|
|
I

Egitim Teknolojisi
| ~ kuram ve uygulama
Kis 2017

Cilt 7
Sayi 1

EGITIM TEKNOLOJiSi KURAM VE UYGULAMA / EDUCATIONAL TECHNOLOGY THEORY AND PRACTICE

Cilt 7, Say1 1, Kig 2017
Volume 7, Issue 1, Winter 2017

Genel Yayin Editorii / Editor-in-Chief: Dr. Halil ibrahim YALIN
Editor / Editor: Dr. Tolga GUYER

Sorumlu Yazi isleri Miidiirii / Publisher Editor: Dr. Sami SAHIN
Redaksiyon / Redaction: Dr. Tolga GUYER
Dizgi / Typographic: Dr. Tolga GUYER
Sayfa Tasarimi / Page Design: Dr. Tolga GUYER
Kapak Tasarimi / Cover Design: Dr. Bilal ATASOY
iletisim / Contact Person: Dr. Aslihan KOCAMAN KAROGLU

Dizinlenmektedir / Indexed in: ULAKBiIM Sosyal ve Beseri Bilimler Veritabani, Tiirk Egitim indeksi, ASOS Sosyal Bilimler indeksi

Editér Kurulu / Editorial Board”

Dr. Abdullah Kuzu Dr. Eralp H. Altun Dr. M. Oguz Kutlu Dr. Sandie Waters
Dr. Akif Ergin Dr. Feza Orhan Dr. M. Yasar Ozden Dr. Scott Warren
Dr. Ana Paula Correla Dr. H. Ferhan Odabasi Dr. Mehmet Girol Dr. Servet Bayram
Dr. Aytekin isman Dr. Hafize Keser Dr. Michael Evans Dr. Sirin Karadeniz
Dr. Buket Akkoyunlu Dr. Halil ibrahim Yalin Dr. Michael Thomas Dr. Tolga Glyer
Dr. Cem Guhadar Dr. Hyo-Jeong So Dr. Ozcan Erkan Akgiin Dr. Trena Paulus
Dr. Deniz Deryakulu Dr. ibrahim Goékdas Dr. Ozgen Korkmaz Dr. Yasemin Gilbahar Given
Dr. Deepak Subramony Dr. Kyong Jee(Kj) Kim Dr. S. Sadi Seferoglu Dr. Yavuz Akpinar
Dr.Yun-Jo An
*
Hakem Kurulu / Reviewers
Dr. Adile Askim Kurt Dr. Filiz Kalelioglu Dr. Mukaddes Erdem Dr. Serap Yetik
Dr. Agah Tugrul Korucu Dr. Gizem Karaoglan Dr. Mustafa Serkan Glinbatar Dr. Serdar Ciftgi
Dr. Arif Altun Dr. Gékee Becit iggitiirk Dr. Mutlu Tahsin Ustiindag Dr. Sergin Karatas
Dr. Aslihan Kocaman Karoglu Dr. Gokhan Daghan Dr. Nadire Cavus Dr. Serpil Yalginalp
Dr. Ayga Cebi Dr. Gulfidan Can Dr. Necmettin Teker Dr. Sibel Somyirek
Dr. Ayfer Alper Dr. Halil Ersoy Dr. Necmi Esgi Dr. Safak Bayir
Dr. Aynur Kolburan Geger Dr. Halil ibrahim Yalin Dr. Nezih Onal Dr. Seyhmus Aydogdu
Dr. Aysegul Bakar Corez Dr. Halil Yurdugl Dr. Nuray Gedik Dr. Sirin Karadeniz
Dr. Bahar Baran Dr. Hasan Cakir Dr. Nurettin Simsek Dr. Tayfun Tanyeri
Dr. Berrin Dogusoy Dr. Hasan Karal Dr. Onur D6nmez Dr. Tolga Glyer
Dr. Bilal Atasoy Dr. Hatice Durak Dr. Omer Faruk islim Dr. Tolga Kabaca
Dr. Deniz Atal Kéysiiren Dr. Hiseyin Bicen Dr. Omer Faruk Ursavas Dr. Turkan Karakus
Dr. Ebru Kili¢ Cakmak Dr. Hiiseyin Ozginar Dr. Omiir Akdemir Dr. Ugur Bagsarmak
Dr. Ebru Solmaz Dr. Isil Kabakgr Yurdakul Dr. Ozcan Erkan Akgiin Dr. Ummiihan Avci Yiicel
Dr. Emin ibili Dr. ibrahim Goékdas Dr. Ozden Sahin izmirli Dr. Unal Cakiroglu
Dr. Emine Sendurur Dr. ilknur Resioglu Dr. Ozgen Korkmaz Dr. Veysel Demirer
Dr. Ering Karatas Dr. Kevser Hava Dr. Ozlem Cakir Dr. Yahn Kilig Tiirel
Dr. Erhan Giines Dr. M. Fikret Gelibolu Dr. Ramazan Yilmaz Dr. Yasemin Demirarslan Cevik
Dr. Erkan Galiskan Dr. Mehmet Akif Ocak Dr. Recep Gakir Dr. Yasemin Gilbahar Given
Dr. Erkan Tekinarslan Dr. Mehmet Barig Horzum Dr. Sami Acar Dr. Yasemin Kogak Usluel
Dr. Ertugrul Usta Dr. Mehmet Kokog Dr. Sami Sahin Dr. Yavuz Akbulut
Dr. Fatma Keskinkilig Dr. Melih Engin Dr. Selay Arkiin Kocadere Dr. Yusuf Ziya Olpak
Dr. Fezile Ozdamli Dr. Meltem Kurtoglu Dr. Selguk Ozdemir Dr. Yiiksel Goktas

iletisim Bilgileri / Contact Information

internet Adresi / Web: http://dergipark.ulakbim.gov.tr/etku/
E-Posta / E-Mail: tguyer@gmail.com
Telefon / Phone: +90 (312) 202 17 38
Belgegecer / Fax: +90 (312) 202 83 87
Adres / Adress: Gazi Universitesi, Gazi Egitim Fakiiltesi, Bilgisayar ve Ogretim Teknolojileri Egitimi Bélimii,
06500 Teknikokullar - Ankara / Tiirkiye

158

EGITIM TEKNOLOJiSi Kuram ve Uygulama
Cilt:7 Sayi:1 Yil:2017

Makale Ge¢misi / Article History

Alindi/Received: 14.07.2016

Diizeltme Alindi/Received in revised form: 22.01.2017
Kabul edildi/Accepted: 23.01.2017

COMPUTER PROGRAMMING SELF-EFFICACY SCALE (CPSES) FOR SECONDARY
SCHOOL STUDENTS: DEVELOPMENT, VALIDATION AND RELIABILITY

Volkan KUKUL', Sahin GOKCEARSLAN?*, Mustafa Serkan GUNBATAR?
Abstract

Computer programming has been included in the curriculum of K12 education around the
world and this has necessitated a tool for the assessment of the computer programming self-
efficacy. Thus, this study aims to suggest the necessary scale for the field. In the scale
development, the steps of classical measurement theory were applied. Following the expert
review, the item pool was conducted with 233 students in a public secondary school which
provides education to the age group of 12-14 in the school year 2014-2015. As a result of the
study, a unidimensional 5-point Likert scale of 31 items was obtained. The factor loads varied
between 0.47 and 0.71 and the explained variance rate was 41.15%. In the analysis of the
internal consistency, sufficient values were found; the Cronbach alpha as 0.95 and the
equivalent halves method result as 0.96. For the construct validity, exploratory and
confirmatory factor analysis were applied and the result showed that the scale is valid and
reliable.

