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Abstract
Fixed-figure problem has been introduced as a generalization of fixed circle problem and investigated a

geometric generalization of fixed point theory. In this sense, we prove new fixed-figure results with some
illustrative examples on metric spaces. For this purpose, we use K M K-type contractions, that is, Kannan
type and Meir-Keeler type contractions.
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1. Introduction

In recent years, fixed-point theory has been generalized using the geometric approaches. For this purpose, fixed-
circle problem has been occurred as a geometric generalization to the fixed-point theory when the self-mapping
% : X — X has more than one fixed point [1]. In many studies, there are different solutions to this problem with
applications on metric and some generalized metric spaces (for example, see [2], [3], [4], [5], [6], [7], [8] and [9]).
After than, this problem has been extended to fixed-figure problem [10]. For this problem, the following notions
were defined (see [11], [12], [1] and [10]).

Let (%,0) be a metric space, T : X — X a self-mapping and 1o, 11,12 € X, v € [0,00). Then,

(a) the circle €, . is defined by

Croe = {r€X:0(x,x0) =1}

(b) the disc Dy, . is defined by
Droe ={r € X:0(r,x0) <t}

(c) the ellipse €. (r1,12) is defined by

Ce(rxe) ={r € X:0(z,r1) +0(x,x2) =t}

Received : 06-07-2022, Accepted : 10-11-2022
(Cite as "N. Tas, Interpolative K M K-Type Fixed-Figure Results, Math. Sci. Appl. E-Notes, 11(3) (2023), 129-137")



https://doi.org/10.36753/mathenot.1141344

130 N. Tas

(d) the hyperbola £, (x1,r2) is defined by

He(rr,r2) ={reX:o(r,r1) —0(r,12)| =t}

(e) the Cassini curve €.(r1,r2) is defined by

Cerr,r2) ={r e X:0(r,11)0 (3, 12) = v}

(f) the Apollonius circle 2. (xr1,12) is defined by

Q[t(?la?Q) = {X €eX— {xQ} : zg’i;; = t} .

(g) the k-ellipse € [r1, 2, . . ., 1; t] is defined by

k
Clr1,k2, . L] = {xe X:) o(nw) zt}-
=1

A geometric figure F contained in the fixed point set Fiz: (T) = {r € X : r = Tr} is called a fixed figure (a fixed
circle, a fixed disc, a fixed ellipse, a fixed hyperbola, a fixed Cassini curve, etc.) of the self-mapping ¥ (see [10]).
Some fixed-figure results were obtained using different aspects (see [13], [11], [12], [3], [10], [14] and [15] for more
details).

In this paper, we investigate some solutions to the fixed-figure problem on metric spaces. To do this, we modify
the Kannan type and Meir-Keeler type contractions used in the fixed-point theorems. We give some illustrative
examples related to the proved fixed-figure results.

2. Main results

In this section, we present some solutions to the fixed-figure problem using Kannan type (see [16] and [17]) and
Meir-Keeler type (see [18]) contractions on metric spaces. To do this, we inspire the used approaches in [19] and
[20].

In the sequel, let T : X — X be a self-mapping of a metric space (X, ?) and the number ¢ defined as

v=inf {0(r,%r) : r ¢ Fizx(%)}. (2.1)

Also, in the examples of this section, we use the usual metric 0.
The following theorem can be considered as a new fixed-disc or fixed-circle theorem.

Theorem 2.1. If there exist o € X and v € (0, 1) such that
(a) There exists a §(t) > 0 so that

v - t
5 < [T P o) < 5 Ho(r) = 0(Trr) <,

forally € X — Fiz(%),

o) N

1< 0(r, %) < [o(x, Txp)]” Pro, Tw)] 7,

forally € X — Fiz(X), then we have

(i) xo € Fix(%),

(1) Dy € Fiz(%),

(iii) Cp,.c C Fim(T).

Proof. (i) Letyo € X — Fiz(%). Using the condition (b), we have
1 < d(x0, Tro) < [0(x0, o))" P(x0, Tro)]' 7 = 0(x0, Tuo),

a contradiction. So it should be ry € Fiz(%).
(#7) If t = 0, then we have ©,, . = {10} and from the condition (i), we get D, . C Fiz(%).
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Lett > 0and t € ®,,  such thatr € X — Fiz(%). Using the condition (b), we get
1< 0(r Tr) < o(x, Tao))” o(xo, T))' 7 (22)

and by the condition (a), we have

v _ t

5 < P T Plrxo)) 7 < 5T 6(r) = 0(%r,x0) <t (2.3)
If we combine the inequalities (2.2) and (2.3), we obtain

1 <(x, %) < P, Trg)]” Pro, Tr)] 7 < v < 0(x, Tx),

a contradiction. It should be ¢ € Fiz(T). Consequently, we get ©,, . C Fiz(%).
(i17) It can be easily seen that €, . C Fiz (%) since ¢, . is a boundary of Dy, .. O

Example 2.1. Let X = {—1,0, 1, 2}. Define the self-mapping T : X — X as
-1 0 1 2
o= < -10 1 1 ) '
for all r € X. Then ¥ validates the hypotheses of Theorem 2.1 for ryp =0, v = % and 6(t) = 2. Also, we have
v=inf {o(r,%r):r =2} =1

and

Fiz(%) ={-1,0,1}
Consequently, 0 € Fiz(%), D91 = {—1,0,1} C Fiz(¥) and €y ; = {—1,1} C Fiz(%).

