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 Many network designs in recent years have offered deeper layered solutions. However, models 

that achieve high-performance results with fewer layers are preferred due to causing less 

processing load for the system. The U-Net authors succeeded in efficiently creating a model with 

fewer layers. However, the U-Net architecture also requires improvement to become more 

efficient. For this purpose, we offer a novel encoder-decoder architecture based on the U-Net and 

the LU-Net. Furthermore, we propose using a reduced number of up-sampling operations, which 

were utilized together with the down-sampling operations intensively in the encoder section in our 

previous research, in the encoder part. The proposed architecture was evaluated on the IOSTAR 

dataset for the segmentation of retinal vessels. The preprocessing and data augmentation processes 

were applied to the images before training. The U-Net, LU-Net, and the proposed model were 

evaluated by using the accuracy, sensitivity, specificity, Dice, and Jaccard metrics. The proposed 

model achieved performance metric values such as an accuracy of 97.29%, a sensitivity of 81.10%, 

a specificity of 98.94%, a Dice coefficient of 84.66%, and a Jaccard coefficient of 73.41%. The 

proposed model obtained improved results compared with the other models, especially for test 

samples.  
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1. Introduction 

Artificial neural network studies started in 1943 with [1] 

research, and these networks were introduced by [2] as the 

term "deep learning" in the year 2000. In the 1980s, the 

"Neocognitron" model, which could learn with a 

hierarchical multi-layered network, was proposed [3]. 

Later, the convolutional neural network (CNN) was 

developed based on the "Neocognitron" model. 

CNN is a breakthrough in visual pattern recognition. 

Convolutional neural networks basically consist of three 

types of layers: 1) The convolution layer produces the 

feature maps (the activation maps); 2) the activation 

functions cause the values obtained from the layers to be 

kept within specific value ranges; 3) the down-pooling 

layer reduces spatial resolution. 

Many architectures have been developed based on 

CNN. One of these architectures is the VGG16 

classification model [4]. The VGG16 architecture uses 13 

convolution layers and 3 x 3 convolution filters for feature 

extraction, a rectified linear unit (ReLU) layer follows 

each convolution layer, and the architecture has maximum 

pooling layers for down-sampling. Fully connected layers 

are located in the last three layers [4]. 

With the semantic segmentation process, each pixel of 

an image is associated with a class tag. Thus, the desired 

region in the image is determined with its boundaries. One 

of the first samples of semantic segmentation was created 

by the Fully Convolutional Networks (FCN) authors [5]. 

The FCN authors [5] replaced the fully connected layers 

of existing CNN architectures such as VGG16 with the 

convolutional layers and used the transposed convolution 

for up-sampling. They did not add more decoder layers to 

the FCN architecture; therefore, the high-resolution 

features were disregarded by the model. This problem was 

solved with an improved encoder-decoder network. The 

U-Net [6] model, which was developed from the FCN 

architecture, was proposed in 2015. The U-Net contains 

some differences compared with the FCN: 1) The encoder-

decoder sections are symmetrical; 2) it uses the 

"concatenation" operation instead of the "add" method to 

connect the encoder and decoder layers. Another encoder-

decoder network architecture is SegNet [7], which was 
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proposed in 2017. The encoder part of this architecture is 

the same as the 13 convolution layers in the VGG16 

network. The SegNet has 13 convolution layers in the 

decoder part corresponding to the encoder path. In the U-

Net architecture, all activation maps are transferred to the 

corresponding decoder layer and concatenated with the up-

sampled feature maps through the transposed convolution 

operation. The difference between SegNet with U-Net is 

that SegNet uses the pooling indices in the encoder section 

(calculated in the maximum pooling layer) for up-

sampling in the corresponding layers in the decoder 

section. The up-sampled maps are then subjected to the 

convolution operation with the trainable filters to create 

the dense feature maps, as in U-Net. Some researches have 

been done in recent years with SegNet. For example, 

SegNet was used for retinal vessel segmentation in [8, 9] 

researches. The jump connections in the U-Net 

architecture can be seen as an advantage for the model to 

obtain more feature information. Even if the number of 

blocks of the model is reduced, the U-Net can achieve high 

performance at the pixel level [10-12]. The simple and 

flexible composition of the architecture allows efficient, 

new designs to be developed based on this model. For 

example, separate side paths were added to the encoder 

and the decoder sections in the M-Net [13] architecture. In 

this architecture, gradually reduced inputs with the 

maximum pooling operation in the first side path were 

given to the encoder section, and the outputs from the 

decoder section were given to the second side path. In the 

IterNet [14] architecture, the U-Net model was iteratively 

implemented to be four times deeper than the U-Net. 

