s lifes were given
“100”; remaining–bullets, time and initial damage
definitions were made.
Void Update(): Character’s exchange of bullets, closed
and open state of muzzle-flash, control of the bullet over
the text was done in the update.
Void OnTriggerEnter(Collider nesne): Both the score and
life regeneration were done within the game, when to
touch to the reducing or increasing objects; it is also
effective on soldiers.
Public ParticleEmitter muzzleflash: The explosion effect
was given, when the soldier fired the gun.
Public Gameobject klonasker: In order to make soldier
animations, a clone soldier was created; its codes were
removed and the animations were added solely to it.
Vector3 pozisyon : To measure the distance between the
soldier and the character, the vector3 depending upon
the character was defined.
GetComponent<Animation>().Play : The code line which
needs to run animations was written.
Vector3.Distance : This was used to fulfill position of the
existing soldier to the place of clone soldier in the game
and to align position of the camera to the position of the
character.

Application.Loadlevel() : It was used at transition
amongst the scenes.
Void OyunDevamı() : A difficult map was created by using
this function for the character, in the second stage, the
character was able to fall down, to restart where the
soldier left off, a starting point was created by using an
object and it was made a function.
Below is the algorithm of the relationship between the
soldier and the character in the rule-based artificial
intelligence technique.

Algorithm Between Soldier and Character

Input: Parametreler, gameobject, getcomponent

Output: Sahne.exe(Windows, Mac, Linux)

1: Void Start()
Can=100;

Can=maxCan;
2: Void Update()

Poz=new Vector3(karakter.position.x,transform.position.y,
karakter.position.z);

3: Void CandanDusme(){
If(Physics.Raycast(Camera.main.transform.position,

Camera.main.transform.forward,out,hit,30)){
If(hit.transform.tag==”asker”){

yz =hit.transform.gameObject.GetComponent
<Yapayzeka>();
yz.Can - = hasar;

}}}
4: Void CanBari(){

CanBar.transform.localScale = new Vector3
(Can/100,1,1);}

Void Start(): For beginning, character’s lifes were given
“100”. It was defined a variable named “MaxCan” and it
was provided to have not more than 100 lives, by
equalizing maxcan value to Can.
Void Update(): The current position of the character is
constantly changing, so it was written under the update
function. By defining a new Vector3, the x, y, z positions
of the character are dropped into the new Vector3.
Void CandanDusme() : This function adjusts the camera’s
position regarding to the current position of character. If
any contact is made with the soldier, the life value of the
life variable on y-z decreases up to the certain amount.
Void CanBari() : The canbar on the Canvas was opened.
The opened bars run related to the function of
CanDusme. If the character is damaged, when the user is
touched to a soldier, the life value falls under both the
function and the canvas. The distance algorithm between
the soldier and the character is given below.

Algorithm Due to Distance Between Soldier and Character

Input: Parametreler, gameobject, getcomponent
Output: Sahne.exe(Windows, Mac, Linux)

1: Void Start()
Can=100;

Can=maxCan;
2: Void Update()

mesafe =

Vector3.Distance(transform.position,karakter.position);

3: Void Mesafeler()
If(mesafe<20 && mesafe>10)

{
yuruyus= true;

İlhan Tarımer, Ömercan Şen
First-person user game software designing based on rule-based artificial intelligence technique

201

ates=false;}
4: Void Yuruyus()

{If(yuruyus)
{hiz=4;

transform.position =

Vector3.MoveTowards(transform.position,karakter.positio

n,
hiz* Time.deltatime);}}

Void Start(): For beginning, character’s lifes were given
“100”. It was defined a variable named “MaxCan” and it
was provided to have not more than 100 lives, by
equalizing maxcan value to Can.
Void Update(): It was defined a variable named “Mesafe”.

This variable (Distance: Mesafe) defines for bringing
some animations such as walking, shooting to the states
of active and passive by measuring the distance between
soldier and character.

