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This study analyses the effects of mixed convection heat transfer from a 

moving vertical flat plate with an experimental and stacked heterogeneous 

ensemble learning approach. In the experimental work, the effects on both 

natural and forced convection of dimensionless oscillation amplitude (Ao), 

dimensionless oscillation frequency (Wo) and Rayleigh number (Ra) are 

investigated. In the experiments, the vertical movement of the plate is provided 

by a flywheel-motor assembly. The average Nusselt numbers (Nu) on the fixed 

plate and the moving plate surface were obtained. Additionally, this study is 

focused on predicting heat transfer of a moving flat plate using single-based 

algorithms (Gradient Boosting, AdaBoost, Multilayer Perceptron) and a 

stacked heterogeneous ensemble learning model. The statistical performance of 

the single-based algorithms and the stacked ensemble model is measured in the 

prediction of mixed convection heat transfer. The results show that the stacked-

based ensemble learning model yielded the MSE = 2.01, RMSE = 1.42, MAE 

= 1.1 and R2 = 0.99 values.  Overall, this study reveals that the proposed 

stacked ensemble machine learning model can be used successfully for 

modelling the convection heat transfer of a moving plate. 
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Dikey Salınımlı Düz Bir Levhadan Karışık Taşınım Isı Transferinde Yığılmış Heterojen 
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 Bu çalışmada, hareketli dikey düz bir levhadan karışık taşınım ısı transferinin 

etkileri deneysel ve yığılmış heterojen topluluk öğrenme yaklaşımı ile analiz 

edildi. Deneysel çalışmada, boyutsuz salınım genliği (Ao), boyutsuz salınım 

frekansı (Wo) ve Rayleigh sayısının (Ra) doğal ve zorlanmış taşınım 

üzerindeki etkileri incelendi. Deneylerde, levhanın dikey hareketi volan-motor 

düzeneği ile sağlandı. Hareketli levha ve sabit levha yüzeyi üzerinde ortalama 

Nusselt sayıları (Nu) elde edildi. Ayrıca, bu çalışma, tek tabanlı algoritmalar 

(Gradient Boosting, AdaBoost, Multilayer Perceptron) ve yığılmış heterojen 

topluluk öğrenme modeli kullanarak hareketli bir düz plakanın ısı transfer 

tahminine odaklanmıştır. Tek tabanlı algoritmaların ve yığılmış topluluk 

modelinin istatistiksel performansı karışık taşınım ısı transferi tahmininde 

ölçülmüştür. Sonuçlar, yığılmış topluluk modelinin MSE = 2.01, RMSE = 

1.42, MAE = 1.1 ve R2 = 0.99 değerlerini verdiğini göstermektedir. Genel 

olarak, bu çalışma, önerilen yığılmış topluluk makine öğrenme modelinin, 

hareketli bir levhanın taşınım ısı transferini modellemek için başarıyla 

kullanılabileceğini ortaya koymaktadır. 
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Yığılmış topluluk 
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1. Introduction 

Recently, the exploration of heat transfer improvement methods has been the focus of attention for 

many researchers due to the increasing energy demand of the industry. Therefore, passive and active 

heat transfer improvement methods are often used. Application arrangements such as wavy surfaces, 

the addition of baffles/fins into the channel, the use of nanofluids, and the use of a vortex generator to 

create a turbulator effect are passive methods. This method is cheap and simple as it does not require 

additional power but provides limited heat transfer. In cases where higher heat transfer is required, 

active techniques such as electric and magnetic field applications, boundary layer suction, boundary 

layer injection, oscillating/pulsating flows, and moving surfaces are preferred. It has been proven that 

all active methods improve heat transfer. Several researchers have studied experimental, numerical 

and mathematical analysis to enhance convection heat transfer (Cortell, 2007; Akdag et al., 2014; 

Khalid et al., 2017; Koffi et al., 2017; Pradhan et al., 2017; Shah et al., 2019). 