Besides the raw input image, segmented vessel images 

were also used as input. Their model has achieved a 

79.70% sensitivity rate on the CHASE-DB1 dataset [14]. 

The authors in [15] reference proposed an improvement to 

use the convolution operation instead of the maximum 

pooling process in the original U-Net model to retain more 

feature information. The authors in [16] reference used the 

bilinear interpolation function for the up-sampling 

operation. The theoretically expected situation in deep 

architectures is that if the number of layers of the network 

increases, the training error decreases. Contrary to this 

situation, the experiments were indicating the problem of 

the vanishing gradient. The Res-Net and the Dense-Net 

models tried to alleviate this problem. The input features 

were added as a shortcut link to the output of the next two 

convolutional layers in the Res-Net [17] model. The 

authors in [18, 19] references, who interpreted the Res-Net 

model differently, integrated their methods into the U-Net 

architecture for retinal vessels’ segmentation. The 

MResU-Net [18] model has achieved an 81.01% 

sensitivity rate on the STARE dataset. The weighted Res-

UNet [19] model has achieved a 77.15% sensitivity rate on 

the DRIVE dataset. In the Dense-Net [20] model, each 

layer in a block is connected with all previous layers. The 

Dense-Net was integrated into the U-Net model for retinal 

vessels’ segmentation by [21, 22] researchers. The 

proposed model in [21] has achieved a 76.72% and an 

89.67% sensitivity rate on the DRIVE and the CHASE-

DB1 dataset, respectively.  The proposed model in [22] 

reference has achieved a 79.86% sensitivity rate on the 

DRIVE dataset. The U-Net ++ authors [23] used the dense 

convolution blocks in the U-Net model's jump 

connections. The authors of the [24] reference proposed 

creating the dense feature maps in the U-Net model's 

encoder path and transferring them to the decoder path 

through the jump connections. 

2. Materials and Methods  

2.1 U-Net  

The U-Net architecture comprises an encoder path on 

the left side and a decoder path on the right side. The 

encoder section is like a characteristic convolutional 

network architecture. Four down-sampling processes 

occur in the encoder path with a 2 x 2 max-pooling 

operation. Each block in the encoder path consists of two 

3 x 3 convolution layers and a ReLU as the activation 

function. According to the number of feature maps in the 

first layer, the number of feature channels doubles after 

each down-sampling operation. The decoder path is 

symmetrical to the encoder path, and four up-sampling 

In this manuscript, we proposed a new model based on 

the U-Net, LU-Net architectures, and the reference [24] 

research for retinal vessel segmentation. This article has 

two essential contributions: Utilizing the up-sampling 

operation in the encoder part to get precise location 

information, and introducing a hybrid architecture 

improved with the up-sampling operation. The rest of this 

paper describes the proposed architecture, the used dataset, 

presents the experimental results, and the discussion 

section. 

The authors of U-Net [6] demonstrated that the results 

of designs with many levels in applications could be 

accomplished with fewer layers as well. This situation 

provides an advantage in that it brings less processing load 

to achieve the result. However, the U-Net architecture also 

needs improvement to achieve more efficiency. For 

example, for cardiac ventricular segmentation, the LU-Net 

authors [25] proposed some improvements. In another 

improvement example, many feature maps obtained from 

the down-sampling and up-sampling operations were 

transferred to the decoder section of the U-Net in the 

reference [24] research, but here, as the number of layers 

increased, so did the processing load. Therefore, within 

this research, we tried the up-sampling operation applied 

in the reference [24] research in order to achieve results 

with less processing load. In continuation, the outcomes of 

the experiments were appraised by ours.  
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operations occur in this section. The feature map size is 

increased in the decoder path by the 2 x 2 up-sampling 

process, and these feature maps are concatenated with the 

feature maps in the corresponding block in the encoder 

path. A more precise output is created by integrating the 

contextual information obtained from the encoder path 

with the localization information obtained from the 

decoder path, thanks to these jump connections, which are 

the reason for the segmentation success of the U-Net. In 

continuation of the up-sampling process, two 3 x 3 

convolution operations occur, in which ReLU is applied as 

an activation function. At the output, a 1 x 1 convolution 

layer is used. The encoder path and decoder path are 

bridged by two 3 x 3 convolution layers [6].  
 