Keywords: Computer Programming, Teaching Computer Programming, Self-Efficacy

ORTAOKUL OGRENCILERi iCIN PROGRAMLAMA OZYETERLIK OLCEGI:
GELISTIRME, GECERLIK VE GUVENIRLIK

Oz

Bilgisayar programlama, son yillarda tim dinyada K-12 egitim mufredatlarinda yer almaya
baglamistir ve programlama 06z-yeterliginin 6lglilmesi icin bir arag¢ gelistiriimesine ihtiyag
duyulmustur. Bu g¢alismanin amaci bu ihtiyaci gidermek adina alana katki saglamaktir. Aracin
gelistirilmesinde klasik 6lgme teorisinin basamaklari kullanilmistir. Calisma 2014-2015 egitim
ogretim yilinin bahar déoneminde bir devlet okulunda yaslari 12-14 arasinda degisen 233
ogrenci ile ylUritilmastir. Calismanin sonucunda 31 maddeden olusan tek faktorli 6lgme
araci ortaya ¢ikmistir. Olcme aracindaki maddelerin madde yiikleri 0.47 ile 0.71 arasinda

! Ar. Gér., Gazi Universitesi, volkankukul@gazi.edu.tr
> Dr., Gazi Universitesi, sgokcearslan@gazi.edu.tr *Corresponding Author
?Yrd.Dog.Dr., Van 100.yil Universitesi, msgunbatar@gmail.com

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 159

degismektedir ve &lcegin acikladigi toplam varyans %41.15tir. Olgegin i¢ tutarliligini
belirlemek amaciyla yapilan analizlere gére Cronbach alfa katsayisi 0.95, iki yari metodu
sonuglari ise 0.96 ¢ikmistir ve bu sonuglar élgme aracinin i¢ tutarhliginin yiksek oldugunu
gostermektedir. Olgegin yapi gecerligini belirlemek amaciyla agimlayici ve dogrulayici faktér
analizleri uygulanmis ve analiz sonuglarina gore olgegin gegerli ve glivenilir oldugu sonucuna
varilmigtir.

Anahtar Kelimeler: Bilgisayar Programlama, Bilgisayar Programlama Egitimi, Oz-Yeterlilik

Genis Ozet

Gunumuizde, bilisim teknolojilerindeki gelismelerle insanlarin problemlere ¢6zim
arayislari farkhlagmistir. Uzun siirede bitirilebilecek bir is ya da gérev teknolojiyi kullanarak kisa
surede bitirebilmektedir. Dijital teknolojinin igerisinde blylyen ¢ocuklarin, sadece o
teknolojiyi kullanmalari degil, gerekirse yeni teknolojiler Ureterek Ust diizey disiinme
becerilerinin gelismesi beklenmektedir (Kalelioglu, 2015). Bu st diizey becerilerden bir tanesi
de Bilgi islemsel Diisinmedir (Computational Thinking) (Philips, 2009; Wing 2010). Bilgi
islemsel Diisiinme, sadece bilgisayar bilimcilerinin degil tiim insanlarin sahip olmalari gereken
bir beceri olarak gériilmektedir (Korkmaz, Cakir, & Ozden, 2017; Wing, 2006; Wing, 2008;
Wing, 2010).

Bilgi islemsel Disiinme becerisinin dgrencilere kazandirilmasinda sik kullanilan
yontemlerden bir tanesi, “Baslangic Ogrenme Ortamlar’” olarak degerlendirilen gorsel
programlama araglariyla bilgisayar programlama 6gretimidir (Weinberg, 2013). Programlama
becerisi yaratici diisinme, problem ¢6zme, mantiksal ¢ikarim gibi Ust dizey disinme
becerilerinin gelistiriimesine olanak tanimaktadir (Fesakis & Serafeim, 2009; Fessakis, Gouli, &
Mavroudi, 2013; Kay & Knaack, 2005). Bilgisayar programlama becerisinin 6grencilere
sagladigi katki, egitimcilerin ve arastirmacilarin ilgisini gekmis (Gokgearslan & Alper, 2015), bu
dogrultuda Avrupa ve Amerika’da erken yaslar igin bilgisayar programlama 6gretimine yonelik
ders ve etkinlikler Gzerine yapilan galismalar artmistir (Grover & Pea, 2013; Kafai & Burke,
2013). Birgok ulke erken yaslar igin bilgisayar programlamayi ulusal programlarina entegre
etmeye baslamislardir (Kalelioglu, 2015).

Gegmiste 6grencilere bilgisayar programlamanin 6gretilmeye calisilip, sadece az sayidaki
Ogrencinin basarili olmasi (Resnick et al., 2009), “bu sefer de ayni sorunla karsi karsiya kalinir
mi?” sorusunu akla getirmektedir. Bunun igin 6grencilerin bilgisayar programlamaya yonelik
disinceleri ve bilgisayar programlamadaki basarilarinin degerlendirilmesi gerekmektedir.
Ogrencilerin 6z-yeterlilik diizeylerinin belirlenmesi, basarilari hakkinda yorum yapabilmek icin
onemli bir faktor olarak goriilmektedir (Askar & Davenport, 2009; Anastasiadou & Karakos,
2011). Farkh konu alanlarinda 6z-yeterlilik diizeyini 6lgmek igin pek ¢ok arastirma olmasina
ragmen, bilgisayar programlama 6z-yeterliligini 6lgmek igin yapilmis galisma sayisinin sinirli
oldugu ifade edilmektedir (Askar & Davenport, 2009). Yapilan galismalarin genellikle lise ve
Universite diizeyinde olduklari gorilmektedir (Askar & Davenport, 2009; Korkmaz & Altun,
2014; Mazman & Altun, 2013; Ramalingam & Wiedenbeck,1998). Bu baglamda bu galismanin
odak noktasini erken yaslardaki 6grencilerin 6z-yeterlilik diizeylerini belirlemek igin “Ortaokul
dgrencileri icin Programlama Oz-yeterlilik Olgeginin” gelistirilmesi olusturmaktadir.

EGITIM TEKNOLOJiSi Kuram ve Uygulama

Computer Programming Self-Efficacy Scale (CPSES) for Secondary School Students: Development, 160
Validation and Reliability

Bu arastirmada ortaokul 6grencilerinin programlama 0z-yeterlik diizeylerini 6l¢gmek
amaciyla bir 6lgek gelistirmek istendigi icin, 2014-2015 6gretim yilinda Ankara’daki bir devlet
ortaokulunda 6grenim géren toplam 233 6grenci galisma grubunu olusturmustur. Grubun %
53.6’sin1 (n=125) kiz 6grenciler, % 46.4’lnl (n=108)erkek 6grenciler olusturmustur. Ayrica
ogrencilerin % 19.3’0 (n=45) 5. sinif, % 59.2’si (n=138) 6. Sinif ve % 21.5’i (n=50) 7. sinifa devam
etmektedir.

Kaiser-Meyer-Olkin (KMO) katsayisi faktor analizi yapmak igin 6rneklem sayisinin yeterli
olup olmadigini belirlemede kullanilan bir istatistiksel yontemdir (Kan & Akbas, 2005). Bu
amagla KMO degeri belirlenmistir ve 0.949 olarak karsimiza ¢ikmistir. Faktor analizi
yapilabilmek icin en disiik KMO degerinin 0.60 olmasi énerilmektedir (Ozel, Timur, Timur ve
Bilen, 2013; Pallant, 2001). ikinci olarak Bartlett Sphericity testine bakilmistir (x2 = 3532.449,
p.=0.000). Verilerin gok degiskenli normal dagihm gosterdigi Barlett Sphericity testi sonucu
elde edilen Kay-kare test istatistiginin anlamli ¢gikmasi ile anlagiimaktadir (Kan & Akbas, 2005).
Bu sonuglar, toplanan verilerle agimlayici faktor analizi yapilabilecegine isaret etmistir.

Yapilan agimlayici faktor analizi sonucunda, baslangicta 33 maddelik 6lgekten birden
fazla faktére benzer yiik veren iki madde cikartilmistir. Olgegin nihai formunda 31 madde
bulunmaktadir. Tek faktor altinda degerlendirilen dlgcek % 41.15 varyans aciklama ylizdesine
sahiptir. Sosyal bilimler arastirmalari igcin bu oran kabul edilebilir bir dizeye karsilik
gelmektedir (Blyukoztiirk, 2010; Cokluk, Sekercioglu & Biyilkoztirk, 2010; Hair, Anderson,
Tatham & Black, 1998).

Acimlayici Faktor Analizi (AFA) sonucu elde edilen faktér yapisina iliskin modelin
uygunlugu Dogrulayici Faktér Analizi (DFA) ile test edilmistir. Modelin uygunluguna iliskin
analiz sonugclarina gore; X2 / df=1.84; RMSEA degeri 0.06; NFI degeri 0.95; NNFI degeri 0.98;
RMR degeri 0.068; CFl degeri 0.98; IFl degeri 0.98; GFI degeri 0.82 ve AGFI degeri 0.79 dur. Bu
analiz sonuglarina gére model uyum degerlerinden bazilarinin kabul edilebilir dizeyde
olmadiklari gorilmistir. Modifikasyon Onerileri gergeklestirilmistir. Bu modifikasyonlar
sonucunda X2/df=1.47; RMSEA degeri 0.045; NFI degeri 0.96; NNFI degeri 0.99; RMR degeri
0.061; CFI degeri 0.99; IFI degeri 0.99; GFI degeri 0.85 ve AGFI degeri 0.83 olarak tespit
edilmistir.

