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Abstract

In an achievement test, the examinees with the required knowledge and skill on a test item are expected to answer
the item correctly while the examinees with a lack of necessary information on the item are expected to give an
incorrect answer. However, an examinee can give a correct answer to the multiple-choice test items through
guessing or sometimes give an incorrect response to an easy item due to anxiety or carelessness. Either case may
cause a bias estimation of examinee abilities and item parameters. Four-parameter logistic item response theory
(4PL IRT) model and the deterministic inputs, noisy, and gate (DINA) model can be used to mitigate these
negative impacts on the parameter estimations. The current simulation study aims to compare the estimated
pseudo-guessing and slipping parameters from the 4PL IRT model and the DINA model under several study
conditions. The DINA model was used to simulate the datasets in the study. The study results showed that the
bias of the estimated slipping and guessing parameters from both 4PL IRT and DINA models were reasonably
small in general although the estimated slipping and guessing parameters were more biased when datasets were
analyzed through the 4PL IRT model rather than the DINA model (i.e., the average bias for both guessing and
slipping parameters = .00 from DINA model, but .08 from 4PL IRT model). Accordingly, both 4PL IRT and
DINA models can be considered for analyzing the datasets contaminated with guessing and slipping effects.

Key Words: 4PL IRT model, DINA model, (pseudo) guessing effect, slipping effect, lower-upper asymptote
parameter.

INTRODUCTION

Psychological and educational tests are usually used for observing a sample of examinees’ behaviors.
Many of them focus on measuring the abilities and skills of examinees. Therefore, it is important to
know how an examinee’s ability determines the correctness of an answer on an item (Lord, 2012). In
an achievement test, a correct response is expected from an examinee with the required knowledge on
the item whereas an examinee without the necessary knowledge on the item is supposed to give an
incorrect answer (Rowley & Traub, 1977). However, this assumption may not hold for the multiple-
choice test items. In a test with multiple-choice test items, an examinee’s response may be a reflection
of true ability, guessing behavior or unexpected incorrect response (i.e., slipping effect) due to anxiety
or carelessness (Liao, Ho, Yen, & Cheng, 2012; Yen, Ho, Laio, Chen, & Kuo, 2012). Under the
presence of guessing and slipping effects, the estimation of examinees’ abilities and item parameters
might be biased. These two effects can be modeled using item response theory (IRT) models and
cognitive diagnostic models (CDMs). IRT models explain the relationship between an examinee’s
observed test performance and its underlying latent abilities through a mathematical function
(Hambleton & Swaminathan, 1985). On the other hand, CDMs are used for determining whether an
examinee has a set of attributes in order to solve a problem correctly in a test (de la Torre, 2009).
CDMs have many common aspects with IRT models. For example, Junker (2001), used deterministic
inputs, noisy, and gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001) models as an initial tool for
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proposing a nonparametric IRT (NIRT) for CDMs. In addition, Junker and Sijtsma (2001) showed
that, as a CDM, DINA and noisy, inputs, deterministic and gate (NIDA; Maris, 1999; Junker &
Sijtsma, 2001) models meet the standard assumptions of generalized multidimensional IRT models.
Similarly, Meng, Xu, Zhang, and Tao (2019) showed that four-parameter logistic (4PL) (Barton &
Lord, 1981) model is a special case of the higher-order DINA model with an only one latent attribute.
In addition, the authors indicated that the upper asymptote in 4PL model (i.e., d;) corresponds to the
slipping parameter in CDMs (i.e., 1 - dj). Furthermore, Culpepper (2016) stated that the lower
asymptote (i.e., ¢ parameter) and the upper asymptote (i.e., d parameter) in 4PL IRT model correspond
to the guessing and slipping parameters in CDMs, respectively. Accordingly, 4PL and DINA models
including (pseudo) guessing-guess and inattention-slip parameters are described shortly in the next
section.

The DINA Model

DINA model, proposed by Junker and Sijtsma (2001), requires configuring a Q matrix (Tatsuoka,
1983) as the other CDM models do. This matrix is composed of (J x K times) 1 and 0s, including
attributes in the columns and items in the rows of the matrix. The element in the jth row and kth column
of the matrix is showed as Q. If gj equals 1, it means an examinee is required to possess the
corresponding attribute in order to answer the item correctly. If the attribute is not required for
answering the item correctly, gjx becomes 0 in the Q matrix. Assume vector y; represents the observed
score of an examinee i to J items and the elements of y; are statistically independent of the required
attributes vector for the test ai = {ai1, aiz, ... , aik}. Using Q-matrix and respondent’s skills vector,
DINA model produces the #; in Equation 1.

q,
=TT o M

In Equation 1, if an examinee possesses all necessary attributes for the correct answer on the item, #;;
= 1; otherwise, 7ij = 0. DINA model allows an examinee possessing all required attributes to miss an
item (slip) or an examinee without at least one of the required attributes to answer the item correctly
(guess). DINA model includes a guess (g) and slip (s) parameter for each test item. The parameter g;
is defined by g; = P(Yj;= 1| #i = 0), and the parameter s; is defined by s; = P(Y;;= 0| #;; = 1). Accordingly,
the probability of correct response on item j given an examinee i with an attribute profile o; is
formulated as in Equation 2.