2.2 LU-Net  

For cardiac ventricular segmentation, the LU-Net 

authors [25] offered three improvement methods on the U-

Net model. According to their application [25], first, the 

SE-Net [26] module, which is a feature weighting process, 

was applied before each pooling operation in the encoder 

path. When the feature maps pass to the SE-Net module, 

the global average pooling process performs to obtain the 

mean pixel value per channel, and the feature vector 

occurs. The feature vector enters two consecutive fully 

connected layers. In the first, linearity is achieved by the 

ReLU function, and in the second, a series of weight values 

between 0 and 1 is obtained by the sigmoid function. 

Finally, the weight values are multiplied by the activation 

maps to generate the new feature maps comprising the 

weight information. The LU-Net authors included the SE-

Net module because it suppresses the ineffective 

information and gives more weight to the beneficial 

information on the channel, so the sensitivity of the 

network increases. In this way, the effectiveness of the 

extracted features is increased, and the amount of 

calculation is reduced. Secondly, in the LU-Net research 

[25], the feature maps at various scales were obtained from 

the input (apart from the encoder path). Then these feature 

maps were concatenated with the output of the 

corresponding pooling layer in the encoder path. In this 

stage, a down-sampling process takes place with the 

convolution layer with a kernel size of 2 x 2 and a step size 

of 2 to obtain the feature maps of different scales. Thirdly, 

the deconvolution process in the decoder section of the U-

Net was replaced with 3 x 3 and 1 x 1 convolution 

operations. Additionally, the up-sampling process was 

applied to the network model with the inverse unpooling 

operation. During U-Net's encoding and decoding 

processes, some important details are lost with the 

convolution and pooling operations, resulting in imperfect 

segmentation boundaries. To solve this problem, the 

authors of the LU-Net proposed the second and third 

improvements to the U-Net model [25]. 

 

2.3 Proposed Model  

In this research, the U-Net [6], LU-Net [25] 

architectures, and the reference [24] research were used to 

create the proposed network model. Figure 1 shows the 

proposed LUPU-Net network. 

Network architectures were modified such that: For the 

encoder part, we used the blocks in the encoder path of the 

LU-Net model up to the bridging section. Thus, the use of 

useful and effective information is provided. For the decoder 

path, we used the bridging section of the U-Net model and 

the blocks in the decoder path. Thus, the processing load that 

the convolution process would bring to the system is 

lightened. Each block in the network has two 3 x 3 

convolution layers, and we used the ReLU as the activation 

function.
 

Figure 1. LUPU-Net model



 

 
For down-sampling in the encoder path, we used four 2 

x 2 max-pooling operations, three convolutional down-

sampling operations with a kernel size of 2 x 2 and a step 

size of 2. 

We propose that the feature maps obtained by the up-

sampling process from the blocks in each level of the 

encoder path pass to the decoder path through the jump 

connections. In this process, the up-sampling operation is 

applied to these feature maps before passing the feature 

maps to the SE-Net module. In continuation, these up-

sampled feature maps are concatenated with feature maps 

obtained from the SE-Net module at the upper level. The 

precise localization information of the features in the 

encoder path concatenates with the contextual information 

obtained from the encoder path blocks. In this way, the 

segmentation of the images is made better. Later, all the 

feature maps are transferred from the encoder section to 

the decoder part. 

The number of feature maps in the first layer of the 

LUPU-Net network is 32. After each down-sampling 

operation, the number of feature maps increases twice. 

During the training of the network, the pre-training process 

was not applied. In this research, the "UpSampling2D" 

class was used for up-sampling. As the optimization 

algorithm of the model, the Adam method [27] was used 

by starting it at a learning rate of 0.001. The batch 

normalization (BN) process was applied after the 

convolution layers to increase the convergence speed of 

the network. At the output, we used a convolution layer of 

1 x 1 with the sigmoid activation function, which reduced 

all feature map information to a two-element vector. The 

performance of the model trained with 100 iterations was 

evaluated. Our segmentation research was carried out 

using the Keras library [28], which uses the TensorFlow 

[29] framework on the backend. 