Cronbach alpha givenirlik analizi sonucunda 6lgegin glivenirlik katsayisi 0.95 olarak
oldukca yiiksek degerde cikmistir (Ozdamar, 1999). Olcek maddeleri tek ve cift maddeler
olmak Uzere iki yariya bolinmus ve esdeger yarilar (testi yarilama) yontemiyle de giivenirlik
analizi gergeklestirilmistir. Testin tiimine ait glivenirlik katsayisi Spearman-Brown yontemi
kullanilarak bulunabilir (Ellez, 2009). Bu noktadan hareketle testin tamamina iliskin Spearman
Brown yontemi ile elde edilen glivenirlik katsayisi r = 0.966 bulunmustur. Testin birinci ve ikinci
yarisi arasindaki iligki istatistiksel agidan p<0.01 diizeyinde pozitif yonde anlamli bulunmustur.

Tek faktorll yapi gosteren bilgisayar programlama 0z-yeterlik 6lgegini 6gretmen ve
arastirmacilar oOzellikle son zamanlarda yaygin bigcimde ¢ocuklara programlama becerisi
kazandirmak igin kullanilan Scratch, Logo, Alice vb. programlarin 6gretimi sirecinde
Ogrencilerin programlama 6z-yeterlik dizeyini 6lgmek igin kullanabilirler.

Cilt:7 Sayi:1 Yil:2017

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 161

Introduction

Today’s developments in information technologies have caused human beings to seek
different solutions to their fundamental problems. Technology can enable individuals to finish
a task that would previously have taken a long time in as short a time as possible. Children
growing up within the digital technology age are expected to not only use that technology,
but also to produce new technologies and develop high-level thinking skills, if necessary
(Kalelioglu, 2015). One of these high-level skills is Computational Thinking (Philips, 2009; Wing
2010). Computational Thinking is considered as a skill that should be possessed not only by
computer scientists, but everyone (Korkmaz, Cakir, & Ozden, 2017; Wing, 2006; Wing, 2008;
Wing, 2010).

One of the methods frequently used in teaching the skill of computational thinking to
students is computer programming teaching via visual programming instruments that can be
seen and evaluated as ‘Initiative Learning Environments’ (Weinberg, 2013). Computer
programming skills contribute to the development of other high-level skills like problem-
solving, logical inference and creative thinking (Fesakis & Serafeim, 2009; Fessakis, Gouli, &
Mavroudi, 2013; Kay & Knaack, 2005). Trainers and researchers have become aware of the
contributions made to students by having the skill of computer programming (Gokgearslan &
Alper, 2015), which has resulted in the increase of courses and activities aimed at computer
programming teaching for young ages in both Europe and the United States (Grover & Pea,
2013; Kafai & Burke, 2013). A number of countries have started to integrate computer
programming for young people into their national programs (Kalelioglu, 2015).

Alongside the development of computers, one of the aims was to teach all children
computer programming methods (Resnick et al., 2009). However, the difficulties experienced
by students while writing programs on a program-compiler and the use of uninteresting
activities in computer programming teaching (Resnick et al., 2009) caused students to
consider computer programming a difficult task (Askar & Davenport, 2009; Caspersen &
Kolling 2009). The idea that computer programming was difficult for students and teachers
(Armoni, 2011; Gokgearslan & Alper, 2015) has tried to be removed via practical programs like
Scratch, Alice and Applnventor that were developed for visual programming. The practicality
of the environments they offer and their use of visual programming (Lye & Koh, 2014) have
enabled younger students to learn the basic logic of computer programming (Kalelioglu,
2015). The fact that only a limited number of students have been successful in learning
computer programming in the past (Resnick et al., 2009) brings to mind the question, “Will
the same problem occur once again?” Thus, it is required that the thoughts of students about
computer programming and their success in computer programming be evaluated. Evaluating
the self-efficacy levels of students is considered an important factor in terms of making an
interpretation about how successful they are or will be (Askar & Davenport, 2009;
Anastasiadou & Karakos, 2011). Even though there are various studies for measuring self-
efficacy levels in different subject areas, there is a limited number of studies for measuring
self-efficacy in relation to computer programming (Askar & Davenport, 2009). The studies that
have been conducted generally comprise high school and university students (Askar &
Davenport, 2009; Korkmaz & Altun, 2014; Mazman & Altun; 2013 Ramalingam &
Wiedenbeck,1998). In this context, this study focuses on developing the “Computer
Programming Self-Efficacy Scale for Secondary School Students” for determining the self-
efficacy levels of younger students.

EGITIM TEKNOLOJiSi Kuram ve Uygulama

Computer Programming Self-Efficacy Scale (CPSES) for Secondary School Students: Development, 162
Validation and Reliability

Literature review
Teaching computer programming in K-12 education

The LOGO program has been used in computer programming teaching aimed at K-12
students since the 1960s (Feurzeig & Papert, 2011, p. 487). During the 1980s, when the first
personal computer was introduced, there was a demand for teaching all children how to carry
out computer programming, and millions of students in thousands of schools wrote simple
programs via the LOGO and Basic programs (Resnick et al., 2009). In later learning/teaching
processes, computer programming teaching was conducted at various different levels. Even
though various package software for teaching computer programming teaching was excluded
from the teaching process despite its common usage (Kafai & Burke, 2015), it has recently
been used again as a popular tool in the international arena. Computer and programming
courses have also started to be taught at an early age in a number of countries (Jones, 2011).
In the United States, the Computer Science Teacher Association emphasizes the importance
of computational thinking and computer programming at the K-12 level, and states that these
will provide skills that are needed in a number of disciplines (Seehorn et al, 2011). There have
been studies conducted for teaching problem-solving skills to preschoolers aged 5-6 via wizard
computer programming (Fessakis, Gouli & Mavroudi, 2013). In Turkey, while the Information
Technologies and Software course used to be taught as an elective course, it has become
compulsory for secondary schools as from 2012.

It has been suggested that a computer programming education is a lifelong process that
not only consists of coding, but also enables students to apply the stages of problem-solving
using various resources (Booth, 1992; Maheshwari, 1997). Today, students are able to
construct algorithms via different computer programming instruments, in different
environments and through teaching methods, and the attempt is being made to depict
computer programming as a not-so-difficult process (Lewis, 2010; Resnick et al., 2009).
Studies generally focus on variables regarding the motivation of students toward computer
programming (Kelleher, Pausch, & Kiesler, 2007; Kelleher, & Pausch, 2007), attitudes toward
computer programming (Kalelioglu, 2015) and self-efficacy (Lee, Park & Hwang, 2013).

Self-efficacy

It is known that a number of factors are effective for success in the learning process and
that self-efficacy and attitude are more important than other factors (Austin, 1987;
Anastasiadou & Karakos, 2011). Self-efficacy can be defined as the perceptions of students
regarding their own skills and is thought to be directly associated with their performance and
effort in performing a task (Bandura, 1977). As developed within the scope of the Social
Cognitive Theory, the notion of self-efficacy plays a key role in determining the emotions that
affect human behaviors and performance, such as happiness, sorrow and shame (Bandura,
2001). A higher level of self-efficacy will increase the success of individuals and the level of
happiness caused by that success. Individuals who trust their talents are more advanced in
coping with difficult tasks (Bandura, 2001).

In measuring self-efficacy, the aim is to measure the performance capacities of
individuals rather than their personal qualities (Zimmerman, 2000). It is thought that

Cilt:7 Sayi:1 Yil:2017

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 163

determining the self-efficacy levels of individuals could be used as a means of increasing their
success as it provides feedback about their performance (Askar & Davenport, 2009).