P(Yj=1]o)=(1-s))" gjl-nij (2

DINA model can be implemented in computer software programs, including OxEdit (Doornik, 2018),
LatentGold (Vermunt & Magidson, 2016), Mplus (Muthén & Muthén, 1998-2017), “CDM” package
(Robitzsch, Kiefer, George, & Uenlue, 2019) and “GDINA” package (Ma & de la Torre, 2020)
available as R program (R Core Team, 2017). However, it is essential to emphasize that the
implementation of the DINA model is not limited to these computer software programs.

The 4PL IRT Model

Barton and Lord (1981) proposed 4PL IRT to model a parameter for the upper asymptote in the item
characteristic curve. This model accounts for unexpected incorrect responses (missing) of examinees
with a high ability level due to anxiety and carelessness. In the general form of this model, the
probability of correct response given the ability level is formulated as in Equation 3.

e(aj191+"'+ajk9k)_bj
P[Xl] =1 | 0= (911 ---:Qk),aj; bji le d]] = Cj + (d] - C]) 1+e(aj191+"'+ajk9k)_bj (3)

In Equation 3, Xj; is the observed score of an examinee i on item j, k is the number of latent factors, ®
is the vector of examinee abilities, ¢j is the pseudo-guessing parameter of item j, d; is the upper
asymptote parameter (i.e., slipping parameter) of item j, aj is the discrimination parameter of item j
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on the latent factor k, and bj is the intercept of item j, which is the multiplication of item discrimination
and item difficulty (see Barton & Lord, 1981; de Ayala, 2009). Although Barton and Lord (1981)
proposed using a common upper asymptote across all test items, the general form of the 4PL model
allows estimating a different upper asymptote for each test item. One-, Two-, and Three-Parameter
Logistic (1PL, 2PL, and 3PL) IRT models for dichotomous items have attracted great attention in the
last decade (Magis, 2013). On the other hand, 4PL IRT model was not a commonly used IRT model
among practitioners and researchers until recent years due to no indication for the benefit of using 4PL
IRT model, the difficulties with the estimation of upper asymptote, and the unavailability of computer
software programs that can be accessed by practitioners and researchers for using 4PL IRT model
(Barton & Lord, 1981; Hambleton & Swaminathan, 1985; Loken & Rulison, 2010). However, the 4PL
IRT model has become more popular in recent years, especially in the literature on IRT and
computerized adaptive testing (CAT), with the development of very powerful computer software
programs such as the “mirt” package in R program (Chalmers, 2012; Magis, 2013; Meng et al., 2019).
Many studies have contributed to the improvement of the 4PL IRT model regarding its application in
the field and parameter estimation (e.g., Culpepper, 2016; Liao et al., 2012; Loken & Rulison, 2010;
Magis, 2013; Meng et al., 2019; Rulison & Loken, 2009; Yen et al., 2012).

Although the conventional IRT models allow test-takers’ abilities to be scaled and ordered in one or
more continuous latent factors, these IRT models including 4PL IRT model are not useful to assess
test-takers’ strengths and weaknesses in the latent factors because IRT models do not tell if some
behaviors related to the latent factors (attributes) are mastered. Unlike IRT models, CDMs were
basically proposed with the purpose of identifying test-takers’ strengths and weaknesses through
assessing the presence or absence of several necessary attributes to solve the problems in a test (de la
Torre, Hong, & Deng, 2010; de la Torre & Lee, 2010). Among CDMs, the DINA model (Junker &
Sijtsma, 2001) is a commonly used model in practice and research (DeCarlo, 2011; de la Torre, 2008).
Its simple and easily interpretable formula provides a good model-data fit (de la Torre & Douglas,
2008; de la Torre & Lee, 2010). Both the 4PL IRT model and the DINA model allow c-g and d-s
parameters for modeling the guessing and slipping effects, respectively.

Although the literature has many studies investigating the important factors for the estimation of item
parameters accurately in IRT models and CDMs separately, there are only a few studies directly
comparing the item parameters from IRT models and CDMs in the same research (e.g., 2PL vs. pG-
DINA in Yakar, 2017). In addition, there are some studies employing the 4PL IRT model within the
CAT (e.g., Liao et al., 2012; Yen et al., 2012). However, it is also important to investigate the
parameter recovery in the 4PL IRT model for a fixed (non-adaptive) test via a simulation study because
the fixed tests are commonly used in educational and psychological assessments. When the similarity
between IRT models and DINA model, a restricted latent model, is taken into consideration
(Culpepper, 2016; Hoijtink & Molenaar, 1997; Junker, 2001; Junker & Sijtsma, 2001; Meng et al.,
2019), the current study may be helpful for the field to show the similarities and differences between
4PL IRT model and DINA model, and the important study design factors for the accurate estimation
of the guessing and slipping parameters. Accordingly, the current simulation study aims to compare
the estimated c-g and d-s parameters from the 4PL IRT model and the DINA model using the simulated
datasets through the DINA model under several study conditions.