Oscillatory flows and moving surfaces are commonly used active heat transfer improvement methods 

since these applications are known to cause high mass and heat transfer. Oscillatory flow applications 

are encountered in nature and biological systems, engineering implementations, industrial, nuclear, 

aerospace and military fields. It is possible to encounter applications in which oscillating flows are 

used in many industrial fields such as chemistry, food, and nuclear, especially in the energy field such 

as heating and cooling. Many researchers have recently focused on oscillating flows and moving 

surfaces (Subhashini and Sumathi, 2014; Ashafa et al., 2017; Patil et al., 2018; Lee et al., 2019; Sarhan 

et al., 2019). The effects on heat transfer of the oscillations of a vertical plate were analyzed 

analytically (Gomaa and Al Taweel, 2005) and numerically (Uddin et al., 2015). As a result of these 

studies, they declared that periodic surface movements increase the heat transfer rate depending on the 

oscillation parameters. Khan et al. (2019) presented an analytical study investigating free convection 

on a perpendicular moving cylinder surface and reported that the surface temperature declined with the 

rising Prandtl number and Nusselt number. Neethu et al. (2021) analytically and statistically analyzed 

the magnetic field flow of the nanofluid passing between perpendicular porous plates moving in 

opposite directions. Mehta et al. (2021) experimentally studied the effects of different parameters on 

the thermal efficiency of closed-loop flat-plate oscillating heat pipe. 

There are experimental studies in the literature for solutions to complicated heat transfer problems. 

Experimental studies require a very long time, and devices are pretty expensive. For this reason, 

numerical and analytical methods are preferred as alternative solutions. However, complex thermal 

problems are challenging to solve analytically. Another alternative method is to use machine learning 

models. One of the most popular machine learning models is artificial neural networks (ANN). ANN 

has been used in different studies relating to the prediction of heat transfer (Akdag et al., 2009; 



637 

 

Ghritlahre and Prasad, 2018). Their study focuses on ANN applications and their success in dealing 

with complicated thermal systems. In another study, performance parameters of flat plate solar 

collectors were predicted by employing an ANN, and 96.3% R2 value was obtained (Kalogirou, 

2006). Sozen and Arcaklioglu (2007) investigated the exergy analysis of an ejector absorption heat 

transformer employing ANN. This study achieved to provide 99% R2 statistical result. Yang (2008) 

presented a review study about ANN approach for various thermal applications. Khalaj et al. (2014) 

measured the effect of thermohydraulic performance on passive heat transfer using an ANN approach. 

Mohanraj et al. (2015) presented a literature survey considering the applications of ANN for the 

thermal behaviour of heat exchangers. In a different study, heat transfer on a flat plate was predicted 

by employing ANN, and this study yielded a 0.363 MAE score (Akdag et al., 2016). The proposed 

ANN also provided a convincing R2 score (99%). An ANN approach was also created to investigate 

the nanofluids flow in a microchannel heat sink (Tafarroj et al., 2017) and the ANN provided a 99% 

R2 score. Ghritlahre and Prasad (2018) presented a comparative study to predict the heat transfer from 

roughened absorber plate to air passing using the ANN and Linear Regressor. The used ANN provided 

a better MAE (0.316) score than the Linear Regressor. Koroleva et al. (2020) investigated heat transfer 

enhancement performance using computational fluid dynamics and artificial neural networks. 5.17×10
-

5
 MSE score is obtained through the proposed approach. Akhgar et al. (2019) realized a study using 

ANNs to estimate the thermal conductivity of hybrid nanofluids (MWCNT-TiO2). Abdelatief et al. 

(2019) investigated the natural convection on the outer surface of an elliptical tube at varying 

inclination angle and heat flux with experimental and ANN approach and compared the results with 

the literature studies. Serrano et al. (2020) examined the effect of bed materials in bubbling fluidized 

bed gasification using ANN method. Mirzaei and Mohiabadi (2021) studied the thermal behaviour of 

the flat plate solar collector with different nanofluids using ANN approach and estimated the system's 

performance with a deviation less than ± 2% method. Alkanhan (2021) conducted a study to examine 

the thermal conductivity of graphene oxide with ANNs approach, and the results were found to have 

an error range 2.27%. Malika and Sonawane (2021) carried out a study to estimate the thermal 