Measurement of self-efficacy in terms of computer programming

One of the most commonly known tools for the measurement of computer
programming self-efficacy is the Computer Programming Self Efficacy Scale (CPSES), designed
by Ramalingam and Wiedenbeck (1998). The scale consists of 32 items and 7-point Likert-type
questions were formulated to determine the self-efficacy of students. Answers were graded
from 1 (‘not confident at all’) to 7 (‘absolutely confident’). The data collection process was
carried out with 421 students in the first week of a semester at a large public university. The
scale was developed for the C++ programming language. Items were collected for 4 factors in
accordance with exploratory factor analysis. These factors were “(1) independence and
persistence, (2) complex programming tasks, (3) self-regulation and (4) simple programming
tasks” (Ramalingam and Wiedenbeck, 1998). On the full 32 item scale, reliability coefficients
and empirically obtained factors as outcomes of exploratory factor analysis were determined
for the scores. The reliability of test-retest was also determined. The overall alpha reliability
for the scores was .98. The scores also had .50 to .84 corrected item-total correlations. The
alpha reliabilities of the factors were as follows: (1) independence and persistence = .94, (2)
complex programming tasks = .93, (3) self-regulation = .86, and (4) simple programming tasks
= .93. Ramalingam and Wiedenbeck (1988) developed a scale for a group of novice
programmers in a special programming language (C++). This scale was adapted to Turkish
(Altun & Mazman, 2012). Assessment of the general programming self-efficacy levels of
secondary education students is of importance in the context of the place of programming
education in the K12 education program.

Aim of the study

The skill of computational thinking, which is thought to be among the necessary life skills
required in the 21st century (Philips, 2009; Wing 2010), is also possibly considered to have a
positive effect upon the development of other high-level thinking skills in students (Brichacek,
2014). Today, one of the methods being used in inculcating the skill of computational thinking
is the teaching of computer programming. A number of countries have conducted studies in
an attempt to develop the skills of computer programming in young children. Despite the
positive effects and popularity of the learning computer programming skills, learning them is
considered difficult by both teachers and students (Nilsen & Larsen, 2011; Caspersen & Kolling
2009; Shadiev et al., 2014). In addition to this, it has been observed that students have a low
performance in computer programming courses (Askar & Davenport, 2009). Determining the
level of self-efficacy, which is one of the indicators of performance, can be considered among
the factors that would provide information about the potential computer programming
performance of students. Researchers and educators have paid great attention to computer
programming (Ke, 2014; Uysal & Yalin, 2012).

Additionally, Askar and Davenport (2009) emphasized that the perception of self-
efficacy has been investigated in a number of areas, in an attempt to examine the relationship
between academic success and demographic features, but that there have only been a limited
number of studies regarding computer programming, which could be associated with the fact
that even though there are instruments aimed at measuring the self-efficacy for different

EGITIM TEKNOLOJiSi Kuram ve Uygulama

Computer Programming Self-Efficacy Scale (CPSES) for Secondary School Students: Development, 164
Validation and Reliability

subject areas (Compeau & Higgins, 1995; Murphy, Coover & Owen, 1989), there is a limited
number of assessment instruments regarding the actual skills of computer programming. Even
though the literature involves assessment instruments aimed at determining the computer
programming self-efficacy levels of university students (Ramalingam & Wiedenbeck,1998),
there is no assessment instrument developed specifically for secondary school students.
Considering the fact that the computer programming teaching has recently become
widespread at the K-12 level, it could be asserted that there is also a need for self-efficacy
studies at this level. The focal point of this study comprises the development of a Computer
Programming Self-Efficacy Scale for secondary school students in order to remove this
deficiency in the literature.

Method

This is a scale development study. This section involves the participants, procedure and
the data analysis of the scale.

Participants

This study was conducted with a study group of 233 students from the age group of 12-
14 receiving education at a public secondary school in Ankara in the school year 2014-2015.
According to the literature if the sample size is over then 200, it is enough for factor analyis
(Buyukoztirk, 2002; Kline, 1994). Sample size -233 students- is enough for factor analysis. The
scale was developed by employing statistical processes on the data that were obtained from
this study group. In the group, 53.6% (n=125) were female students and 46.4% (n=108) were
male students. 19.3% of students were (n=45) 5th grade (the age of 12), 59.2% (n=138) 6th
grade (the age of 13) and 21.5% (n=50) 7th grade (the age of 14). Students that participated
in the study were trained for programming via Scratch and SmallBasic within the scope of
Information Technologies and Software lessons.

Procedure

The scale developed according to classical measurement theory. The following steps
were taken in the scale development proccess (DeVellis, 2003);

“Determine clearly what it is you want to measure
e Generate an item pool

e Determine the format for measurement

e Have the initial item pool reviewed by experts

e Consider inclusion of validation items

e Administer items to a development sample

e Evaluate the items

e Optimize scale length”

We first examined the previous scales that had been developed (Ramalingam &
Wiedenbeck, 1998) and adapted (Askar & Davenport, 2009; Korkmaz & Altun, 2014; Altun &
Mazman, 2012) to measure the computer programming self-efficacy. Then, the standarts, set
by the organizations like Computer Science Teacher Association (CSTA) and International
Society for Technology in Education (ISTE), were examined. Finally, an item pool was created

Cilt:7 Sayi:1 Yil:2017

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 165

by writing items in accordance with the educational levels of secondary school studentsas a
result of the screening that had been performed in the literature. While item pool was being
created, the competencies in the National ICT Curriculum were taken into consideration. The
item pool involved a total of 30 items. Items listed considering the steps used for the solution
of a programming problem. We used a 5-point likert scale for expressing the level of
agreement regarding the items in the scale (“strongly agree”, “agree”, “undecided”,
“disagree”, and “strongly disagree”). In the validity study, we at first presented the content to
7 academics who had studied computer programming in the field of educational technology
to check the content validity, as well as to a Turkish language linguist who is specialized in
children’s literature, and canvassed their opinions via Expert Opinion Form. Experts were
asked to mark if it is appropriate or not for every item in the Expert Opinion Form. According
to the opinions and criticisms received, we made the required corrections, additions and
deletions from the scale items, formed a scale of a total of 33 items and conducted the validity
and reliability studies on the basis of these items. All participants participated in the study on
a voluntary basis.

Data analysis

The following analyses were performed in an attempt to prove the validity and
reliability of the data obtained from 233 secondary school students:

e Kaiser-Meyer Olkin (KMO) coefficient and Barlett’s Sphericity test for determining the
fit of the data for the factor (principal components) analysis.

e Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) for proving
the construct validity.

e Parallel analysis for deciding on the sub-factor number of the scale.

e Cronbach’s Alpha and Equivalent Halves method reliabilities for proving the
reliability.

e Item test correlations for proving the item validity.
Results

In the study, the statistical processes, exploratory factor analysis and confirmatory
factor analysis were performed sequentially.

Findings regarding the fit for the factor (principal components analysis)

The Kaiser-Meyer-Olkin (KMO) coefficient is a statistical method used in determining
whether or not the sample is suitability for conducting a factor analysis (Kan & Akbas, 2005).
For this purpose, we determined the KMO value as 0.949. The minimum KMO value of 0.6 is
suggested for conducting a factor analysis upon data (Ozel, Timur, Timur & Bilen, 2013;
Pallant, 2010). Secondly, we checked the Bartlett Sphericity test (x2 = 3532.449, p.=0.000).
The fact that the Chi-square test acquired as a result of the Barlett Sphericity test was
significant indicates that the data come from a multivariate normal distribution (Kan & Akbas,
2005). According to these results, it was observed that the exploratory factor analysis could

EGITIM TEKNOLOJiSi Kuram ve Uygulama

Computer Programming Self-Efficacy Scale (CPSES) for Secondary School Students: Development,

Validation and Reliability

166

be performed via the acquired data. In Table 1, range, min, max, mean, standard deviation,

skewness, kurtosis values of the items are given.