METHOD

Simulation Study Design

All data were generated and analyzed in the R program (R Core Team, 2017). DINA model was used
for data generation. In the literature, the test length was usually between 20 and 40 in many studies
(e.g., Chiu, 2008; de la Torre, 2008, 2009, 2011; de la Torre & Douglas, 2004, 2008; de la Torre &
Lee, 2010, 2013; Henson & Douglas, 2005). In the data generation, test length was fixed as J = 20 or
40 items considering these studies in the literature. The review of the literature also showed that the
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studied g and s parameters tend to be between .0 and .45 (e.g., Chiu, 2008; de la Torre & Douglas,
2004; de la Torre et al., 2010; DeMars, 2007; Henson & Douglas, 2005; Huebner & Wang, 2011). In
addition, the intervals of these parameters corresponding to the low, moderate, and high levels were
different across the studies. In this study, three levels of g and s parameters were manipulated in the
data generation: .0 - .15 (low), .15 - .30 (moderate), and .30 - .45 (high). Then, these levels were
crossed between g and s parameters in the data generation. The values of g and s parameters were
equally spaced with an increment of .0075 and .00375 for the conditions with 20 and 40 items,
respectively. Specifically, these values were obtained taking the ratio of intervals to test length (e.g.,
for the test with 20 items and the parameter values between .0 and .15, .15/20 = .0075). Then, the
values of g and s parameters were fixed to g = s = .0075 for the first item, .015 for the second item,
and .15 for the last item when test length was 20, and both g and s parameters were low (.0 - .15) in
the data generation. Different values were chosen for the level of correlation among factors/attributes
corresponding to the weak, moderate, and strong correlations across different studies in the literature.
In this study, the correlation among the attributes was fixed to r = .2 (weak), .5 (moderate) or .8 (strong)
considering the studies by Finch (2010), and Finch, Habing, and Huynh (2003). The chosen sample
size was 500, 1000, or 2000 in some simulation studies in the literature (e.g., de la Torre 2009; de la
Torre & Douglas, 2004, 2008; de la Torre & Lee, 2010, 2013). However, a sample size of 1000 is
sufficiently large to use the DINA model (de la Torre et al., 2010). For the 4PL IRT model, Meng et
al. (2019) used a sample size of 2000. In addition, Waller and Feuerstahler (2017) found that a
minimum sample size of 1000 is necessary to obtain accurate ability estimates in the 4PL IRT model.
Therefore, in this study, the sample size was fixed to N = 3000 considering the adequacy of the sample
size for the convergence of parameters to a solution. The number of attributes is usually between 4
and 8 in the literature (e.g., Chiu, 2008; de la Torre, 2011; de la Torre & Douglas, 2004; de la Torre &
Lee, 2010; Huebner & Wang, 2011). Because there were many simulation conditions included in this
study and the use of a great number of attributes in a simulation study is very time consuming (de la
Torre & Douglas, 2004), the number of attributes was fixed to K = 3 or 5. Four different Q-matrices
were used in the data generation (2 test lengths x 2 different numbers of attributes). Each item was
linked to one attribute in all Q-matrices (one-attribute items), and the number of items was distributed
across the attributes as evenly as possible. Overall, there were a total of 108 conditions for data
generation (3 g levels x 3 s levels x 3 correlation levels x 2 test lengths x 2 numbers of attributes). The
number of replications for each condition was 100.

Data Analysis

Each dataset was analyzed using a multidimensional 4PL IRT model and a DINA model. Before the
analysis of datasets using the multidimensional 4PL IRT model, the dimensionality of datasets was
investigated via Factor 9.2 (Lorenzo-Seva & Ferrando, 2006). Parallel analysis with the tetrachoric
correlation indicated that the dimensionality assumption was met for the use of the multidimensional
IRT model (i.e., it was in line with the factor structure of the datasets in the data generation via DINA
model). The local independence assumption was assumed to be met because it is not within the scope
of this study. Expectation-maximization (EM) algorithm was used to estimate the item parameters
through 4PL IRT and DINA models because it was the default estimation method in the R packages
that were used for 4PL IRT and DINA models in the study. Specifically, the analysis of datasets was
conducted in the “CDM” package (Robitzsch et al., 2019) for the DINA model and the “mirt” package
(Chalmers, 2012) for the 4PL model available in R program. Iltem-parameter bias and root mean square
error (RMSE) were used to evaluate 4PL IRT and DINA models in terms of the estimation of c-g and
d-s parameters correctly. 4PL IRT model was assumed to have the same true slipping and guessing
parameters with the DINA model in the calculation of bias and RMSE considering the relationship
between the 4PL IRT model and CDMs (see Culpepper, 2016; Meng et al., 2019). The average bias
and RMSE were reported with their 95% confidence intervals across the study conditions using the
formula in Equation 4.

_ Se
£+ 1.96E (4)
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In Equation 4, ¢ is the average biass/RMSE of the item parameters, S; is the standard deviation of
bias/RMSE of the item parameters, and r, is the number of study conditions when calculating the
average bias/RMSE of the item parameters.

