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Abstract 

The main purpose of this study is to give a perspective via discrete singular convolution, differential quadrature (DQ) 
and harmonic differential quadrature (HDQ). For this purpose, DQ and HDQ methods are developed for the buckling, 
analysis of non-rectangular plates. Plates of, skew, shape is considered under axial loads. Furthermore, 
transformation formulations and some perspective for nano or macro scaled many problems with different effects 
discussed via discrete singular convolution and differential quadrature methods. 
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1. Introduction 

It is well known that, the analysis of engineering systems includes two main stages, such as; 

construction of a mathematical model for a given physical phenomena and the solution of this 

mathematical equation.   Real physical systems or engineering problems are often described by 

partial differential equations, either linear or nonlinear and in most cases, their closed form 

solutions are extremely difficult to establish. As a result, approximate numerical methods have 
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been widely used to solve partial differential equations that arise in almost all engineering 

disciplines. The most commonly used numerical methods for such applications are the finite 

element, finite difference, Ritz, and boundary element method, and most engineering problems 

can be solved by these methods to adequate accuracy if a proper and sufficient number of grid 

points are used. In addition to this, in a large number of practical applications where only 

reasonably accurate solutions at few specified physical coordinates are of interest, the conventional 

numerical methods such as finite element or finite difference method require a large number of 

grid points and so large a computer capacity. Among a variety of numerical methods, the finite 

element method is by far the most effectively and widely used method. Furthermore, finite element 

method is still an effective method in especially the systems with complex geometry and load 

conditions or applications with non-linear behavior and it has many successful applications.  In 

seeking a more efficient numerical method that requires fewer grid points yet achieves acceptable 

accuracy, the method of differential quadrature (DQ) was introduced by Bellman et al. [1]. Since 

then, applications of differential quadrature method to various engineering problems have been 

investigated and their successes have demonstrated the potential of the method as an attractive 

numerical analysis technique [2-10]. The stability analysis of plates may be either closed form or 

approximate. The closed form solutions consist of techniques for seeking direct solutions to the 

governing differential equation of plates. A closed form or rigorous solution of plates can be 

obtained for only a limited number of cases. For the majority of practical problems, a closed form 

namely analytical solution either cannot be obtained or is of such a complicated nature that it can 

be applied only with great difficulty in a practical computation. For many situations, numerical 

methods are the only approaches that can be employed [11-17]. 
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The focus of this paper is on the comparison study of the DQ and HDQ methods.  For this reason, 

the applications are limited to those problems having smooth solutions for simplicity. In addition 

to this, since the only thin plates are considered in this paper, there are some assumptions regarding 

the behavior of thin plates. These are; the transverse deflections of the plates are small compared 

to the thickness of the plate. Thus middle-surface stretching caused by bending can be neglected; 

that is, membrane action resulting from flexure is negligible compared to the flexure. The material 

of the plate is homogeneous, isotropic, and obeys Hooke’s law. 

 

2. Differential Quadrature Method (DQM) 

 

For simplicity, we consider a one-dimensional function u(x) in the [-1,1] domain, and N discrete 

points. Then the first derivatives at point i, at x = xi   is given by 
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where xj are the discrete points in the variable domain, u(xj) are the function values at these points 

and Aij are the weighting coefficients for the first order derivative attached to these function values. 

Bellman et al. [1,2] suggested two methods to determine the weighting coefficients. The first one 

is to let equation (1) be exact for the test functions 
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which represents N sets of N linear algebraic equations. Thus, the weighting coefficients for each 

formula will be different from those for the first order derivative. As similar to the first order, the 

second order derivative can be written as  

  x  uB
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where the Bij  is the weighting coefficients for the second order derivative.  

          Another way to determine the weighting coefficients is to employ harmonic functions, 

named the harmonic differential quadrature (HDQ). Harmonic differential quadrature has been 

proposed by Striz et al. [19]. Unlike the differential quadrature that uses the polynomial functions, 

such as power functions, Lagrange interpolated, and Legendre polynomials as the test functions, 

harmonic differential quadrature uses harmonic or trigonometric functions as the test functions. 

Thus, this method is called the HDQ method. Shu and Xue proposed an explicit means of obtaining 

the weighting coefficients for the HDQ [18]. The harmonic test function hk(x) used in this approach 

is defined as; 
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for  k = 0,1,2,....,N                                                                  (5) 

 

According to the HDQ, the weighting coefficients of the first-order derivatives Aij
   for  i ≠ j can 

be obtained by using the following formula: 
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The weighting coefficients of the second-order derivatives Bij

   for i ≠ j  can be obtained using 

following formula: 
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3.  Applications of DQ methods 

 

The governing differential equations for skew plates under uniaxial compression (uniform normal 

force) Fx along the x direction and its differential quadrature form are given respectively,  
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i = 1,2,........,Nx    and    j = 1,2,.......,Ny 
 

where θ is skew angle,  k = a/b is the aspect ratio, u is the displacement in the z direction, and D 

is the flexural rigidity. Clamped support condition with movable edges is considered. In 

accordance with this condition the plate is prevented from moving in the z direction or rotating at 
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the boundaries. In this case both the deflection and slope must vanish. Since the first and last 

displacements are known, Eq. (36) is rewritten for boundary conditions 
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i = 2,........,Nx -1   and    j = 2,.......,Ny-1 

     Consequently, we solve the remaining eigenvalue problem to obtain the buckling loads.  

 

4. Discrete Singular Convolution (DSC) 

 
Wei [18-20] proposed the method of discrete singular convolution (DSC) in 1998. In this method, 

numerical solutions of differential equations are discrete via some kernels. A singular convolution 

defined below [19] 
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For example, regularized Shannon kernel (RSK) is more suitable for practical applications. This 

kernel can write as follows [18] 
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by using the method of DSC and DQ methods plates with different shape can be solve via below 

transformation rules 
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Similar transformation can also possible for DQ or HDQ methods. 

 
5. Concluding remarks and nano-scaled plates 

In the applied mechanics area, many different problems can be solved via DSC or DQ 
transformation methods. For example, below cases can be consider for each plate problem 
(triangular, skew, trapezoidal, circular, annular, sector, polygonal, deltoid, or general non-
rectangular plates: 
 
5.1. Foundation effects, magnetic effects, piezo effect. 
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5.2. Functionally graded (FG) composite material 
5.3. CNT reinforced composite material 
5.4. Graphene platelet reinforced composite material 
5.5. Nonlinear analysis-material nonlinearity 
5.6. Buckling 
5.7. Bending 
5.8. Vibration 
5.9 Porosity effect 
5.10. Post buckling  
5.11. Nonlinear analysis-geometric nonlinearity 
5.12. Viscoelasticity, damped  vibration. 
       

Also, micro/nano scaled plates, beam and shell problems can also be solved [21-31] via these 

methods. 
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