Table 1

Descriptive statistics about Scale Items

ltem N Range Min Max Mean S.D. Skewness Kurtosis
11 233 4.00 1.00 5.00 3.7597 1.10356 -.754 .030
12 233 4.00 1.00 5.00 3.5451 1.07835 -.554 -.232
13 233 4.00 1.00 5.00 3.8584 1.08740 -.953 .385
14 233 4.00 1.00 5.00 3.9657 1.10976 -1.115 .728
15 233 4.00 1.00 5.00 4.1459 1.10453 -1.454 1.558
16 233 4.00 1.00 5.00 3.8369 1.09427 -.906 .260
17 233 4.00 1.00 5.00 3.8155 1.06889 -.822 133
I8 233 4.00 1.00 5.00 3.5794 1.13103 -.614 -.325
19 233 4.00 1.00 5.00 3.8197 1.09156 -.840 .104
110 233 4.00 1.00 5,00 3.8412 1.08104 -.898 .336
111 233 4.00 1.00 5.00 3.3519 1.27499 -.307 -.963
112 233 4.00 1.00 5.00 3.7682 1.26880 -.833 -.298
113 233 4.00 1.00 5.00 3.4893 1.16008 -.483 -.475
114 233 4.00 1.00 5.00 3.7124 1.07024 -.746 .015
115 233 4.00 1.00 5.00 3.6137 1.14703 -.705 -.200
116 233 4.00 1.00 5.00 3.6438 1.13607 -.529 -.493
117 233 4.00 1.00 5.00 3.6266 1.14943 -.674 -.327
118 233 4.00 1.00 5.00 3.5236 1.14493 -.293 -.655
119 233 4.00 1.00 5.00 3.8026 1.24381 -.799 -.348
120 233 4.00 1.00 5.00 3.7983 1.13624 -.841 .035
121 233 4.00 1.00 5.00 3.7296 1.09852 -.667 -.120
122 233 4.00 1.00 5.00 3.8498 1.16660 -.854 -.071
123 233 4.00 1.00 5.00 3.5794 1.05614 -.421 -.245
124 233 4.00 1.00 5.00 3.6609 1.16747 -.738 -.108
125 233 4.00 1.00 5.00 3.8712 1.09493 -.775 -.043
126 233 4.00 1.00 5.00 3.5622 1.06137 -.448 -.205
127 233 4.00 1.00 5.00 4.0215 1.16503 -1.048 .185
128 233 4.00 1.00 5.00 3.8026 1.21931 -.839 -.236
129 233 4.00 1.00 5.00 3.5322 1.16709 -.480 -.445
130 233 4.00 1.00 5.00 3.7210 1.15009 -.741 -.159
131 233 4.00 1.00 5.00 3.8584 1.13397 -.881 .084
Average 233 4.00 1.00 5.00 3.7318 .72310 -1.058 1.641

Cilt:7 Sayi:1 Yil:2017

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 167

Findings regarding the exploratory factor analysis

As a result of the exploratory factor analysis, we initially excluded two items because
they placed a similar load on more than one factor within the scale of 33 items. The final form
of the scale involves 31 items.

It could be suggested that factors equal to the number of components with Eigen values
larger than 1 should be included (Cokluk, Sekercioglu & Biyikoztlrk, 2010). Examining the
Total Variance Distribution Being Explained in Table 1, we could observe six factors with Eigen
values larger than 1. However, according to the parallel analysis method (Pallant, 2010),
alternatively used in determining the number of factors (especially for the scales developed
for social sciences studies), the number of factors was determined as 1. “In this analysis, a
program is used that is called Monte Carlo PCA for Parallel Analysis. In this program you are
asked for three pieces of information: the number of variables you are analysing (number of
items); the number of participants in your sample; andthe number of replications (specify
100).After that, this generates 100 sets of random data of same size as real data file. It will
calculate the average eigenvalues for these 100 randomly generated samples and print these
out for you. After that you compare the eigenvalues obtained from SPSS and Monte Carlo PCA
for Paralel Analysis. If your value is larger than the criterion value from parallel analysis, you
retain this factor; if it is less, you reject it” (Pallant, 2010, p.194). While Table 2 shows total
variance distributions, Table 3 shows the results of the parallel analysis, Table 4 shows the
findings regarding the item factor loads and test correlations.

Table 2

Total Variance Distributions Being Explained

Initial Eigenvalues Extraction sums of squared loadings
Component Total % of Cumulative % Total % of Cumulative
variance variance %
1 12.756 41.150 41.150 12.756 41.150 41.150
2 1.349 4.351 45.501
3 1.240 4.001 49.501
4 1.134 3.658 53.159
5 1.044 3.368 56.527
6 1.017 3.280 59.807

Examining Table 2, the scale being evaluated under one factor shows variance at the rate of
41.15%, which is acceptable for one factor structure (> 30%) (Buyukoztirk, 2010; Cokluk,
Sekercioglu & Buyukoztiirk, 2010; Tabachnick & Fidell, 1996). There is no exact threshold value
of the explained total variance in the EFA test for all practices. In social sciences although 60
% explained total variance is frequently encountered, this value can be lower (Hair, Anderson,
Tatham & Black, 1998). Rotating procedure simplifies the factor structure (Abdi, 2003).
Rotated structure attempts to have each variable load on as few factors as possible (Yong &
Pearce, 2013). The scale is formad by a single factor that’s way rotation is not performed.

EGITIM TEKNOLOJiSi Kuram ve Uygulama

Computer Programming Self-Efficacy Scale (CPSES) for Secondary School Students: Development,

Validation and Reliability

Table 3

Comparison of Eigenvalues from PCA and Criterion Values from Parallel Analysis

168

Actual eigenvalue from Criterion value from

Component number PCA parallel analysis Desicion
1 12.756 1.7498 Accept
2 1.349 1.6380 Reject
3 1.240 1.5644 Reject
4 1.134 1.4979 Reject
5 1.044 1.4388 Reject
6 1.017 1.3825 Reject

According to the Table 3, just one dimention is accepted. The test results proves that the scale

is one dimensional

Table 4

Factor Load Distribution Values and Item test correlations of the Programming Self-Efficacy
Scale for Secondary School Students

Factor Corelation Total scale Cronbach's
load correlation Alpha if

ltem

[tems*** Deleted

124: 1 can enable the program to 0.718 Pearson Correlation 0.712** 0.949

produce accurate results. Significance (2-tailed) 0.000

16: | can solve the problem via 0.709 Pearson Correlation 0.702** 0.949

different solutions. Significance (2-tailed) 0.000

116: | know how to use the 0.708 Pearson Correlation 0.707** 0.949

programming variables. Significance (2-tailed) 0.000

122: | can operate the program | 0.707 Pearson Correlation 0.702** 0.949

have developed. Significance (2-tailed) 0.000

127: | can record the program | 0.703 Pearson Correlation 0.699** 0.949

have developed. Significance (2-tailed) 0.000

I31: | can explain my idea of 0.695 Pearson Correlation 0.691** 0.949

software project step by step. Significance (2-tailed) 0.000

130: Among the multiple 0.693 Pearson Correlation 0.691** 0.949

software projects, | select the Significance (2-tailed) 0.000

one that is the fittest for the

criterion.

I5: | select the fittest knowledge 0.693 Pearson Correlation 0.668** 0.949

for solving the programming Significance (2-tailed) 0.000

problem.

14: | investigate the knowledge 0.691 Pearson Correlation 0.610** 0.949

that is required for solving the Significance (2-tailed) 0.000

programming problem.

Cilt:7 Sayi:1 Yil:2017

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 169
Factor Corelation Total scale Cronbach's
load correlation Alpha if

ltem

[tems™*** Deleted

110: Among various steps of 0.688 Pearson Correlation 0.683** 0.949

solution, | select .the fittest one Significance (2-tailed) 0.000

for the solution to the

programming problem.

I7: | can determine the fittest 0.688 Pearson Correlation 0.684**

solution to a problem. Significance (2-tailed) 0.000 0.949

125: | can make changes on the 0.674 Pearson Correlation 0.667** 0.949

program. Significance (2-tailed) 0.000

[15: | can make preparations 0.670 Pearson Correlation 0.668** 0.949

(like determining the variables

and processes) required for Significance (2-tailed) 0.000
solving the programming

problem.

13: | can make an interpretation 0.656 Pearson Correlation 0.608** 0.949

regarding _whether or not a Significance (2-tailed) 0.000

programming problem could be

solved.

18: | can suggest different 0.650 Pearson Correlation 0.519** 0.949

solutions in order to solve the Significance (2-tailed) 0.000

programming problems.

126: | can correct the mistakes 0646 Pearson Correlation 0.644** 0.949

about the coding in the Significance (2-tailed) 0.000

program.

19: | determine the solution to 0639 Pearson Correlation 0.634** 0.950

the programming problem step Significance (2-tailed) 0.000

by step.

120: | know the stages of 0.639 Pearson Correlation 0.637** 0.950

programming. Significance (2-tailed) 0.000

129: | can explain the process of 0.637 Pearson Correlation 0.644** 0.950

developing a software project. Significance (2-tailed) 0.000

[117: When necessary, | can 0.636 Pearson Correlation 0.642** 0.950

change the. order of _the Significance (2-tailed) 0.000

processes designed for solving a

programming problem.

128: | can share my program 0.628 Pearson Correlation 0.632** 0.950

with other people via the Significance (2-tailed) 0.000

internet.

123: | can enable the perfect 0.612 Pearson Correlation 0.613** 0.950

functioning of the program. Significance (2-tailed) 0.000

[14: | can discuss the different 0.609 Pearson Correlation 0.610** 0.949

step_s being developed for Significance (2-tailed) 0.000

solving the programming

problem.