RESULTS

Results were summarized using the average RMSE of the item parameters and creating its 95%
confidence intervals by the 4PL IRT and DINA models across the study conditions. The RMSE of
guessing parameters are presented across 4PL and DINA models in Figure 1. The RMSE of the
guessing parameters were almost zero across all levels of c-g parameters (c-g parameters = .0, .15, and
.3; see Figure 1a), all levels of d-s parameters (d-s parameters = .0, .15, and .3; see Figure 1b), all
levels of the correlation among factors/attributes (r = .2, .5, and .8; see Figure 1c), all numbers of
attributes (K = 3 and 5; see Figure 1d), and all test lengths (J = 20 and 40; see Figure 1e) in the study
when DINA model was fit to the data.
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Note. On x axis of Figure 1aand 1b, 0 = the values between .0 and .15 (low); 0.15 = the values between .15 and .30 (moderate);
0.3 =the values between .30 and .45 (high).

Figure 1. The 95% Confidence Intervals of (Pseudo) Guessing-parameter RMSE by DINA and 4PL
IRT Models across Different Study Conditions

In addition, its 95% confidence intervals were so small across all these study conditions that they did
not appear in any figure for DINA models. However, the average RMSE of the guessing parameters
became larger across all study conditions when the 4PL IRT model was fit to the data in lieu of the
DINA model (see Figure 1a, 1b, 1c, 1d, and 1e). Furthermore, the RMSE of the guessing parameters
were larger for 4PL IRT model under the conditions with a larger c-g parameter in the data generation
(the 95% confidence interval of the average RMSE for the guessing parameters was between .04 and
.05 when c-g parameters = .0, between .08 and .12 when c-g parameters = .15, and between .13 and
.17 when c-g parameters = .3; see Figure 1a). Similarly, for 4PL IRT model, the average RMSE of the
guessing parameters became larger when the number of factors/attributes was greater, the test was
shorter, d-s parameters were higher, and the correlation among factors/attributes was weaker, as
expected (see Figure 1b, 1c, 1d, and 1e). However, among these four study conditions, the number of
factors/attributes was the only significant study condition for the size of the RMSE of the guessing
parameters from 4PL IRT model when the overlap between the 95% confidence intervals was
considered (the 95% confidence interval of the average RMSE for the guessing parameters was
between .05 and .07 when K = 3, and between .11 and .15 when K = 5; see Figure 1d). Overall, the
similar results were also found for the RMSE of the slipping parameters (see Figure 2).
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Note. On x axis of Figure 2a and 2b, 0 = the values between .0 and .15 (low); 0 .15 = the values between .15 and .30
(moderate); 0.3 = the values between .30 and .45 (high).

Figure 2. The 95% Confidence Intervals of Slipping-parameter RMSE by DINA and 4PL IRT Models
across Different Study Conditions

The average RMSE of the slipping parameters with its confidence interval was almost identical to the
RMSE of the guessing parameters across all study conditions for both DINA and 4PL IRT models
with one exception (see Figure 2b, 2c, 2d, and 2e). The RMSE of the slipping parameters became
larger for 4PL IRT model under the conditions with a larger d-s parameter rather than c-g parameter
in the data generation considering the confidence intervals of average RMSEs across the study
conditions (the 95% confidence interval of the average RMSE for the slipping parameters was between
.04 and .05 when d-s parameters = .0, between .08 and .12 when d-s parameters = .15, and between
.13 and .17 when d-s parameters = .3; see Figure 2a).

The bias of the guessing and slipping parameters were calculated as the expectation of the difference
between the item parameters estimated from DINA or 4PL IRT models and their corresponding values
from the true model in the data generation. Results were summarized using the average bias of the
item parameters and creating its 95% confidence intervals by 4PL IRT and DINA models across the
study conditions. The bias of guessing parameters are presented across 4PL and DINA models in

Figure 3.
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0.3 =the values between .30 and .45 (high).

Figure 3. 95% Confidence Intervals of (Pseudo) Guessing-parameter Bias by DINA and 4PL IRT
Models across Different Study Conditions

As expected from the RMSEs of the guessing parameters, when the guessing parameters were
estimated through DINA model, the bias of the guessing parameters were almost zero with a very
narrow confidence interval across all levels of c-g parameters (c-g = .0, .15, and .3; see Figure 3a), all
levels of d-s parameters (d-s = .0, .15, and .3; see Figure 3b), all levels of the correlation among
factors/attributes (r = .2, .5, and .8; see Figure 3c), all numbers of attributes (K = 3 and 5; see Figure
3d), and all test lengths (J = 20 and 40; see Figure 3e) in the study. Unlike the DINA model, the
guessing parameters were overestimated across all study conditions when the 4PL IRT model was
used to estimate the guessing parameters (see Figure 3a, 3b, 3c, 3d, and 3e). In addition, the
overestimation of the guessing parameters became more severe for the 4PL IRT model under the
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conditions with a higher c-g parameter, a higher d-s parameter, a weaker correlation among
factors/attributes, a greater number of factors/attributes, and a shorter test in the data generation.
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0.3 = the values between .30 and .45 (high).