Void Mesafeler(): The walking and the shooting
animations were run by using the distance variable
which was defined in the Update() function with the If
loops.
Void Yuruyus(): A certain speed was given to the soldier
in the function. A straight line was drawn on the
backplane between the character and the soldier by
using MoveTowards function. The soldier runs towards
the character on this line.
Below, the addition algorithm of the clone soldier was
given.

Addition Algorithm of the Clone Soldier to the Game

Input: Parametreler, gameobject, getcomponent

Output: Sahne.exe(Windows, Mac, Linux)

1: Void Start()
Can=100;
Can=maxCan;

Public gameobject oluasker;
2: Void Update()

Poz= new
Vector3(karakter.position.x,transform.position.y,

karakter.position.z);
3 Void oluasker()

{If(can<=0)
{Instantiate(olenasker, transform.position,

transform.rotation);
Destroy(gameObject)}}

Void Start(): For beginning, character’s lifes were given
“100”. It was defined a variable named “MaxCan” and it
was provided to have not more than 100 lives, by
equalizing maxcan value to Can. A public variable named
“gameObject” was defined as OluAsker.
Void Update(): Since the current position of the character
changes continually, it is written under the update
function. By defining a new Vector3, the x, y, z positions
of the character are dropped into the new Vector3.
Void oluasker(): The current soldiers within the game were
copied, the Oluasker was tagged, and the necessary animations
were added. The oluaskerler where placed at the closed
position were put on the existing soldiers in the map; thus, it
was provided that the oluasker appears, when the character
disarms the army; it was dropped by the dying animations. It is
provided that the dead soldier is replaced with the soldier by If
condition.

4. Tests and Findings
Table 1 gives test results of the designed game's performance
at the computers with different CPUs and operating systems.

Table 1. Performance tests of the designed game

Operating System Used CPU Optimization Result

Windows XP 1.09 % Yes Successful

Windows Vista 1.14 % Yes Successful

Windows 7 1.43 % Yes Successful

Windows 8 2.12 % No Successful

Windows 8.1 2.49 % No Successful

Windows 10 3.06 % Yes Successful

Mac OS X 10.7 Lion 4.86 % No Successful

Mac OS X 10.8 Mountain Lion 4.35 % No Successful

Mac OS X 10.9 Mavericks 3.97 % No Successful

Mac OS X 10.10 Yosemite 3.64 % No Successful

Mac OS X 10.11 El Capitan 3.15 % Yes Successful

Ubuntu 5.86 % No Successful

Arch Linux 6.17 % No Successful

From Table 1, it is inferred that the game designed in the study
can operate in all OSs. It can be said that this game uses less
CPUs especially in Windows and Mac OS systems. All Windows
versions apart 8 and 8.1 allows to make optimization for the
game. Another Mac OSs, additionally Ubuntu and Arch Linux OS
don’t allow to optimization. The first map view of the game is

given in Figure 1 as a bird's-eye view. This map has been
obtained by writing the codes.

İlhan Tarımer, Ömercan Şen
First-person user game software designing based on rule-based artificial intelligence technique

202

Figure 1. Overview of the map

The map seen in Figure 1 presents models of land, tree and
mountain, grass texture, and labyrinth. The labyrinth was
designed entirely from the cubes. A menu at one canvas within
the stage has been created. In the menu, a life bar is added, and
‘100’ value is donated to this life bar. As user takes damages,
amount of this value decrease, in case of it becomes to ‘zero’,
the game will start again. The land has not been used in its

standard dimensions, but has been expanded. The design of
this map was made within the game engine by downloading the
necessary materials such as trees and mountain models from
Asset Store. The obtained structure is used in the background
design of the game. In Figure 2, the start menu is given.