 

2.4 Dataset  

In this research, the IOSTAR dataset, which is publicly 

available on the website [30], was used. These high contrast 

images in the dataset based on the Scanning Laser 

Ophthalmoscopy (SLO) technique have a resolution of 1024 

x 1024 pixels with a 45o FOV. The dataset contains 30 SLO 

images. The ground truth images were created by experts, 

and these images were included in the dataset. More 

information about the dataset is available in [31, 32] 

references.  

 

2.5 Preprocessing  

Since SLO images show retinal vascular structures with 

a stronger contrast, these images do not require 

preprocessing, but preprocessing was applied to the 

images in this experiment to get more vascular detail. 

Figure 2 shows the preprocessing stages. In this process 

[33], in the first stage, the images were converted to the 

HSV color space and the luminosity was adjusted by 

applying gamma correction to the value channel. Then the 

images were converted from the HSV color space to the 

RGB color space. In the second stage, the images were 

converted from the RGB color space to the LAB color 

space, and the CLAHE process was applied to the L 

channel to increase the vessel contrast. The image pixel 

values were normalized to the range [0-1]. 128 x 128-size 

single-channel gray levels of the images were used in the 

evaluation of the models. The OpenCV library [34] was 

used during the preprocessing of the images. 

 

Figure 2. The preprocessing stages applied to the SLO images
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2.6 Evaluation Metrics  

As used in the reference manuscript [36], accuracy as in 

Equation (1), sensitivity as in Equation (2), and specificity 

as in Equation (3) were used to measure the performance 

of the models in this research, as well. Furthermore, we 

measured the models’ performance for the retinal vessels' 

segmentation with the Dice metric as in Equation (4) [37], 

and the Jaccard coefficient (IoU) as in Equation (5) [38]. 

The accuracy is the ratio of the sum of the number of pixels 

in the correctly defined vessel and background areas to the 

sum of the total number of pixels [36]. The sensitivity 

gives the rate of determination of the vessel area. The 

specificity gives the rate of determination of the 

background area. The Dice and Jaccard metrics measure 

the overlap between the segmented prediction image and 

the ground truth images. These metrics are calculated as 

follows: 
 

Accuracy =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(1) 

 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 

 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(3) 

 

Dice =
2 ∗ 𝑇𝑃

(2 ∗ 𝑇𝑃) + 𝐹𝑃 + 𝐹𝑁
 

(4) 

 

 

 

Jaccard =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(5) 

TP, TN, FP, FN are the quantities of true positive, true 

negative, false positive, and false negative at the pixel 

level, respectively. 

 

3. Results 

The performance of the proposed network on vessel 

segmentation was evaluated using the IOSTAR dataset. 

Table 1 shows the evaluation metric values obtained on the 

IOSTAR data set with the U-Net, LU-Net, and LUPU-Net 

models. The accuracy, sensitivity, specificity, Dice, and 

Jaccard metric values obtained with three models show 

minor differences. We used the same basic parameters, 

values, and classes for the three models in the experiments. 

For example, the activation function, the initial quantity of 

the feature maps, the down-sampling and up-sampling 

classes, the optimization function, the loss function, etc. 

The three models in the experiments differ only 

architecturally. Thus, we can explain the minor differences 

between the values. 

Figure 3 shows the segmentation results obtained by 

three models for a test sample. Models can predict most 

retinal vessels. 

In the result segmentation prediction images, the pixel 

values are obtained in the range of [0-1]; therefore, a 

binary thresholding process was applied to clarify the 

background and vessel separation with the values of 0 and 

1. In this post-processing process, 0.10 was used as the 

threshold value. Table 2 shows the average accuracy, 

sensitivity, specificity, Dice, and Jaccard metric values 

obtained after the post-processing stage from the images in 

Figure 3. 

Figure 4 shows graphically the average Dice similarity 

coefficients obtained from the models for ten test images. 

Figure 5 shows graphically the average Jaccard similarity 

coefficients obtained from the models for ten test images. 