Figure 4. 95% Confidence Intervals of Slipping-parameter Bias by DINA and 4PL IRT Models across
Different Study Conditions

However, among these study conditions, the value of c-g parameter and the number of
factors/attributes in the data generation were the only study conditions that made a significant
difference on the bias of the guessing parameters from 4PL IRT model considering the overlap
between the 95% confidence intervals (the 95% confidence interval of the average bias for guessing
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parameters was between .03 and .04 when c-g parameters = .0, between .07 and .11 when c-g
parameters = .15, and between .10 and .15 when c-g parameters = .3; between .04 and .05 when K =
3, and between .10 and .14 when K = 5; see Figure 3a and Figure 3d, respectively). The similar results
were also found for the bias of the slipping parameters (see Figure 4). However, like the RMSE of the
slipping parameters, the overestimation of the slipping parameters were more severe under the
conditions with a larger d-s parameter rather than a larger c-g parameter in the data generation when
the 95% confidence intervals of the average bias for the slipping parameters were taken into
consideration across the study conditions (i.e., the 95% confidence interval of the average bias for
slipping parameters was between .03 and .04 when d-s parameters = .0, between .07 and .11 when d-
s parameters = .15, and between .10 and .15 when d-s parameters = .3; but the 95% confidence interval
of the average bias for slipping parameters was between .05 and .09 when c-g parameters = .0, between
.06 and .10 when c-g parameters = .15, and between .08 and .12 when c-g parameters = .3; see Figure
4a and 4b).

DISCUSSION and CONCLUSION

Multiple-choice test items might be regarded as a popular item type in educational and psychological
assessments. However, in a test with multiple-choice test items, some test takers may guess a correct
answer (i.e., guessing effect), or miss it because of anxiety or carelessness (i.e., slipping effect). The
estimation of item parameters and test-takers’ abilities might be biased when the guessing effect and/or
the slipping effect are not modeled in data analyses. The DINA model and 4PL IRT model consider
the guessing and slipping effects through including a parameter for the guessing effect (i.e., ¢
parameter in DINA model and ¢ parameter in 4PL IRT model) and a parameter for the slipping effect
(i.e., s parameter in DINA model and d parameter in 4PL IRT model) when analyzing data and
estimating model parameters such as item parameters and test-takers’ abilities. The current simulation
study purported to compare the estimated c-g and d-s parameters from the 4PL IRT model and DINA
model through manipulating the number of attributes, the level of correlation among attributes, test
length, the level of g parameter, and the level of s parameter.

The research findings indicate that the guessing and slipping parameters were estimated correctly
across all study conditions when the DINA model was used to analyze the datasets in the study (e.qg.,
the RMSEs of the guessing and slipping parameters were almost zero across all study conditions). The
good performance of the DINA model is consistent with the results in the literature (e.g., Chiu, 2008;
de la Torre et al., 2010; de la Torre & Lee, 2010). However, an important limitation of the current
study is the use of the DINA model for data generation. Fitting the correct model (i.e., DINA model)
might be a possible reason for the estimation of slipping and guessing parameters correctly. Thus, it
might be helpful to use an empirical dataset for the evaluation of guessing and slipping parameters
estimated via 4PL IRT and DINA models in a future study.

A typical test length is 15 or 20 to estimate the model parameters accurately in the CDMs, and the
model parameters are estimated more accurately via the DINA model as the sample size becomes
larger (de la Torre, 2009; de la Torre et al., 2010). In the current study, the test length was fixed as 20
or 40 items, and the sample size was fixed at 3000 in the data generation. The large sample size and
the long test length might be other possible reasons for the estimation of slipping and guessing
parameters accurately via the DINA model. Future work may consider investigating the impact of a
shorter test length (e.g., < 15 or 20) and a smaller sample size (e.g., < 3000) on the accuracy of guessing
and slipping parameters estimated via 4PL IRT and DINA models.

Both guessing and slipping parameters were overestimated when the 4PL IRT model was chosen to
estimate these two item parameters in lieu of the DINA model. The number of attributes made a
significant difference in the overestimation of both guessing and slipping parameters when the 4PL
IRT model was fit to the data. The overestimation of the guessing and slipping parameters from the
4PL IRT model became more severe when the number of attributes was greater in the data generation.
While the number of attributes became greater for the conditions with the same test length, there were
fewer items per attribute. Parameter estimates tend to be more biased for a shorter test (Hulin, Lissak,
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& Drasgow, 1982). This might be a possible reason for the overestimation of the guessing and slipping
parameters more severely under the conditions with a greater number of attributes given the same test
length.

The value of guessing parameters in the data generation was another significant study condition for
the estimation of guessing parameters through the 4PL IRT model. The guessing parameters were
overestimated more under the conditions with a larger guessing parameter in the data generation. This
was not consistent with the results from DeMars’ (2007) study where the overestimation was more
severe for the conditions with a lower guessing parameter. DeMars fits a unidimensional 3PL IRT
model to the datasets that followed a multidimensional 3PL IRT model whereas we analyzed the
datasets with the multidimensional factor structure and the slipping effect through fitting a
multidimensional 4PL IRT model to the datasets. In addition, due to the small sample size (i.e., 1000),
the estimated guessing parameters were biased towards the mean of prior distribution (i.e., .2) in
DeMars’ study (i.e., the bias = .05, .02, .01, -.01, and -.03 for ¢ = .10, .15, .20, .25, and .30,
respectively). However, a relatively larger sample size (i.e., 3000) was used in the current study. These
might be some possible reasons for the difference between the findings. Although the average bias of
the guessing parameters became larger for the 4PL IRT model under the conditions with a higher
slipping parameter, a weaker correlation among attributes, and a shorter test in the data generation, the
bias difference was not significant considering the overlap between the 95% confidence intervals. This
is consistent with the findings in the literature considering the impact of test length and correlation
among attributes (e.g., Hulin et al., 1982; Svetina, Valdivia, Underhill, Dai, & Wang, 2017).