Figure 2. The overview of the designed start menu

The menu given in Figure 2 contains canvas, buttons and
texts. The pause menu is recorded as a separate scene in
the game, the functions are assigned to the buttons and
the coding process is performed.
The value of life bar is ‘100’. There are 30 bullets, and
totally 120 bullets in a cartridge clip. The user can
monitor increasing and decreasing in life and bullet

values on the game screen. The game's menu is designed
under the canvas and panel where the game engine gives
it. During playing the game, the pause menu is displayed
on the screen when to click on letter “P”.
Figure 3 shows the starting image of the scene within the
game is given.

İlhan Tarımer, Ömercan Şen
First-person user game software designing based on rule-based artificial intelligence technique

203

Figure 3. The screen view of the game from angle of user camera’s and the first-person eye

Fig. 3 is the perspective view of the scene containing the
first-person user for this game. There is one FPU
Controller script, one weapon, one camera, audio files of
several animations such as walking, jumping, running in
the character. It has been provided that the user looked
at to the game map with a comfortable and from a wide
view in this design. The several scenario algorithms that
may occur due to artificial intelligence in the game are
given below:
The First Scenario: If the character tries to continue the
game without disarming the soldiers, the enemy will die
from the fire and the game will start again.
The Second Scenario: On the 2nd map, the character falls
down. In this case it can throw the enemy into the sea
near the sides of the road and get rid of it. Alternatively,
it can fire and escape; Because of a few bullets and the
many soldiers for the second map, it has to do one of two
things.
Not only general features are seen; but also, mobile
gaming features such as gold-picking gold, gold reducer,
and game restarter are found in the game. Therefore, on
the one hand, features of mobile games have been taken;
on the other hand, the internal stories were revealed by
taking the features of computer games such as wide map,
interaction with the enemy. A design has emerged in
which the game's story a first-person, rule-based
artificial intelligence technique.
The player movements are calculated in the first-person
user. In this game, artificial intelligence learns
completely in accordance with the user. For this reason,
the rule-based artificial intelligence algorithm technique
is consistent, operates completely as based the user,
evaluates all probabilities. In case of the story of game
and the scenes grows, this technic needs to take supports
of other artificial algorithm technics.

3. Results and Recommendations
In this study, by using rule-based artificial intelligence

algorithm technique, a structure which is fixed in the map
of game, and a structure which is dynamic in the interior
design of the map has been obtained. In order to calculate
the user’s number of movements, the distance has been
determined as the main factor and based to the distance,

many different scenarios and stories depending to
artificial intelligence have able to created inside the
game.

The most prominent difference of this study from the
previous works is that it is a study developed that is
depending rule-based artificial intelligence technique.
Otherwise, a story written by the developer would have
to be loaded to artificial intelligence. Then, artificial
intelligence would need to reveal the story from the
movements made according to the developing situations.

A constant game structure and a non-fluent game are
obtained in intermediate level games where the rule-
based artificial intelligence technique is not used. In this
intermediate level game design, to use rule-based
artificial intelligence has saved time to the developer and
made easiness. This situation has enabled the user to
become fluency with different story contents in the game.

The in-game story(s) develops instantaneously and
depending the user's movements in main story of the
game. It is not known how to develop the game
differently with different moves each time. Therefore,
every possibility should be considered in new game
designs. The stories that artificial intelligence can
generate should be considered and tested to make sure
that there is no errors in the game.

4. Acknowledgements and Future Works
This study was carried out within the scope of a thesis

at Muğla Sıtkı Koçman University, Faculty of Technology.
We would like to thank all the faculty staff who
contributed to the work with their suggestions and ideas.
Should the people who are concerned to access the
project source file, materials, maps, and objects, send an
e-mail to omersansen16@gmail.com

5. References
[1] Labschutz M., Krosl K., Aquino M., Grashaft F., Kohl

S., and Preiner R. (supervisor), Content Creation
for a 3D Game with Maya and Unity 3D,
Proceedings of the 15th Central European
Seminar on Computer Graphics, p.p. 1 – 8, 2011.