The differences that did not appear in Table 1 metric value 

results became more apparent in the test samples. Figure 4 

and Figure 5 show many test samples are segmented more 

efficiently by the LUPU-Net model. Therefore, the LUPU-

Net increases the overlap between the ground truth and 

prediction images. These results show that the proposed 

architecture contributes to the improvement of retinal 

vessel segmentation. 

4. Discussion 

In this research, we created a hybrid network 

architecture based on the U-Net and the LU-Net models, 

and we applied a new improvement proposal based on the 

reference [24] research to this hybrid model. We used the 

IOSTAR dataset to measure the efficiency of this new 

model (LUPU-Net). Table 3 shows the outcomes of other 

studies [39-41] based on the U-Net architecture on the 

IOSTAR dataset and the results obtained from the LUPU-

Net model. The findings show that the proposed model 

performed well in terms of pixel discrimination. 

The researchers in reference [42] evaluated their 

proposed model for melanocytic lesion and retinal vessel 

segmentation without using image preprocessing. Their 

model has achieved a 94% Dice coefficient, an 88.2% 

Jaccard coefficient for melanocytic lesion segmentation, 

and an 82.6% Dice coefficient, a 70.8% Jaccard coefficient 

for retinal vessel segmentation. These comparative results 

show that the segmentation of a narrow and thin region is 

more difficult than a large region.  

356 

The last 10 images in the IOSTAR dataset were used for 

testing. The data augmentation processes such as 

horizontal flipping, cropping a random area of the image, 

and rotating the image left and right by a maximum of 10o 

were applied to the 20 images. The 1000 images were 

obtained through the data augmentation process. The 

Augmentor library [35] was used for the data 

augmentation process. 20% of the dataset images were 

used for validation. 



 

 

 

Table 1. The performance metric values obtained from the models 
 

Models Evaluation Metrics (%) 

 Accuracy Sensitivity Specificity Dice Jaccard (IoU) 

U-Net 97.30 80.52 99.01 84.63 73.37 

LU-Net 97.29 80.52 98.99 84.52 73.21 

LUPU-Net 97.29 81.10 98.94 84.66 73.41 

 

       Image              U-Net            LU-Net         LUPU-Net    Ground truth 

 
 

Figure 3. The segmentation results were obtained by three models for a test sample. The first column demonstrates the fundus images, the 

second column demonstrates the segmentation result images obtained by the U-Net model, the third column demonstrates the 

segmentation result images obtained by the LU-Net model, the fourth column demonstrates the segmentation result images obtained by the 

LUPU-Net model, and the fifth column demonstrates the ground truth images 

Fundus photographs obtained with standard fundus 

cameras show complexities such as low contrast difference 

between the vessel and the non-vessel pixels, uneven 

background illumination, vessel width variation, 

brightness, and shape [43]. For this reason, many studies 

based on the U-Net [10, 11, 16, 19, 21, 22] have applied 

different preprocessing techniques to achieve more 

vascular detail. Compared with the standard fundus 

photographs, the images obtained by the SLO method are 

higher-quality images with high contrast and resolution. 

However, changes in vessel thicknesses, transitions and 

bifurcations in vessels, the low contrast difference between 

the vessel and the background for thin vessels are valid 

problems for the SLO images as well. For this reason, we 

applied image preprocessing to the IOSTAR dataset 

images to obtain more vessel details. The researchers in 

[39- 41] did not use image preprocessing.  

The authors of reference [39] segmented these images 

in the U-Net model by dividing the images into 

overlapping patches of 128 x 128 pixels. The authors of 

reference [41] created the datasets by only producing a 

small number of image patches without using any other 

data augmentation method. They evaluated the dataset 

segmentation by the U-Net model after 1000 epochs. The 

authors in reference [40] utilized the IOSTAR dataset 

without using any data augmentation process and changing 

the image size. They created a dense layered and densely 

connected architecture based on the Res-Net, Dense-Net, 

and U-Net models and evaluated the IOSTAR dataset 

segmentation after 300 epochs. 