Theorem 2.2. If there exist p1,ro € X and v € (0,1) such that
(@) There exists a 6(t) > 0 so that

% < PETH PEa) +o ) 7 < % +6(x)

= (Tr,n) +0(%rr2) <,

forally € X — Fiz(%),

(0)

1<0(x, Tr) < P(r, Tey) + 0t Tro)]” P(r1, Tr) + 0(x2, Tr)]' 7,

forally € X — Fiz(%),

(¢) 11,22 € Fiz(%),
then we have

€. (r1,r2) € Fiz(T).

Proof. Lett = 0. Then we have €.(r1,r2) = {r1} = {r2}. From the condition (c), we get
@r(hwz) - FME(T)
Letv > 0and r € €.(r1,12) such thaty € X — Fiz(¥). Using the condition (b), we get

1< o(r, Tr) < [o(r, Tay) +0(x, Te)) [0(e1, Ta) + ez, Tw)]' 7 (24)
and by the condition (a), we have
% < %)) Plrr) + o) T < §+ 5(t) (2.5)

= (Ip,n) +o(Tyx) <7
If we combine the inequalities (2.4) and (2.5), we obtain
1 <oy, %) <v<0(r, Tp),
a contradiction. It should be ¢ € Fiz(T). Consequently, we get
€c(r1,r2) C Fin(T).
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Example 2.2. Let X = {1, 1,2, 3}. Define the self-mapping T : X — X as
-1 1 2 3
= ( 11 21 ) ’
for allr € X. Then ¥ validates the hypotheses of Theorem 2.2 foryy = —1, 2 =1, 7 = % and 4(r) = 2. Also, we have

v=1inf {o(z,%x) :r =3} =2

and
Fiz(T) = {-1,1,2}

Consequently, —1,1 € Fiz(%) and €5(—1,1) = {-1,1} C Fiz(%).

Theorem 2.3. If there exist r1,12 € X, v € (0,1) and v > 0 such that
(a) There exists a §(t) > 0 so that

T _ T
5 < P30 o, 1) — (1) 7 < 5 ()
= |D(TF7F1) - D(‘ZLIQ)‘ S T,

forally € X — Fiz(%),
(0)
1< 0, Tr) < [o(r, Tey) — 0(x, Tay) |7 [0(x1, Tr) — 0(x2, Tx)| 7,
forally € X — Fix(%),
(¢) 11,22 € Fiz(%),
then we have
He(r1,x2) € Fiz(T).

Proof. Lety € $¢(r1,r2) such thatr € X — Fiz(T). Using the condition (b), we get
1<, Tr) < [0(x, Tay) — 0(x, Teo)| " [0(x1, Tx) — 0(x2, Tr)| ' 7 (2.6)

and by the condition (a), we have

t _ t

5 < [D(;v (I;)]’y |D(X7gl) - D(&?Q)P K < 5 + 5(t) (27)

= P(Ern) -o(@r ) <t
If we combine the inequalities (2.6) and (2.7), we obtain
1 <0(p, Tr) <v<2(r, Tx),

a contradiction. It should be ¢ € Fiz(¥). Consequently, we get

9e(r1,12) C Fiz(%).

Example 2.3. Let X = {—1,11,2, 3,3,4}. Define the self-mapping T : X — X as
—1 3 4
= ( -1 3 4 )

for allr € X. Then ¥ validates the hypotheses of Theorem 2.3 fory; = —1, 12 =1, 7 = % and §(r) = 2. Also, we have

1 2
1 2

DT |

ool

1
t:inf{D(zc,T;):z:: 2} =2

and

Fiz(T) = {—1,1,2, 2,3,4}

Consequently, —1,1 € Fiz(T) and $2(—1,1) = {-1,1,2,2,3,4} C Fiz(%).
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Theorem 2.4. If there exist p1,12 € X and v € (0,1) such that
(a) There exists a 6(t) > 0 so that

S PeTOl Rlr)a )T < S+ 6()
= (T, n)d(Tr,r2) <,

forally € X — Fix(%),
(0)
1<, Tr) < [0(x, Tay)0(x, Tra)]” (x1, Tr)d (2, Tr))' 7,

forally € X — Fiz(%),
(C) L1,X2 € Fm(f),
then we have
Q:r(?hFQ) - FZI’(S)
Proof. Lett = 0. Then we have €. (xr1,r2) = {r1} = {r2}. From the condition (c), we get
Qr(}'—hiz) - F'L-T(‘I)
Letv > 0and r € €.(r1,12) such that r € X — Fiz(¥T). Using the condition (b), we get
1 <0, Tr) < [0, Try)o(x, Try))” [o(v1, T1)0 (32, Tr)] 7 (2.8)
and by the condition (a), we have
T _ v
5 < PETPEnRER)] T <5+ (29)
= (T, 1 )o(Tr 1) <
If we combine the inequalities (2.8) and (2.9), we obtain
1<0(r, %) <v<0(x, Tp),
a contradiction. It should be ¢ € Fiz(¥). Consequently, we get