EGITIM TEKNOLOJiSi Kuram ve Uygulama

Computer Programming Self-Efficacy Scale (CPSES) for Secondary School Students: Development, 170
Validation and Reliability

Factor Corelation Total scale Cronbach's
load correlation Alpha if
ltem
[tems*** Deleted
[13: 1 can correct a programming 0.605 Pearson Correlation 0.608** 0.950
problem whose solution steps Significance (2-tailed) 0.000
are given wrong.
121: | know where to write the 0.589 Pearson Correlation 0.589** 0.950
program codes. Significance (2-tailed) 0.000
112: | share the steps of solution 0.584 Pearson Correlation 0.593** 0.950
to the programming problem Significance (2-tailed) 0.000
with my friends.
2: | can solve complex 0.582 Pearson Correlation 0.586** 0.950
programming problems by Significance (2-tailed) 0.000

separating them into smaller
sub-problems.

[1: | can understand whether a 0.546 Pearson Correlation 0.549** 0.950
problem is a programming Significance (2-tailed) 0.000

problem or not.

119: | know what the operators 0.512 Pearson Correlation 0.523** 0.951
+, -, * [/, ><, = mean in a Significance (2-tailed) 0.000
programming.

118: | can use the cycle instead 0.508 Pearson Correlation 0.519** 0.951
of repeating instructions. Significance (2-tailed) 0.000

[11: | can show the steps of 0.473 Pearson Correlation 0.492** 0.951
solution by drawing figures on Significance (2-tailed) 0.000

paper.

*The table does not involve the load values of items as .40 and lower (Bliyukoztirk, 2002).
**Correlation is significant at the level of 0.01 (2-tailed).
***The scale developed in Turkish. All items are translated into English for this article.

Table 4 shows the factor load distribution values of the scale. The factor loads of the
scale, which involves a single factor of 31 items, obtained values varying between 0.473 and
0.718. it can be observed that all the items in the scale have a moderate and high relationship
with the total scale score having a significance level of 0.01 (p<0.01). The item test correlations
of the scale have values between 0.492 and 0.712. The correlation values for the item validity
and homogeneity of the scale prove that the scale items are valid and measure the same
structure. Examining the item test correlation values, it is observed that the scale items have
a sufficient validity level.

Findings regarding the confirmatory factor analysis

The fit of model regarding the factor structure presented as a result of the Exploratory
Factor Analysis (EFA) was tested via Confirmatory Factor Analysis (CFA). The fit of the acquired
model was tested via the cohesion criterion of X?/df, RMSEA (Root Mean Square Error

Cilt:7 Sayi:1 Yil:2017

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 171

Approximation), NFI (Normed Fit Index), NNFI (Non-Normed Fit Index), RMR (Root Mean
Square Residual), CFl (Comparative Fit Index), IFI (Incremental Fit Index), GFI (Goodness of Fit
Index) and AGFI (Adjusted Goodness of Fit Index). As a result of the analysis, we determined
the fit of model as X*/df = 1.84; RMSEA value = 0.06; NFl value = 0.95; NNFI value = 0.98; RMR
value = 0.068; CFl value = 0.98; IFl value = 0.98; GFI value = 0.82 and AGFI value = 0.79.
Considering the data acquired, it was observed that some of the fit values of the model were
not acceptable. Modifications suggested as a result of this analysis were implemented. As a
result of the modifications, we determined X?/df = 1.47; RMSEA value = 0.045; NFI value =
0.96; NNFI value = 0.99; RMR value = 0.061; CFl value = 0.99; IFl value = 0.99; GFI value = 0.85
and AGFIl value = 0.83.

The majority of goodness of fit indexes have a value between 0 and 1. While the value
0 signifies that there is no fit between the data and the model, the value 1 signifies that there
is a perfect fit. If the value of an index is larger than 0.9 and is almost 1, it can be asserted that
the data is an almost perfect fit (Cerezci, 2010). Simsek (2007) suggests that if the x*/df value
is 5 or lower and the RMSEA value is 0.08 or lower, there is a good fit. Byrne (1998), on the
other hand, suggests that a good fit requires the RMR and SRMR values to be 0.1 or lower.
Similarly, a good fit requires the IFl, CFI, NFI and NNFI to be greater than 0.9. In addition to
this, if the AGFl is 0.8 or greater and the GFl is 0.85 or greater, this signifies an acceptable fit
(Cokluk, Sekercioglu & Buyukoztirk, 2010). Considering the goodness of fit indexes acquired
within the scope of this study, it can be observed that the scale has a statistically acceptable
goodnes of fit. While Table 5 shows the fit indexes of the scale involving a single factor and 31
items before and after modification, Figure 1 shows the Structural Equation Model and the
Standard Values after modification.

Table 5.

Fit Values of the Programming Self-Efficacy Scale for Secondary School Students

Fit index Before the After the Acceptable value
modification = modification
Chi-Square (X?) 796.96 618.32
Degree of Freedom 434 422
Chi-Square/df 1.84 1.47 <=5
RMSEA 0.06 0.045 <=0.08
NFI 0.95 0.96 >0.9
NNFI 0.98 0.99 >0.9
RMR 0.068 0.061 <=0.1
CFI 0.98 0.99 >0.9
IFI 0.98 0.99 >0.9
GFI 0.82 0.85 >=0.85
AGFI 0.79 0.83 >=0.8

EGITIM TEKNOLOJiSi Kuram ve Uygulama

Computer Programming Self-Efficacy Scale (CPSES) for Secondary School Students: Development,

Validation and Reliability

H
w
1)
£

u
z
/—
o //
Py o oFf ¢
o B &
: 38 ¢ o8
=
-~
2 \ 1/‘
g
/
4
ok Lot
- " o e
‘v - S en
~ s
:
¥
s

o

// -
y -
= o
“ o
N >

Chi-Square=618.32, df=422, P-value=0.00, RMSEA=0.045

Figure 1. Structural equation model and the standard values after modification

Findings regarding the reliability coefficient using the method of reliability analysis and

equivalent halves (two halves)

172

As aresult of the Cronbach alpha reliability analysis, the reliability coefficient of the scale
was determined to be as high as 0.95 (Ozdamar, 1999). The scale items were separated into
two parts consisting of sole and double items and the reliability analysis was conducted via
the method of equivalent halves (completing half of the test). The Pearson Correlation table

between the first and the second halves is as follows (Table 6).

Cilt:7 Sayi:1 Yil:2017

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 173

Table 6

Correlation Values Being Acquired Via the Method of Completing Half of the Test Regarding
the Programming Self-Efficacy Scale for Secondary School Students

First half Second half
First half Pearson Correlation 1 0.935*
Significance (2-tailed) 0.000
N 233 233

*. Correlation is significant at the level of 0,01 (2-tailed).

The reliability coefficient of the entire test could be determined via the formula

2xrpearson

rentire = using the Spearman-Brown method (Ellez, 2009). From this point of

1+rpearson
view, we determined the reliability coefficient of the entire test via the Spearman Brown

21023 — 0.966. The relationship between the first and the
1+0.935

second half of the test was determined as statistically and positively significant at the level of
p<0.01 (see Table 6).

method as follows: rentire =

Discussion

Computer programming for children has recently been included in numerous curricula,
with various courses employing various teaching practices, and it has an increasing popularity
worldwide. However, it has been asserted that the popularity of educational computer
programming for children has only been reflected in a limited way in research about this
teaching (Fessakis et al., 2013). In particular, there is only a limited number of studies for
determining the self-efficacy level of children with regard to computer programming (Askar &
Davenport, 2009).

In this study, an instrument was developed to measure the self-efficacy levels of
secondary school students regarding computer programming and the psychometric features
of the scale were examined. The steps of scale development were followed. The item pool of
the scale, consisting of 30 items, was evaluated in accordance with expert opinion. Items were
excluded and added according to the feedback received from the experts. In the pilot
application, 33 items were presented to the secondary school students.

As a result of the study, a unidimensional scale of 31 items and a 5-point likert scale was
presented. In the unidimension, the factor loads varied between 0.47 and 0.71. The variance
rate for this scale structure was 41.15%. It can be asserted that the variance explained by the
scale structure explains why it is able to measure sufficiently.