 
Table 2. The average metric values obtained after the post-processing stage of the images in Figure 3  

 

Models Evaluation Metrics (%) 

 Accuracy Sensitivity Specificity Dice Jaccard (IoU) 

U-Net 95.45 84.50 96.74 79.57 66.31 

LU-Net 95.19 84.25 96.56 78.78 65.14 

LUPU-Net 95.60 83.22 97.12 80.03 66.84 
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Figure 4. Models' average Dice similarity coefficients for ten test samples

Figure 5. Models' average Jaccard similarity coefficients for ten test samples 

Table 3. The performance metric values of our model and previous researches on the IOSTAR dataset  
 

Researches Evaluation Metrics (%) 

 Accuracy Sensitivity Specificity Dice Jaccard (IoU) 

Meyer et al. (2017) [39] 96.95 80.38 98.01 - - 

Guo et al. (2020) [40] 97.13 80.82 98.54 - - 

Brea et al. (2020) [41] 95.00 86.00 95.00 71.00 - 

This research (2021) 97.29 81.10 98.94 84.66 73.41 

 

A sufficient quantity of augmented data with the correct 

method can create high-efficiency segmentation. The data 

augmentation methods generally applied to the images are 

flipping, rotation, translation, cropping, and elastic 

deformation [12, 15, 19, 24, 42, 44, 45]. However, 

investigations into different data augmentation methods 

like the translation-reflection technique [16], etc. have 

been continued as well. Through the data augmentation 

methods we used in this research, a successful result was 

obtained. We used the batch normalization and data 

augmentation operations in the model to prevent the 

overfitting problem. 

The feature maps obtained through the down-sampling 

and up-sampling operations were used by the authors of 
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reference [24]. They concentrated a lot of feature maps on 

the jump connections to use more feature information. 

Their model has achieved a 97.87% accuracy, an 84.11% 

sensitivity, a 99.39% specificity, an 88.70% Dice, a 

79.69% Jaccard value. Within these results, we can say 

that the use of more feature information produces more 

successful results. However, this situation causes more 

processing load for the system. In this research, we tried a 

model using fewer operations. In this manner, the 

processing load to reach the result was reduced. Based on 

the research of [24] reference, we proposed using the up-

sampling operation in the encoder section, and we 

evaluated our proposal together with a hybrid architecture 

based on the U-Net and the LU-Net. The LUPU-Net 

architecture improved results, particularly for test samples. 

These results are seen in Figure 4 and Figure 5. The data 

augmentation methods, the amount of data, the quality of 

the image, and using the various libraries, classes, 

optimization algorithms, loss functions, activation 

functions, etc., all have an impact on the model 

segmentation performance. Therefore, the models were 

evaluated under the same conditions. 

The retinal vascular system provides important markers for 

the diagnosis of some diseases (diabetic retinopathy, 

hypertension, cardiovascular diseases) for ophthalmologists. 

Fast and accurate detection of changes in the vessels is a 

factor that increases the success of the diagnosis. The process 

of segmenting the retinal vasculature from the image for 

better examination is performed by trained experts 

traditionally, and this segmentation action is a time-

consuming procedure. Even among professional experts, the 

segmentation of the same image differs significantly [43]. 

Therefore, the development of automated techniques in 

retinal vessel segmentation continues in order to support the 

clinician's decisions. We can say that the method we propose 

will contribute to the field of ophthalmology. However, we 

also recommend using the new method for other medical 

image segmentation applications in the future. 

5. Conclusion 

This paper introduces a novel method for segmentation. 

We created an encoder-decoder architecture and used the up-

sampling operation in the encoder section. The encoder-

decoder architecture proposed in this research, which was 

developed based on the U-Net, LU-Net models and our 

previous research, is a hybrid design. The proposed LUPU-

Net architecture was evaluated on the IOSTAR dataset for 

retinal vessel segmentation. The preprocessing and data 

augmentation processes were applied to the images in the 

IOSTAR dataset before training. Under the same conditions, 

we compared the U-Net, LU-Net, and LUPU-Net models. 

The LUPU-Net architecture obtained improved results, 

especially for test samples.  

The LUPU-Net model can also be evaluated on a variety of 

retinal vessel datasets in the future. Furthermore, the LUPU-

Net model can also be evaluated for different medical image 

segmentation tasks other than ophthalmology. Our proposal 

to use the up-sampling operation in the encoder section can 

be implemented into the other encoder-decoder architectures, 

and the results obtained from these models can be compared. 

The LUPU-Net model can be compared with the other 

traditional methods in the future.  
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