conductivity of hybrid nanofluids (Fe2O3-SiC) using an artificial neural network approach and 

response surface methodology (RSM) modelling method, and the results of the ANN method were 

reported to be more accurate. Pare and Ghosh (2021) used the ANN approach to estimate the thermal 

conductivity of Al2O3, CuO and ZnO nanoparticles and reported that the ANN approach's results agree 

with the experimental study. In another study, support vector regression (SVR), random forest (RF), 

and ANN were used to predict the condensation frictional pressure drop and heat transfer coefficient 

for horizontal microchannel and macro channel flows (Hughes et al., 2021). The random forest 

provided the best performance with an absolute average deviation of about 4% for both models. The 

literature study indicates that ANNs ensure plausible results for many engineering applications. 

The studies mentioned above successfully obtained convincing statistical scores based on their aim 

and objectives by employing ANN, support vector regression and random forest. However, the 
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literature study shows that the Stacked Heterogeneous Ensemble Learning model has never been used 

in studies related to heat transfer, to the best of the authors' knowledge. Thus, this study aims to 

propose a Stacked Het-erogeneous Ensemble Learning model for the prediction of heat transfer with 

mixed convection on an oscillating plate. The effects of the different parameters such as oscillating 

frequency (Wo), oscillating amplitude (Ao) and Rayleigh number (Ra) on the mixed convection are 

examined, and the estimated results from the ANN model and the test results are given comparatively. 

A detailed explanation for the stacked ensemble approach is given in Section 3. The objectives of this 

study based on the aim are listed below with bullet points. 

 

 To determine the optimal single-based algorithms to be used in the level-0 of the stacked 

ensemble approach.  

 To determine the optimal meta-learner algorithm for the level-1of the stacked approach.  

 To compare the performance of the singe-based algorithms and the proposed Stacked 

Heterogeneous Ensemble model in terms of RMSE, MSE, MAE and R2. 

 

The structure of this paper is organized as follows. The experimental study is presented in the second 

section. In the third section, detailed information about the proposed stacked heterogeneous ensemble 

model is given. Results and discussion are demonstrated in the fourth section. Conclusion and future 

directions are given in the final section 

 

2.  Experimental Study 

2.1. Experimental Schema 

The schema used for the experimental study is shown in Figure 1. The experimental model consists of 

two flat square copper plates dimension 210 mm in thickness of 1.5 mm. The thermocouples are 

placed along the vertical axis on both copper plates. 

 

 

Figure 1. Experimental schema. 
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(1-Glass enclosure, 2- Vertical flat plate, 3- Reel system, 4- Hanger connection system, 5- Electric 

motor, 6- Digital speed indicator, 7- Frequency controller, 8-Fly-wheel, 9- Power unit, 10-Data 

acquisition system, 11- Computer). 

 

The experimental setup and experimental model are shown in Figure 2. The thermocouples (K-type, 

Omega) on copper plates were attached along the perpendicular axis. The temperature data measured 

with thermocouples were collected by a computer-based data collection system (Keithley 2750). A 

specially manufactured flywheel was used for the oscillation amplitude. The flywheel was driven by a 

DC motor (2.4 kW). The oscillation frequency was controlled by the speed regulating unit of the 

motor. A detailed description of the experimental setup and evaluation method of the data are 

available in (Akcay et al., 2020). 

 

       
a      b 

Figure 2a. Experimental setup, b. Experimental model. 

 

2.2. Experimental Procedure 

The heater block is assembled with copper plates and heated by Kapton heaters fed from an adjustable 

power supply. Three different heat fluxes, 20W, 40W, and 50W, were applied to the copper plate and 

the Rayleigh numbers (Ra) obtained according to these heat fluxes are 1.17×10
7
, 2.94×10

7 
and 

3.6×10
7
, respectively. In this study, the Rayleigh number was used to represent the heat flux applied to 

the plate. The heat transfer with free convection from the fixed flat plate is calculated. The 

temperatures on the surface are compared with open literature (Akcay et al., 2020). Then, the flat plate 

moves periodically within the enclosure at a specific Ra, Wo, and Ao. The plate continued its periodic 

motion for a specific time (3600s), after calculating the heat transfer with mixed convection from the 

moving surface. In the study, 60 experiments were carried out for different parameters and the used 

parameters are given in Table 1. The related parameters of the experimental study were explained in 

detail in the Reference (Akcay et al., 2020). 
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Table 1. Experimental parameters. 