[2] Jie J., Yang K., Haihui S., Research on the 3D Game
Scene Optimization of Mobile Phone Based on the
Unity 3D Engine, International Conference on

İlhan Tarımer, Ömercan Şen
First-person user game software designing based on rule-based artificial intelligence technique

204

Computational and Information Sciences, ISBN:
978-0-7695-4501-1, Chengdu, Sichuan Chengdu,
pp: 875-877, Oct. 21 to Oct. 23, 2011.

[3] Kumar S., Hedrick M., Wiacek C., Messner J.I., An
Experienced-Based Design Review Application
For Healthcare Facilities Using A 3D Game Engine,
Journal of Information Technology in
Construction, ISSN: 1874-4753, ITcon Vol. 16, , p.p.
85–104, 2011.

[4] Bae J.H., Kim A.H., Design and Development of
Unity3D Game Engine-Based Smart Social
Network Game, International Journal of
Multimedia and Ubiquitous Engineering, Vol.9
No.8, pp.261-266, 2014.

[5] Doğan A., Artificial Intelligence, Kariyer
Publishing, 2002.

[6] Satman G., Unity 3D, KODLAB Publishing, 2015.
[7] Yılmaz A., Artificial Intelligence, KODLAB

Publishing, 2017.
[8] Menard M., Game Development with Unity, 2011.
[9] Lukosek G., Dickinson C., Doran J., Unity 5:

Learning C# by Developing Games, 2016.
[10] https://assetstore.unity.com/Access: 02.09.2018.
[11] Randima F. (editor), GPU Gems: Programming

Techniques, Tips and Tricks for Real-Time Time
Graphics, Reading, MA: Addison-Wesley, 2004.

[12] Lengyel E., Mathematics for 3D Game
Programming and Computer Graphics, Second
Edition. Hingham, MA: Charles River Media, 2003.

[13] Kerlow I.V., The Art of 3-D Computer Animation
and Imaging (Second Edition). New York, NY: John
Wiley and Sons, 2000.

[14] Salen K. and Zimmerman E. Rules of Play: Game
Design Fundamentals, the MIT Press, 2003.

[15] Smed J, Hakonen H., Towards a Definition of a
Computer Game, TUCS Technical Report No 553,
Turku Centre for Computer Science, ISBN 952-12-
1217, ISSN 1239-1891, September 2003.

[16] Bettner P., Terrano M., 1500 Archers on A 28.8:
Network Programming in age Of Empires And
Beyond, GDC2001, Vol. 2, Pages 30, 2001.

[17] https://www.ageofempires.com/ Access:
03.09.2018.

[18] Lopes R. and Bidarra R, Adaptivity Challenges in
Games and Simulations: A Survey, CIG, Pages 83–
108, 2011.

[19] Hatipoğlu T., Game Programming with Unity 3D,
KODLAB Publishing, 2016.

[20] Ünsal M., Game Developing with Unity 3D, Abaküs
Publishing, 2015.

[21] Karaboğa D., Artificial Intelligence Optimization
Algorithms, Atlas Publishing House, Pages 75-112,
İstanbul, 2004.

[22] Chen J., Flow in Games (and Everything Else).
Commun, ACM, Pages 31–34, 2007.

https://assetstore.unity.com/
https://scholar.google.com.tr/scholar?oi=bibs&cluster=8750589062290529748&btnI=1&hl=tr
https://scholar.google.com.tr/scholar?oi=bibs&cluster=8750589062290529748&btnI=1&hl=tr
https://scholar.google.com.tr/scholar?oi=bibs&cluster=8750589062290529748&btnI=1&hl=tr
https://www.ageofempires.com/

	1. Introduction
	2. The Tools and the Methods
	2.1. Unity 3D

	3. Rule-Based Artificial Intelligence Technique Map, Flow Diagram and The Program’s Structure
	4. Tests and Findings
	3. Results and Recommendations
	4. Acknowledgements and Future Works
	5. References