Examining the fit indexes of the scale structure, we determined the X2 / df = 1.84;
RMSEA value = 0.06; NFl value =0.95; NNFI value = 0.98; RMR value = 0.068; CFl value = 0.98;
IFl value = 0.98; GFI value = 0.82 and AGFI value = 0.79. As some values were not acceptable
for the goodness of fit of the model, we implemented the modifications suggested and
determined X* / df = 1.47; RMSEA value = 0.045; NFI value = 0.96; NNFI value = 0.99; RMR
value = 0.061; CFl value = 0.99; IFl value = 0.99; GFl value = 0.85 and AGFI value = 0.83. All the
goodness of fit indexes showed an acceptable fit (Byrne, 1998). From this perspective, the
scale structure was observed to have an acceptable fit.

EGITIM TEKNOLOJiSi Kuram ve Uygulama

Computer Programming Self-Efficacy Scale (CPSES) for Secondary School Students: Development, 174
Validation and Reliability

Consistency-related evidence was obtained for the reliability of the computer
programming self-efficacy scale for children. The Cronbach alpha for internal consistency,
involving all 31 items, was determined as 0.95. From various methods aimed at determining
the internal consistency of the scale, we used the equivalent halves method. As a result of the
reliability analysis that was performed via the equivalent halves method, we obtained a value
of 0.966. The fact that these values are acceptable reliability values shows that the scale had
a sufficient internal consistency level.

Teachers and researchers could use the CPSES as a single factor structure to measure
the computer programming self-efficacy levels of students in teaching with programs like
Scratch, Logo, Alice that have commonly been used, especially in recent years, to educate
children in computer programming.

Conclusion

Today, in parallel with developments in information technology, computer
programming has become an important area, attracting large financial investments
worldwide. Computers, mobile computers and smart phones are equipped with constantly
evolving software that meets different needs with each passing day. Furthermore, it has been
suggested that computational thinking should be considedered among the basic skills required
in the 21st century (Philips, 2009; Wing 2010). Reading, writing and arithmetic have always
been among the basic skills, but today individuals of the 21st century also need to have the
ability to think like computer scientists in order to solve ever more complex problems and
carry out required tasks (Wing, 2006). Computer science has an interdisciplinary relationship
with other disciplines (Barr, & Stephenson, 2011). Yet teaching and learning computer
programming are still considered difficult for both students and educators (Black, 2006;
Shadiev et al., 2014). In order to increase the degree of computer programming self-efficacy,
its initial level must first be determined. There is, however, an extremely limited number of
assessment instruments aimed at measuring computer programming self-efficacy in children.
Itis possible to assert that the assessment instrument developed within the scope of this study
can measure computer programming self-efficacy in a valid and reliable way and this
instrument is thus useful in terms of responding to and filling the lack of a relevant assessment
instrument.

The results of this study could be generalized, although based on some limitatons. The
study group comprises only secondary school students. In addition to this, the confirmatory
factor analysis was conducted via the exploratory factor analysis data. “Both exploratory and
confirmatory techniques are useful tools for analyzing the complex data sets” (Plucker, 2003).
“If a good fit is questionable when the factor structure is confirmatively tested on the same
data, we cannot expect that a test of the factor structure in a confirmative follow-up study,
that is, on different data, will lead to a good fit” (Van Prooijen & Van Der Kloot, 2001). Another
limitation of the study is that it did not examine the external criterion validity within the scope
of validity studies. Apart from these limitations, it was observed that the assessment
instrument was able to adequately measure the structure of the scale.

It is suggested that there be further research into whether the assessment instrument
developed here has a similar validity in assessing high school and university students, as well
as within different languages and cultures. It is also suggested that studies be conducted

Cilt:7 Sayi:1 Yil:2017

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 175

regarding any personal and demographic features of students which may affect their levels of
computer programming self-efficacy, as well as the educational methods and techniques that
may also have an effect. It should be possible to determine the obstacles that negatively affect
computer programming teaching and to conduct comprehensive studies that could increase
the success in this subject. It is suggested that studies be conducted that would model the
relationships between self-efficacy in computer programming and other problem-solving
skills, as well as other critical and high-level thinking and computational thinking skills.
Moreover, such studies could determine and support the contribution of computer
programming skills to the overall cognitive development of students. It is also suggested that
the effect of computer programming on the teaching and learning of maths and other subjects
be investigated.

References

Abdi, H. (2003). Factor rotations in factor analyses. Encyclopedia for Research Methods for the
Social Sciences. Sage: Thousand Oaks, CA, 792-795.

Altun, A., & Mazman, S. G. (2012). Programlamaya iliskin 6z yeterlilik algisi 6lgeginin Tirkge
formumun gecerlilik ve giivenirlik calismasi. Egitimde ve Psikolojide Ol¢me ve
Degerlendirme Dergisi, 3(2), 297-308.

Anastasiadou, S.D., & Karakos, A.S. (2011). The beliefs of electrical and computer engineering
students regarding computer programming. The International Journal of Technology,
Knowledge and Society, 7(1), 37-51.

Armoni, M. (2011). The nature of CS in K-12 curricula: the roots of confusion. ACM
Inroads, 2(4), 19-20. doi:10.1145/2038876.2038883

Askar, P., & Davenport, D. (2009). .An investigation of factors related to self-efficacy for java
Programming among engineering students. The Turkish Online Journal of Educational
Technology TOJET, 8(1): 26-32.

Austin, H.S. (1987). Predictors of pascal programming achievement for community college
students. Proceedings of the eighteenth SIGCSE technical symposium on Computer science
education, Missouri, United States, 161-164. doi: 10.1145/31726.31752

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.
Psychological Review, 84, 191-215, http://dx.doi.org/10.1037/0033-295X.84.2.191

Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual review of
psychology, 52(1), 1-26. doi:10.1146/annurev.psych.52.1.1

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved
and what is the role of the computer science education community?. ACM Inroads, 2(1), 48-
54. doi:10.1145/1929887.1929905

Black, T.R. (2006). Helping novice programming students succeed. Journal of Computing
Sciences in Colleges, 22(2), 109-114.

EGITIM TEKNOLOJiSi Kuram ve Uygulama

Computer Programming Self-Efficacy Scale (CPSES) for Secondary School Students: Development, 176
Validation and Reliability

Booth, S. (1992). Learning to program: A phenomenographic perspective. University of
Gothenburg Publication, http://hdl.handle.net/2077/16224

Brichacek, A. (2014). Computational thinking boosts students’ higher-order skills. Retrieved
May 21, 2015 from
https://www.iste.org/explore/articleDetail?articleid=232&category=Featured-
videos&article=Computational%20thinking%20boosts%20students%E2%80%99%20higher
-order%?20skills.

Blyukoztirk, S. (2002). Faktor analizi: Temel kavramlar ve 6lgek gelistirmede kullanimi. Kuram
ve uygulamada egitim yénetimi, 32(32), 470-483.

Blyukoztiirk, S. (2010). Sosyal bilimler igin veri analizi el kitabi [Handbook of data analysis for
the social sciences], Ankara: Pegem Akademi.

Byrne, B. M. (1998). Structural equation modeling with lisrel, prelis and simplis: basic concepts,
applications, and programmings. London: Lawrence Erlbaum Assocatiates, Publishers.

Caspersen, M. E., & Kolling M. (2009). STREAM: A first programming process. ACT Transaction
on Computing Education, 9, 1-29. doi:10.1145/1513593.1513597

Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure
and initial test. MIS quarterly, 189-211, http://www.jstor.org/stable/249688

Cerezci, E.T. (2010). Yapisal esitlik modelleri ve kullanilan uyum iyiligi indekslerinin
karsilastirilmasi. (Unpublished Doctoral Dissertation). Gazi Universitesi Fen Bilimleri
Enstitlsi: Ankara.

Cokluk, O., Sekercioglu, G., &Blyikoztirrk, S. (2010). Sosyal bilimler icin ¢ok degiskenli
istatistik: SPSS ve LISREL uygulamalari. Ankara: Pegema Yayincilik.

DeVellis, R. F. (2012). Scale development: Theory and applications (Vol. 26). London: Sage
publications.