Rayleigh number 

(Ra) 

Oscillation amplitude 

(Ao) 

Oscillation frequency 

(Wo) 

1.17×10
7
 0.40, 0.75, 1.10, 1.40 65, 92, 113, 131, 146 

 

2.94×10
7
 0.40, 0.75, 1.10, 1.40 65, 92, 113, 131, 146 

 

3.60×10
7
 0.40, 0.75, 1.10, 1.40 65, 92, 113, 131, 146 

 

The continuity, momentum, and energy equations for the heat transfer with mixed convection from the 

fixed flat plate are written as in Eqs. (1)-(3). 

 

  

(1)  

 

 

(2)  

 

  

(3)  

 

Due to the vertical oscillation of the plate, the surface temperatures change periodically. Using the 

measured temperatures over time, the average temperatures are obtained as follows; 

 

 (4)  

 

where, N, Δt, and Tw represent the data number, the time interval, and the instantaneous surface 

temperature, respectively. The average temperature on the plate is calculated as follows; 

 

 
  (5) 

 

The spatio-temporally averaged Nusselt number (Nu) is given by 

 

 
 (6) 

 

where,  is the cycle time and L shows the length of the plate. Furthermore, the cycle-averaged Nusselt 

number is obtained as follows 
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(7) 

 

where, (°C) is the average surface temperature and T∞ (°C) is the free temperature, q″ (W/m
2
) is the 

heat flux, k (W/mK) is the thermal conductivity. Moreover, the ratio of the heat transfer of the moving 

plate (Nu) to the heat transfer of the fixed plate (Nus) is described as thermal effectiveness (η).  

 

 

(8) 

  

    

a     b 

Figure 3. Variation of the thermal effectiveness for two different Rayleigh numbers. 

 

Figure 3 shows the effects of the oscillating parameters on the effectiveness of different Rayleigh 

numbers. It is observed that the thermal performance factor of moving plate rises with rising 

oscillation parameters for all Rayleigh numbers compared to the fixed plate. Nonetheless, this rising is 

detected to increase with decreasing Rayleigh number. Due to the high Rayleigh number, the free 

convection effects are more dominant in mixed convection on the surface. The physical meanings of 

the experimental study were explained in detail in the Reference (Akcay et al., 2020). The present 

study focused on the applicability of the stacked heterogeneous ensemble learning model for the 

prediction of mixed convection heat transfer. 

In this study, the uncertainty analysis method was applied, and the total average uncertainty of Nu is 

calculated to be 4.25% (Akcay et al., 2020; Holman, 2001).  

 

3. Heterogeneous Ensemble Learning Model  

This study presents a new Stacked Heterogeneous Ensemble Learning approach. The structure of the 

proposed stacked approach is presented in Figure 4. The rest of this section gives information about 

the dataset, stacked ensemble approach and scoring metrics. Initially, the dataset is split into training 

(80%) and test (20%) sets. Then, 10-fold cross-validation was used to evaluate the proposed model 
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using the training set. Additionally, the proposed model's performance estimation is obtained based on 

unseen (test) data.  

 

 

Figure 4. Proposed Stacked Heterogeneous Ensemble Learning Model. 

 

3.1. Dataset 

This study uses a dataset to determine the employed stacked ensemble model's efficiency in predicting 

mixed convection heat transfer for the oscillating vertical plate. The dataset consists of 60 samples and 

three parameters. These parameters are pulsating amplitude (Ao), pulsating frequency (Wo) and 

Rayleigh number (Ra). Detailed experimental data are given in Table 1. 