When the slipping parameters were estimated through the 4PL IRT model, the overestimation of
slipping parameters was more severe under the conditions with a greater slipping parameter in the data
generation. However, the bias of the slipping parameters from the 4PL IRT model did not differ across
the different levels of the guessing parameters, the correlation among attributes, and the test length in
the data generation when the 95% confidence interval of the average bias was taken into consideration.
The findings related to the estimated slipping parameters may not be generalized to other study
conditions, and there is a need for more studies investigating the parameter recovery in the 4PL IRT
model under different study conditions. For example, as mentioned before, the sample size was not
manipulated in the current study, and the chosen sample size was limited to 3000 for data generation.
However, it is common to use a sample size less than 3000 in literature (see Conway & Huffcutt, 2003;
Henson & Roberts, 2006; Jackson, Gillaspy, & Purc-Stephenson, 2009). Although it is recommended
that the sample size for running a 3PL model or a DINA model should be larger than 1000 to obtain
accurate parameter estimates, there is no rule of thumb for the required sample size of the 4PL IRT
model (de la Torre et al., 2010; Hulin et al., 1982). Accordingly, the sample size (e.g., < 3000) might
be manipulated in future work to investigate the lower limit for the sample size for running a 4PL IRT
model. In addition, it might be helpful to study whether the manipulation of sample size will make a
difference in the estimation of slipping and guessing parameters by interacting with the other study
conditions such as test length and the correlation among attributes.

Although the estimated slipping and guessing parameters were more biased when datasets were
analyzed through the 4PL IRT model than the DINA model, the bias of the estimated slipping and
guessing parameters from both 4PL IRT and DINA models were reasonably small in general. Overall,
the average bias of both guessing and slipping parameters was smaller than .1 across all study
conditions, except the conditions with a high guessing/slipping parameter or a great number of
attributes in the data generation. Accordingly, both 4PL IRT and DINA models can be preferred for
analyzing the datasets contaminated with guessing and slipping effects. However, it is important to
consider the aforementioned limitations of the current simulation study before deciding whether the
study results can be generalized to other study settings.
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Tahmin ve Kaydirma Parametrelerinin Kestiriminde 4PL. MTK
ve DINA Modellerinin Degerlendirilmesi

Giris

Psikolojik veya egitimsel testler genellikle adaylarin bir davranis 6rneklemini gozlemlemek igin
kullanilmaktadir. Bu testlerin bir¢ogu adaylarin yetenek veya beceri diizeylerinin Ol¢iilmesine
odaklanmaktadir. Bu nedenle bir adayin yeteneginin, bir maddenin dogru cevaplanmasini nasil
belirlediginin bilinmesi olduk¢a 6nemlidir (Lord, 2012). Genellikle bir basar1 testinde gerekli bilgiye
sahip adaylarin maddeyi dogru cevaplamalari, sahip olmayanlarin ise yanlis cevaplamalar1 beklenir
(Rowley & Traub, 1977). Ancak ¢oktan se¢meli testlerde bu varsayim her zaman gegerli olmayabilir.
Bireyin ¢oktan secmeli testlerde verdigi cevaplarda; gergek yetenegin yansimasi goriilebilir, dogru
cevaba sans basarisi ile ulasabilir ya da endise veya dikkatsizlikten kaynakli yanlis cevaplar goriilebilir
(Liao, Ho, Yen, & Cheng, 2012; Yen, Ho, Laio, Chen, & Kuo, 2012). Son iki durumda bireylerin
yetenek ve madde parametre kestirimleri yanli olabilir. Bu durum bazi madde tepki kurami (IRT) ve
bilissel tan1 modelleri (CDMSs) tarafindan ele alinmaktadir. Sans basarisi-tahmin (Pseudo guessing-
guess, c-g) ve dikkatsizlik-kaydirma (inattention-slip, d-s) parametrelerini ele alan 4 parametreli
lojistik (4PL) (Barton & Lord, 1981) model ve DINA (Haertel, 1989; Junker & Sijtsma, 2001) model,
bu modellere 6rnek verilebilir. Bu aragtirmanin amact DINA modele uygun olarak farkli kosullarda
tiretilen veriler tizerinden 4PL Madde Tepki Kurami (MTK) ve DINA modelleriyle elde edilen c-g ve
d-s parametrelerini karsilastirmaktir. Boylece her iki model arasindaki farkliliklarin ve benzerliklerin
ortaya konulmasi, c-g ve d-s dogru parametre kestirimini etkileyen faktorlerin belirlenmesi ve bu
parametre tasarimlarina sahip arastirmalara katkida bulunulmas1 amaglanmustir.