Ellez, A. M. (2011). Olgme araglarinda bulunmasi gereken ozellikler. Bilimsel arastirma
yéntemleri. (In Second Edition), 165-190. Ankara: Ani Yayincilik.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old kindergarten
children in a computer programming environment: A case study. Computers &
Education, 63, 87-97. doi: 10.1016/j.compedu.2012.11.016

Fessakis, G., & Serafeim, K. (2009). Influence of the familiarization with scratch on future
teachers' opinions and attitudes about programming and ICT in education. In ACM SIGCSE
Bulletin (Vol. 41, No. 3, pp. 258-262). ACM. Doi: 10.1145/1595496.1562957

Feurzeig, W., & Papert, S. A. (2011). Programming-languages as a conceptual framework for
teaching mathematics. Interactive Learning Environments, 19(5), 487-501.doi:
10.1080/10494820903520040

Cilt:7 Sayi:1 Yil:2017

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 177

Gokgearslan, S., & Alper, A. (2015). The effect of locus of control on learners' sense of
community and academic success in the context of online learning communities. The
Internet and Higher Education, 27, 64-73. Doi: 10.1016/j.iheduc.2015.06.003

Grover, S., & Pea, R. (2013). Computational Thinking in K-12 A Review of the State of the
Field. Educational Researcher, 42(1), 38-43. doi: 10.3102/0013189X12463051

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis.
PrenticeHall International, Upper Saddle River, New Jersey.

ISTE. (2007). ISTE standards students. International Society for Technology in Education:
Retrieved, August, 2015 from https://www.iste.org/docs/pdfs/20-14 ISTE_Standards-
S_PDF.pdf

Jones, S. P. (2011). Computing at School International comparisons. Retrieved Agustos 5, 2015
from http://www.computingatschool.org.uk/index.php?id=documents adresinden.

Kafai, Y., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta Kappan,
95(1), 61-65.

Kalelioglu, F. (2015). A new way of teaching programming skills to K-12 students: Code.
org. Computers in Human Behavior, 52, 200-210. doi:10.1016/j.chb.2015.05.047

Kan, A., & Akbas. A. (2005). Lise 6grencilerinin kimya dersine yonelik tutum 6lgegi gelistirme
calismasi. Mersin Universitesi Egitim Fakiiltesi Dergisi, 1 (2), 227-237.

Kay, R. H., & Knaack, L. (2005). A case for ubiquitous, integrated computing in teacher
education. Technology, Pedagogy and Education, 14(3), 391-412.
doi:10.1080/14759390500200213

Ke, F. (2014). An implementation of design-based learning through creating educational
computer games: A case study on mathematics learning during design and computing.
Computers & Education, 73, 26-39. doi:10.1016/j.compedu.2013.12.010

Kelleher, C., & Pausch, R. (2007). Using storytelling to motivate programming.
Communications of the ACM, 50(7), 58-64. Doi: 10.1145/1272516.1272540

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle school girls to
learn computer programming. In Proceedings of the SIGCHI conference on Human factors
in computing systems (pp. 1455-1464). ACM. doi: 10.1145/1240624.1240844

Kline, P. (1994). An Easy Guide To Factor Analysis. New York: Routledge

Korkmaz, O., & Altun, H. (2014). Adapting computer programming self-efficacy scale and
engineering students’ self-efficacy perceptions. Participatory Educational Research (PER),
1(1), 20-31, http://dx.doi.org/10.17275/per.14.02.1.1

Korkmaz, O., Cakir, R., & Ozden, M. Y. (2017). A validity and reliability study of the
Computational Thinking Scales (CTS). Computers in Human Behavior,
http://dx.doi.org/10.1016/j.chb.2017.01.005

EGITIM TEKNOLOJiSi Kuram ve Uygulama

Computer Programming Self-Efficacy Scale (CPSES) for Secondary School Students: Development, 178
Validation and Reliability

Lee, J., Park, J. G., & Hwang, Y. (2013). A study on general and specific programming self-
efficacy with antecedents from the social cognitive theory. Journal of Next Generation
Information Technology, 4(8), 423-432.

Lewis, C. M. (2010). How programming environment shapes perception, learning and goals:
logo vs. scratch. In Proceedings of the 41st ACM technical symposium on Computer science
education (pp. 346-350). ACM. doi: 10.1145/1734263.1734383

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12?. Computers in Human Behavior, 41, 51-61.
Doi: 10.1016/j.chb.2014.09.012

Maheshwari, P. (1997, July). Teaching programming paradigms and languages for qualitative
learning. In Proceedings of the 2nd Australasian conference on Computer science
education (pp. 32-39). ACM. doi:10.1145/299359.299365

Mazman, S. G., & Altun, A. (2013). Programlama-| dersinin bote bolimi 6grencilerinin
programlamaya iliskin 6z yeterlilik algilari Uzerine etkisi. Journal of Instructional
Technologies & Teacher Education, 2(3), 24-29.

Murphy, C. A., Coover, D., & Owen, S. V. (1989). Development and validation of the computer
self-efficacy scale. Educational and Psychological measurement, 49(4), 893-899. doi:
10.1177/001316448904900412

Nilsen H., & Larsen A. (2011). Using the personalized system of instruction in an introductory
programming course. NOKOBIT, 27-38. November 21-23.

Ozdamar, K. (1999). Paket Programlar ile statistiksel Veri Analizi 1. Eskisehir: Kaan Kitabevi.

Ozel, M., Timur, B., Timur, S. & Bilen, K. (2013). Ogretim elemanlarinin pedagojik alan bilgilerini
degerlendirme anketinin Tiirkceye uyarlanmasi ¢alismasi. Ahi Evran Universitesi Kirsehir
Egitim Fakiiltesi Dergisi (KEFAD), 14 (1), 407-428.

Pallant, J. (2010). A step by step guide to data analysis using the SPSS program. Australia: Allen
and Unwin Books.

Phillips, P. (2009). Computational thinking a problem solving tool for every classroom.
Computer Science Teacher Association. Retrieved August 2015 from
http://csta.acm.org/Resources/sub/ResourceFiles/CompThinking.pdf.

Plucker, J. A. (2003). Exploratory and confirmatory factor analysis in gifted education:
Examples with self-concept data. Journal for the Education of the Gifted, 27(1), 20-35.

Ramalingam, V., & Wiedenbeck, S. (1998). Development and validation of scores on a
computer programming self-efficacy scale and group analyses of novice programmer self-
efficacy. Journal of Educational Computing Research, 19(4), 367-381. Doi: 10.2190/C670-
Y3C8-LTJ1-CT3P

Cilt:7 Sayi:1 Yil:2017

Volkan KUKUL, Sahin GOKGEARSLAN, Mustafa Serkan GUNBATAR 179

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., ... &
Kafai, Y. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60-67.
doi: 10.1145/1592761.1592779

Seehorn, D., Carey, S., Fuschetto, B., Lee, |., Moix, D., O'Grady-Cunniff, D., ... & Verno, A.
(2011). CSTA K--12 Computer Science Standards: Revised 2011. ACM.

Shadiev, R., Hwang, W.Y,, Yeh, S. C., Yang, S.)., Wang, J. L., Han, L., & Hsu, G. L. (2014). Effects
of unidirectional vs. reciprocal teaching strategies on web-based computer programming
learning. Journal of Educational Computing Research, 50(1), 67-95. doi:10.2190/EC.50.1.d

Simsek, O. F. (2007). Yapisal esitlik modellemesine giris, temel ilkeler ve LISREL uygulamalari.
Ankara: Ekinoks Yayincilik.

Tabachnick, B. G. ve Fidell, L.vS. (1996). Using multivariate statistics (3. Ed.). New York: Harper
Collins College Publishers.

Uysal, M. P., & Yalin, H. i. (2012). Ogretim etkinlikleri kuramina gére tasarlanan dgretim
yaziliminin akademik basariya etkisi. International Journal of Human Sciences, 9(1), 185—
204.

Van Prooijen, J. W., & Van Der Kloot, W. A. (2001). Confirmatory analysis of exploratively
obtained factor structures. Educational and Psychological Measurement, 61(5), 777-792.

Yong, A. G., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on exploratory
factor analysis. Tutorials in Quantitative Methods for Psychology, 9(2), 79-94.

Weinberg, A. E. (2013). Computational thinking: An investigation of the existing scholarship
and research. (Unpublished Doctoral Thesis), Colorado State University, School of
Education, Colorado.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of The Royal Society, 3717-3725. doi: 10.1098/rsta.2008.0118

Wing, J. M. (2010). Computational thinking: What and Why? Center for Computational
Thinking Carnegie Mellon: Retrieved, May 2014 Retreived from
https://www.cs.cmu.edu/~CompThink/papers/TheLinkWing.pdf

Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary
Educational Psychology, 25(1), 82-91. doi:10.1006/ceps.1999.1016

EGITIM TEKNOLOJiSi Kuram ve Uygulama

	etku_kapak_7_1
	13_140pc