 

3.2. Stacked Ensemble Approach 

A stacked ensemble learning model means the combination of two levels (level-0 and level-1) to 

obtain a convincing performance compared to the single-based learning models. Machine learning 

algorithms are used in these two levels (Zhou, 2021; Buyrukoglu and Savas, 2022). Single-based 

models are used in level-0, and the algorithm used in level-1 is named a meta-model. There should be 

used only one machine learning algorithm in level-1 as a meta model. In the background of any 

stacked ensemble learning algorithm, the meta model uses the outputs of the single-based models as an 

input in level-1. In the end, the meta-model enables a final regression or classification score.  

In this study, two different boosting ensemble learning models and multilayer perceptron (MLP) are 

employed in level-0 as single-based ensemble learning models. The employed boosting ensemble 

learning algorithms are AdaBoost Regressor, and Gradient Boosting Regressor. Then, Linear 

Regression is used as a meta-model in level-1. Different machine learning algorithms were tried to use 

the optimum model in level-1. Linear regression, MLP, and random forest models were used, and the 

best performance was obtained through linear regression. Thus, Linear Regression was used in level-1 
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in the proposed Stacked Heterogeneous Boosting Ensemble approach. The rest of this section gives 

information about the employed models in the proposed approach. 

 

3.2.1. AdaBoost Regressor 

The AdaBoost algorithm has two types which are AdaBoost. R1 and AdaBoost. R2. AdaBoost. R1 is 

proposed for the classification problems, while AdaBoost. R2 is proposed for the regression problems. 

It means that it can be used for classification and regression (Buyrukoglu and Akbas, 2022). In this 

study, AdaBoost. R2 is used for the prediction of mixed convection heat transfer. In the training 

process, only one decision stump is initially used as a weak learner. This algorithm aims to find 

misclassified data and add more weights to be used in the subsequent decision stump. Then, the same 

process is carried out in the second decision stump. This process is repeated until to obtain the desired 

result from the AdaBoost algorithm (Buyrukoglu et al., 2021). Finally, we created the AdaBoost 

model with 60 estimators in this study to predict mixed convection heat transfer.  

 

3.2.2. Gradient Boosting Regressor 

Gradient Boosting algorithm is developed for classification and regression issues like the AdaBoost. In 

the gradient boosting ensemble learning algorithm, the processes of the AdaBoost and Gradient 

Boosting ensembles learning algorithms are the same. However, there is a difference in the use of the 

loss function. The AdaBoost algorithm is sensitive to outliers because the exponential loss function is 

minimized in this algorithm. In contrast to AdaBoost, the Gradient Boosting ensemble learning 

algorithm is more robust to outliers than AdaBoost. The reason is that any differentiable loss function 

can be used in gradient boosting ensemble learning (Natekin and Knoll, 2013). In this case, the 

Gradient Boosting ensemble algorithm can be considered more flexible than the AdaBoost. In our 

case, the proposed Gradient Boosting regressor structure includes the following hyperparameters. The 

number of estimators is 60, and the learning rate of the model is 0.1.  

 

3.2.3. Multilayer Perceptron  

Multilayer perceptron (MLP) is a feed-forward neural network consisting of several layers, including 

input, hidden and output. Backpropagation is used in the training process of an MLP network. Also, if 

an MLP network includes more than one hidden layer, it is considered a deep neural network.  It is 

used to solve different problems requiring supervised learning (Tang et al., 2015; Buyrukoğlu, 2022). 

Figure 5 illustrates the proposed MLP network structure. As shown in Figure 5, two hidden layers are 

used, and the number of neurons for these hidden layers are 6 and 3 respectively. In creating the 

proposed MLP network, 3000 iterations were used as a result of a case study to obtain the optimal 

result. Sigmoid activation function has been used in these hidden layers. Also, the dropout method is 

used because it effectively reduces the overfitting in neural networks. In other words, randomly 

selected neurons are dropped during the training process when the dropout method is used (Srivastava 
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et al., 2014). It can be used for both input and any hidden layers. This study uses the dropout method 

only for the first hidden layer, and the value is determined as 0.5.  

 

 

Figure 5. Structure of the proposed Multilayer Perceptron. 

 

3.2.4. Linear Regressor 

Linear Regression is used as a meta-model (level-1) in this study. Linear Regression has two types of 

regressions, which are simple and multi-linear regression (Buyrukoglu, 2021). A single predictor is 

used in simple linear regression, while more than one predictor is used in multiple linear regression. 