Q:t(}il,xg) g FZJC(T)

Example 2.4. Let X = {—V/3,—-1,0,1,/3,2}. Define the self-mapping T : X — X as

V3 -1 0 1 V3 2
Tx(—ﬁ 1 o1¢§o)’

for allr € X. Then ¥ validates the hypotheses of Theorem 2.4 fory; = -1, 12 =1,7 = % and §(r) = 4. Also, we have

1
t:inf{b(;,fx):zc: 2} =2

and

Fia(T) = {—Jﬁ, 1.0, 1,%5}
Consequently, —1,1 € Fiz(%) and €5(—1,1) = {—V/3,V3} C Fiz(%).

Theorem 2.5. If there exist t1,r2 € X and v € (0,1) such that
(a) There exists a §(t) > 0 so that

D(I7I1):|1’Y < T D(TLM)

< [o(x, Tr))” [U(Zﬂ, 1) o(Tr,12)

t
2
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forally € X — Fiz(%),
(0)

(L‘%)T [D(xlﬂx)]l_”,

0
1<0(r,%) <
< e %) [aoc,%) 22, 51)

forally € X — Fiz(%),
(C) L1,X2 € FZl‘(‘I),
then we have
Q[t(zll,XQ) g Fll‘(i)

Proof. Lett = 0. Then we have 2, (r1,r2) = {r1} = {r2}. From the condition (c), we get
Ae(r1,22) C Fiz(T).

Lett > 0and r € 2A.(r1,r2) such thatr € X — Fiz(¥). Using the condition (b), we get

1—
veoem < [R] [Ssn) 10
and by the condition (a), we have
<o [ o= 2 =
If we combine the inequalities (2.10) and (2.11), we obtain
1 <0, %x) <tv<0o(, %),
a contradiction. It should be ¢ € Fiz(¥). Consequently, we get
Ae(r1,12) C Fiz(T).
O

Example 2.5. Let X = {—1,0, 1,1,2,3}. Define the self-mapping T : X — X as
-1 0 %+ 1 2 3
s‘73_(—1 o 110 3)'
for all z € X. Then ¥ validates the hypotheses of Theorem 2.5 fory; = —1,10 = 1,7 = % and 4(t) = 4. Also, we have

1
t:inf{D(;,Tx):;: 2} =2

and .
Fia(%) = {—1,073,1,3}
Consequently, —1,1 € Fiz(T) and Az(—1,1) = {3,3} C Fiz(%).

Theorem 2.6. If there exist t1,12,...1, € X and v € (0, 1) such that
(a) There exists a §(t) > 0 so that

forally € X — Fiz(%),
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(b)
k YTk L=y
1<y, %) < [Z o(r, Tx;) lz ATew)|
i=1 i=1

forally € X — Fix(%),

(¢) 11,22, .-tk € Fiz(%),
then we have

€lr1,x2, - 1t C Fia(T).

Proof. Lett = 0. Then we have € [r1,z2,...,5k;t] = {r1} = ... = {rx}. From the condition (c), we get

6[;17I27"'7Ik;t] c FZI‘(T)

Letv>0andr € €[p1,12,. ..,k t] such thatp € X — Fiz(¥). Using the condition (b), we get

k Yok 1—y
1<0(r, Tr) < | Yo, Try) [Z o(Tr, 1) (2.12)
i=1 i=1
and by the condition (a), we have
b 1—y
% < PET) ; o(x, Fi)] < % +4(v) (2.13)
k
= D ATm) <
i=1
If we combine the inequalities (2.12) and (2.13), we obtain
1<0(r,%x) <t<0o(,%x),
a contradiction. It should be ¢ € Fiz(%). Consequently, we get
Elr1,x2,. .., 155 t) C Fiz(T).
O

Example 2.6. Let X = {—1,0, 1, 2}. Define the self-mapping T : X — X as
-1 0 1 2
= ( 1010 )

for all r € X. Then ¥ validates the hypotheses of Theorem 2.6 fory; = —1,12 =0,13 = 1,7 = % and §(r) = 4. Also,
we have

1
t—inf{b(;,ﬁt):gz— 2} =2

and
Fix(%) ={-1,0,1}

Consequently, —1,0,1 € Fiz(%) and ¢[—1,0,1;2] = {0} C Fiz(%).

3. Conclusion and future works

This paper is an example of the geometric approaches to fixed-point theory. The aim of this paper is to gain new
solutions to the fixed-figure problem. For this paper, we use K M K-type contractions, that is, Kannan type and
Meir-Keeler type contractions on metric spaces. This problem can be studied with different approaches on both
metric spaces and some generalized metric spaces (for example, see [21], [22], [23] and the references therein).
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