Yontem

Verilerin iiretimi ve analizi R yazilimi (R Core team, 2017) ile gergeklestirilmistir. Veriler DINA
modele uygun olarak iiretilmistir. Bu ¢alismadaki kosullar belirlenirken literatiirde yer alan galismalar
dikkate alinmigtir (6rn., Chiu, 2008; de la Torre, 2008, 2009, 2011; de la Torre & Douglas, 2004, 2008;
de la Torre & Lee, 2010, 2013; de la Torre, Hong, & Deng, 2010; DeMars, 2007; Finch, 2010; Finch,
Habing, & Huynh, 2003; Henson & Douglas, 2005; Huebner & Wang, 2011; Meng, Xu, Zhang, &
Tao, 2019; Waller & Feuerstahler, 2017). Bu dogrultuda veri iiretiminde J = 20 ve J = 40 test
uzunluklari dikkate alinmigtir. Bunun yani sira .0-.15 (diisiik), .15-.30 (orta) ve .30-.45 (yiiksek) olmak
tizere 3 farkli g ve s parametre diizeyi belirlenmistir. Ozellikler arasi korelasyon diizeyleri r = .2
(dusiik), r = .5 (orta), ve r = .8 (yiiksek) olarak belirlenmistir. Modellerden elde edilen parametrelerin
dogrulugu i¢in érneklem biiyiikliigii N = 3000’e sabitlenmistir. Ayrica iki farkli 6zellik sayis1t K = 3
ve K =5 dikkate alinmistir. Veri liretiminde dort farkli Q-matris kullanilmistir (2 test uzunlugu x 2
ozellik sayist). Q-matrislerde yer alan her bir madde bir 6zellik ile iliskilendirilmigtir. Q-matrislerde
yer alan 6zellikler ile iliskili madde sayilarinin esit olmasina dikkat edilmistir. Arastirma kapsaminda
toplam 108 kosul (3 g diizeyi x 3 s diizeyi x 3 korelasyon diizeyi x 2 test uzunlugu x 2 dzellik sayisi)
test edilmistir. Her bir kosul i¢in 100 veri seti iiretilmistir. Her bir veri seti ¢cok boyutlu 4PL MTK ve
DINA modeller ile analiz edilmistir. Cok boyutlu 4PL MTK’nin veri analizi i¢in uygunlugunu test
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etmek icin verilerin faktor yapist Factor 9.2 yazilimi (Lorenzo-Seva & Ferrando, 2006) ile
incelenmistir. Tetrakorik korelasyona dayali paralel analizler sonucunda, ¢ok boyutluluk varsayiminin
kullanilan MTK modeline uygun oldugu dogrulanmistir. Bu ¢aligsma kapsami disinda olmasi nedeniyle
tiretilen verilerin yerel bagimsizlik varsayimini karsiladig1 varsayilarak analizler gergeklestirilmistir.
DINA model analizleri “CDM” (Robitzsch, Kiefer, George, & Uenlue, 2019) paketi ile
gerceklestirilmistir. 4PL analizleri i¢in “mirt” (Chalmers, 2012) paketi kullanilmistir. 4PL MTK ve
DINA modellerin c-g ve d-s parametre kestirimlerinin dogrulugunun degerlendirilmesinde sapma
(bias) ve hata kareler ortalamasi karekokii (RMSE) degerleri kullanilmistir. Sapma ve RMSE degerleri
hesaplanirken 4PL MTK’nin tahmin ve kaydirma parametrelerinin DINA modeli ile ayn1 gercek
degere sahip oldugu varsayilmistir (genis bilgi i¢in bkz., Culpepper, 2016; Meng ve digerleri, 2019).
Ortalama sapma ve RMSE degerleri %95 giiven araliklari ile rapor edilmistir.

Sonug ve Tartisma

Arastirma kapsaminda ulagilan bulgular, DINA modeli kullanildiginda tahmin (sans basarisi) ve
kaydirma parametrelerinin ele alinan tiim ¢alisma kosullarinda dogru bir sekilde kestirildigini ortaya
koymustur. Tiim calisma kosullar1 altinda DINA modeli kullanildiginda tahmin ve kaydirma
parametrelerinin RMSE degerleri sifira yakin bulunmustur. DINA modelin parametre kestiriminde iyi
bir performans sergilemesi literatiirdeki diger ¢alisma sonuglariyla uyumludur (6rn., Chiu, 2008; de la
Torre & Lee, 2010; de la Torre ve digerleri, 2010). Ancak, veri tiretiminde DINA model kullanilmas1
bu ¢alismanin énemli bir siirliligidir. Tahmin ve kaydirma parametrelerinin dogru kestirimi, veriler
analiz edilirken dogru model olan DINA modelinin kullanilmasindan kaynaklanmis olabilir. Bu
nedenle 4PL. MTK ve DINA modellerinin tahmin ve kaydirma parametrelerinin kestirimi agisindan
kargilagtirilmasi igin gelecek ¢alismalarda gergek veri setinin kullanilmasi 6nerilmektedir.

CDM modellerinde parametrelerin dogru kestirimi i¢in tipik bir test uzunlugunun 15 ila 20 oldugu ve
orneklem biiyiikliigii arttikca DINA modeli kullanilarak yapilan parametre kestirimlerinin daha dogru
sonuclar verdigi bilinmektedir (de la Torre, 2009; de la Torre ve digerleri, 2010). Bu ¢alismada veri
tiretiminde test uzunlugu 20 ve 40 olarak belirlenmis ve 6rneklem biiyiikligii 3000’de sabitlenmistir.
Orneklem biiyiikliigiiniin ve test uzunluklarinin yeterli olmasinin tahmin ve sans parametrelerinin
DINA model Kkestirim dogruluklarinda etkili oldugu diistiniilmektedir. Bu nedenle sonraki
caligmalarda test uzunlugunun daha kisa tutulmasinin ve diisiik 6rneklem biiyiikliiklerinin s6z konusu
sonuclarda ne gibi degisikliklere neden olacagi incelenebilir.