Due to the usage of more than one predictor in the prediction of mixed convection heat transfer, multi-

linear regression is used in this study.  

 

3.3. Scoring Metrics 

Three different scoring metrics are used to evaluate the success of the employed models presented in 

the previous section. These metrics are mean squared error (MSE), root mean square error (RMSE) 

and mean absolute error (MAE) (Chicco et al., 2021). These metrics are calculated as 

 

𝑀𝑆𝐸 =
1

n
∑(𝑃𝑖 − 𝑃̂𝑖)

2

𝑛

𝑖=1

 
(9) 

 

𝑅𝑀𝑆𝐸 = √
1

n
∑(𝑃𝑖 − 𝑃̂𝑖)

2

𝑛

𝑖=1

 

(10) 

 

𝑀𝐴𝐸 =
1

n
∑|Pi − Pî|

𝑛

𝑖=1

 
(11) 
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where Pi is the actual value, is the predicted value from the model and n is the number of 

observations.  

 

4. Results and Discussion  

This section initially provides information about the evaluation performance of the employed 

algorithms (Section 4.1). Then, results about the AdaBoost and MLP models' efficiency in creating the 

stacked ensemble model are given in Section 4.2, separately. Moreover, actual and predicted values 

obtained through the employed models are compared in Section 4.3. Then, a comparison of previous 

studies and current models is presented to reveal the efficiency of the stacked ensemble learning 

model in Section 4.4. Finally, the result of the scoring metrics of the proposed stacked ensemble 

learning is given based on a different dataset in Section 4.5.  

 

4.1. Evaluation Results of the Employed Studies 

Table 2 presents the statistical performance of the employed single-based models and the stacked-

based ensemble learning algorithms. It is noted that the presented scores are test scores of these 

models. As seen in Table 2, the best performance in predicting heat transfer of a moving flat plate is 

obtained through the proposed heterogeneous stacked ensemble learning model (MAE:1.1, 

RMSE:1.42, MSE:2.01, and R2:0.99). On the other hand, the Gradient Boosting algorithm provided 

the worst performance in the prediction of heat transfer of a moving flat plate. 

 

Table 2. Statistical performance measures for the ANN approach. 

Model MSE RMSE MAE R2 

Stack 2.016 1.420 1.106 0.998 

MLP 3.518 1.876 1.398 0.996 

AdaBoost 18.756 4.331 1.837 0.979 

Gradient Boosting 14.636 3.826 2.851 0.983 

 

Creating the MLP, AdaBoost and Gradient Boosting models is essential to obtain a convincing result 

using the stacked ensemble learning model. In this sense, different iterations in MLP and estimators in 

AdaBoost are tried to obtain an optimal Stacked Ensemble Learning Model. The following section 

gives information about the efficiency of the iterations (in MLP) and estimators (in AdaBoost) in 

creating an effective stacked model in the prediction issues.  

 

4.2. Use of MLP and AdaBoost in the Creation of an Effective Stacked Ensemble Model 

Figures 6 and 7 illustrate the MAE scores of the stacked ensemble learning model based on the used 

different number of iterations in MLP (Figure 6) and estimators in AdaBoost (Figure 7). As presented 
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in Figure 6, the lowest MAE score (1.1) for the stacked model is obtained using the 3000 iterations in 

MLP. On the other hand, the worst MAE performance (1.69) is obtained when the used number of 

iterations is 500. The MAE scores between the used 500 and 3000 iterations were slightly reduced 

from 1.69 to 1.1. Also, the MAE score remained stable when more iterations were used from the 3000 

iterations. Hence, 3000 iterations are used in the MLP to obtain the optimal MAE value from the 

stacked model. 

 

 

Figure 6. MAE scores of Stacked Model based on different iterations used in MLP. 

 

It should be highlighted that the number of estimators is kept as 60 in the AdaBoost while the number 

of different iterations in the MLP were trying to get the best MAE score from the stacked ensemble 

model. This is because the best MAE score is obtained from the stacked models when the 60 

estimators are used in the AdaBoost. However, different estimators in AdaBoost were tired in 

determining the optimal number of estimators, as illustrated in Figure 7.  The worst MAE score (1.25) 

for the stacked ensemble model was obtained when AdaBoost's used number of estimators is between 

10 and 40. It means that the MAE score of the stacked model remained stable when the used number 

of estimators was 10, 20, 30, and 40, respectively. The MAE score of the stacked model is slightly 

reduced when the number of iterations is increased from 40 to 60. Then, the best MAE score (1.1) of 

the stacked model is obtained using 60 estimators in AdaBoost. However, the MAE score of the 

stacked model remained stable even if the used number of estimators was increased from 60 to 100. 

Thus, the optimal estimator number used in AdaBoost is accepted as 60. Moreover, the number of 

iterations used in MLP was kept at 3000 while the number of different estimators in AdaBoost tried to 

get the best MAE score from the stacked ensemble model. 
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Figure 7. MAE scores of Stacked Model based on different estimators used in AdaBoost. 

 

4.3. Results on the Actual and Predicted Value from the Employed Models 

Actual and the predicted values obtained from the employed MLP, AdaBoost, Gradient Boosting, and 

Stacked Heterogeneous Ensemble Learning model are given in Figure 8. Figure 8 shows that the 

lowest differences between the actual and predicted were observed with the Stacked Ensemble 

Learning model. However, some of the employed algorithms (especially MLP and AdaBoost) have 

less difference between the actual and predicted value compared to the stacked ensemble in some 

points. For example, MLP provided better results for the samples numbered from 28-31 and 49-51 

compared to the stacked ensemble. AdaBoost was also achieved to provide better results for the 

samples numbered between 31-33 compared to the stacked ensemble. Significantly, the AdaBoost 

algorithm has the worst performance between the actual and the predicted data points for the samples 

numbered from 1-18 compared to the samples numbered from 18-60. It can be considered as a usual 

situation because of the working principle of the AdaBoost presented in Section 3.2.1.  

Overall, even if the MLP and AdaBoost provided better performances for the samples in some points 

compared to the stacked model, as shown in Figure 8, the stacked ensemble learning model 

outperformed the others in general. The results show that the proposed stacked ensemble learning 

model can be used to predict heat transfer of a moving flat plate. 
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Figure 8. Actual and the predicted values obtained from the employed MLP, AdaBoost, Gradient 

Boosting, and Stacked Heterogeneous Ensemble Learning model. 

 

4.4. Comparison of Previous Studies and Current Models 

As highlighted in Section 1, many studies about the prediction of heat transfer have been proposed 

using machine learning algorithms. Also, most of these studies were created using ANN, while some 

of the studies created different machine learning algorithms. Table 3 shows the studies with similar 

aims and objectives to ours.  

A study proposed by Akdag et al. (2016). is developed to predict heat transfer on a flat plate using 

ANN. In this study, a single hidden layer was used to create the ANN, which can be considered a 

limitation. More than one single hidden layer could be used behind the use of a single hidden layer to 

determine the optimal neural structure. Also, many researchers have specified that the use of more 

than one hidden layer in the classification and regression problems may accelerate the ANN accuracy 

performance. Not using the proposed neural structure's dropout method can be considered a second 

limitation. Instead, it could be used to obtain better statistical results. This study provided a 0.363 

MAE value. In a different study (Ghritlahre and Prasad, 2018), Artificial Neural Networks and Linear 

regressors were developed to predict the heat transfer from roughened absorber plate to air passing. 

Even if the ANN provided better MAE performance (MAE: 0.316) than the linear regressor, there are 

some limitations in the creation of ANN. The limitations are the same as those of ANN created by 

Akdag et al. (2016). Another study was also proposed by Koroleva et al. (2020) to investigate heat 

transfer enhancement performance using computational fluid dynamics and artificial neural networks. 

5.17×10
-5

 MSE score is obtained through the proposed approach. Even if more than one hidden layer 

was used in the creation of the ANN, the dropout method has not been used to improve the 
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performance of the proposed ANN model, and Kalogirou (2006) employed ANN, including three 

hidden layers without using the dropout method in the prediction of the performance parameters of flat 

plate solar collectors. This model achieved to obtain a 96.3% R2 value. 