DINA model yerine 4PL MTK modeli kullanildiginda hem tahmin hem de kaydirma parametresinin
gercek degerlerinden daha biiyiik kestirimlere neden oldugu belirlenmistir. Bu durumda 6zellik
sayisinin 6nemli oldugu ve 6zellik sayisi arttikga tahmin ve kaydirma parametrelerinin 4PL MTK ile
kestirilen degerlerinin gergek degerlerinden daha da uzaklastigi bulunmustur. Test uzunlugu sabit
tutularak ozellik sayisi artirildiginda her bir 6zellikle iliskilendirilmis madde sayis1 azalmaktadir. Bu
nedenle daha kisa testlerde parametre kestirimi daha yanli olmaktadir (Hulin, Lissak, & Drasgow,
1982). Bu dogrultuda test sabit tutulurken 6zellik sayisinin artirilmasinin tahmin ve kaydirma
parametrelerinde daha yanl kestirimlere neden oldugu diisiiniilebilir.

Tahmin parametresinin veri iiretimindeki degerinin biiyilk olmas1 4PL. MTK modeliyle kestirilen
tahmin parametresinin daha yanli olmasina neden olmustur. Benzer sekilde kaydirma parametresinin
veri tiretimindeki degerini biiyiitmek, 4PL MTK modeliyle kestirilen kaydirma parametresinin daha
yanli olmasiyla sonuclanmistir. Ancak %95 giiven araliklart dikkate alindiginda s6z konusu
parametrelerin  Ozellikler arasi korelasyondan ve test uzunlugundan kayda deger bir sekilde
etkilenmedigi bulunmustur. Bu sonug, test uzunlugu ve ozellikler arasi korelasyon gibi ¢alisma
Ozellikleri agisindan literatiirde bulunan sonuglarla ortiismektedir (6rn., Hulin ve digerleri, 1982;
Svetina, Valdivia, Underhill, Dai, & Wang, 2017).

Her ne kadar 4PL MTK modeliyle elde edilen tahmin ve kaydirma parametreleri DINA modele kiyasla
daha yanl olsa da, bu kestirimlerdeki yanliligin genel anlamda 6nemli olmadig1 sdylenebilir. Ornegin,
tiim ¢alisma kosullar1 dikkate alindiginda tahmin ve kaydirma parametrelerindeki ortalama yanliligin
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genel olarak .1’den kiigiik oldugu bulunmustur. Sadece tahmin ve kaydirma parametrelerinin veri
iretimindeki degerlerinin yiliksek oldugu kosullar ile 6zellik sayisinin biiylik oldugu calisma
kosullarinda 4PL MTK modeliyle yapilan kestirimlerin yanlilig1 .1’den biiyiik bulunmustur. Bu
sonuglar dikkate alindiginda aragtirmacilar tahmin ve kaydirma etkisine sahip verilerin analizlerinde
hem DINA modelini hem de 4PL MTK modelini dikkate alabilirler. Ancak bu sonuclar1 baska ¢alisma
kosullarina genellemeden once ¢alismanin sinirliliklarinin dikkate alinmasi oldukga dnemlidir.

Yukarida bahsedilen ¢aligma simirliklar1 diginda bu ¢aligmada 6rneklem biiyiikliigiiniin 3000 olarak
sabit tutulmasi1 bagka bir 6nemli sinirliktir. Arastirma kapsaminda 6rneklem biiyiikliigii belirlenirken,
modellerin dogru parametre kestirimleri saglamasina yetecek bir 6rneklem biiyiikliigii se¢cimine dikkat
edilmistir. Ancak literatiirde 3000’den daha kii¢iik 6rneklem biiyilikliigii sahip ¢aligmalara rastlamak
oldukc¢a miimkiindiir (6rn., Conway & Huffcutt, 2003; Henson & Roberts, 2006; Jackson, Gillaspy, &
Purc-Stephenson, 2009). Bunun yaninda 3PL MTK modelini veya DINA modelini kullanmak i¢in
gerekli minimum Orneklem biyiikliigiiniin 1000 olmas1 tavsiye edilirken 4PL MTK ile madde
parametrelerinin dogru kestiriminde gerekli minimum &rneklem biiyiikliigiine iligkin ¢aligmalara
ihtiyag vardir (de la Torre ve digerleri, 2010; Hulin ve digerleri, 1982). Bu dogrultuda gelecek
caligmalarda farkli 6rneklem biiyiikliiklerini dikkate alarak 4PL. MTK modeli i¢in gerekli minimum
orneklem bilylikliigl arastirmanin ve dérneklem biiyiikliigiiniin diger ¢aligma kosullariyla etkilesimini
incelemenin 4PL MTK ile ilgili literatiire 6nemli katkilar saglayacag: diisiiniilmektedir.
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