 

Table 3. Previous studies and the proposed approach. 

 

Even if the studies mentioned above achieved convincing results based on their aim and objectives, 

they employed single-based machine learning algorithms. However, the efficiency of the stacked 

ensemble learning model has never been measured in the prediction of mixed convection heat transfer 

(in the literature), to the best of our knowledge. Thus, we proposed a stacked ensemble learning model 

for the prediction of mixed convection heat transfer, which is the main contribution of this study. 

Finally, the proposed stacked model provided convincing statistical scores, as shown in Table 3. In 

other words, this study reveals the applicability of the stacked heterogeneous ensemble learning model 

for the prediction of mixed convection heat transfer.  

 

4.5. Efficiency of the Proposed Stacked Model Using a Different Dataset 

A different dataset is used to justify the employed stacked ensemble model's efficiency in predicting 

heat transfer for pulsating flow. The dataset consists of 96 samples and four parameters. These 

parameters are pulsating amplitude (Ao), Pulsating frequency (Wo), blowing ratio (M) and Reynolds 

number (Re) (Akdag et al., 2018). Statistical scores of the employed stacked ensemble model and 

single-based models are given in Table 4. As seen in Table 4, the employed stacked ensemble model 

provided the best statistical scores among the others. This result justifies the stacked ensemble 

Literature Method Aim    Result 

Akdag et al., (2016) ANN Estimate of the heat transfer for 

pulsating flow using ANN 

   MAE: 0.363 

Ghritlahre and Prasad, 

(2018)  

 

MLP Prediction of the thermal performance 

from roughened absorber plate to air 

passing  

   MAE: 0.316 

 

Koroleva et al., (2020) CFD + ANN 

 

Analysis of heat transfer improvement 

using CFD and ANN 

   MSE: 5.17∙10
-5

 

Kalogirou, (2016) ANN The prediction of the performance 

parameters of flat plate solar collectors 

using ANN 

   R2: 0.963 

 

 

The proposed 

approach 

Stacked Approach 

Level 1: MLP AdaBoost,  

Gradient Boosting 

Level 2: Linear Regressor 

Prediction of mixed convection heat 

transfer on oscillating plate 

 

   MAE:  1.1 
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learning model's efficiency for predicting heat transfer using pulsating jet at the flat plate and mixed 

convection heat transfer for the oscillating vertical plate. 

 

Table 4. Stacked model performances 

Model MSE RMSE MAE R2 

Stack 0.623 0.789 0.610 0.998 

Neural Network 3.111 1.764 1.423 0.996 

AdaBoost 7.927 2.815 1.361 0.996 

Gradient Boosting 34.440 5.869 4.305 0.995 

 

5. Conclusion and Future Directions 

This study examines the effects of the oscillation parameters on the mixed convection heat transfer of 

a moving vertical plate with an experimental and a stacked heterogeneous ensemble learning model. 

Firstly, experimentally obtained the heat transfer for oscillation parameters and Rayleigh number on 

the moving plate surface. The Nusselt number increased with increasing Rayleigh number and 

oscillation parameters. Then, the proposed stacked heterogeneous ensemble learning model is created 

to estimate the mixed convection heat transfer of the plate. Some statistical scoring metrics interpret 

the effectiveness of the stacked model. The results showed that the stacked ensemble learning model 

could effectively estimate the Nusselt number on a moving flat plate. The stacked model achieved to 

obtain convincing statistical scores (MSE = 2.01, RMSE = 1.42, MAE = 1.10, R2 = 0.99). Also, the 

proposed stacked model is used for predicting mixed convection heat transfer using a different dataset, 

and the stacked model is again achieved to provide the best statistical scores. This study reveals that 

the Stacked Heterogeneous Ensemble Learning model can be safely used to predict mixed convection 

heat transfer the average Nusselt number with high accuracy. As a further study, complex heat transfer 

problems can be examined by employing stacked ensemble learning or deep learning models. 
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