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ABSTRACT

In this paper, we establish Lyapunov-type inequalities for two classes of difference systems which
improve all existing ones in the literature. Applying our inequalities, we obtain a lower bound for the
eigenvalues of corresponding systems.
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1. INTRODUCTION

In 1983, Cheng [4] obtained the following inequality

b2
S0-0)) @24 (11)
T=a
where f;(n) = 0 foralln € Zand
z2 -1 1
S(Z) — 2 ) 1IIZz— 11seven (12)
z , ifz—11is odd
if the second-order difference equation
—Au(n) = AW (n + 1) (1.3)
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has a real solution u, (n) satisfying Dirichlet boundary conditions
ui(a) = 0 =uy(b),u;(n) # 0,n € Z[a, b], (14)
a,b € Z with a<b -2, and Z[a,b] ={a,a+ 1,a+2,..,b—1,b}, f; is a real-valued function defined on Z. The

inequality (1.1) is a discrete analogue of the following so-called Lyapunov inequality

b
b - a)f [fi(s)lds > 4 (1.5)

if Hill’s equation

—uy"(8) = fi(Dus (0), (1.6)
where f; € C([a, b], R), has a real solution u, (t) such that Dirichlet boundary conditions

us(a) = 0 = uy(b), us(t) £0,t € (a,b), (1.7)

where a,b € R with a < b [7].
In 2012, Zhang and Tang [15] obtained the following Lyapunov-type inequality for the 2k-th order difference equations

—A*u,(n) = (D (muy(n + 1) (1.8)

with the boundary conditions
A%y, (a) = 0 = A%'uy (b),i =0,1,...,k—1; u;(n) £ 0,n € Z[a, b], (1.9)

where k € N, n € Z and f1(n) is a real-valued function defined on Z.
Theorem A. If (1.8) has a solution u4 (n) satisfying the boundary conditions (1.9), then the following inequality

b-1 23(k=1)

DNA®IE=a+ Db -7 =D 2 G v (110)
T=a
holds.

It is easy to see that the inequality (1.10) is rewritten as
b=2 23(k=1)
Z[|f1(r)|(r—a+ Db -1t-1)] Zm. (1.11)
T=a

Now, throughout the paper for the sake of brevity, we denote

Gi(n) = T_,nV/O7P(0) and i (n) = 22 VPO (D) (112)

fori=1,2,...,m.

In 2012, Zhang and Tang [14] obtained Lyapunov-type inequalities for the following systems

{—A(T1(n)lAu1(n)|pl‘2 Auy(n)) = fi(muy(n + D" 2uy (n + Dluy(n + 1)[% (1.13)
—A(r (W) [ Dy (W) P2 20u, (n)) = (M) |ug (0 + DI uy(n + DIF2u,(n + 1) '
and

( —A(rM)|duy (WP ~201 (1) = £y (0 + DI 2u, (0 + Dlug(n + 1192 - [ug, (n + 1)|%m

! —A(rM1du, P28, () = f) s (r + DIy + DI%=2uy(n+ 1) - [ (n + Do (114

l—A(Tm(n)IAum(n)I”’"‘ZAum(n)) = fmMuy(n + D] |up(n + 1% -+ [t (n + DOm0, (n + 1)
For the sake of convenience, we give the following hypotheses:
(Hy) r;(n) and f;(n) are real-valued functions and r;(n) > 0,vn € Zand i = 1,2,..., m,
H 251 a __ B B2 _
H) 1 <pi,p2aq,fr <o, a5, =20 satlsfyp—+p— =1land p—+— =1,
1 2

1 D2
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(Ha) 1 < pg < o0, and e = 0 for k = 1,2, ..., m satisfy 2?;1% =1.

Theorem B. Leta,b € Z with a < b — 2. Suppose that hypotheses (H;) with i = 1,2 and (H,) are satisfied. If the system
(1.13) has a solution (u, (n), u,(n)) satisfying Dirichlet boundary conditions

u;(@) = 0 = u;(b), w;(n) £ 0,n € Z[a,bl,i = 1,2, (1.15)
then the following inequality
b-2 (( (T)TI (.L.))pl—l a;zllﬁl b-2 (( (T)T[ (-L—))lh—l ﬁigzz
1 1 + 1 1 .

‘rZa 517’1_1(‘[) + 1711’1—1(-[) fl (T) ; {1p1_1(‘[) T nlpl_l(‘[) fz (T) X
b-2 bra, b2 azliz
S oo\ Gonart L\
Z LPI(T) + npPe1(0) fi'(™) Z T g f2* (1) =1 (1.16)

T=a T=a

holds, where f;*(n) = max{0, ;(n)},i = 1,2.

Theorem C. Leta,b € Z with a < b — 2. Suppose that hypotheses (H,) and (H) are satisfied. If the system (1.14) has a
solution (u; (n), u;(n), ..., unm (n)) satisfying Dirichlet boundary conditions

u;(a) = 0 =u;(b), u;(n) #0,n € Z[a,bl,i = 1,2, ..., m, (1.17)
then the following inequality
m m b-2 (c (‘L’)T] (T))pk_l g:z:
| | | | Z Y | 21 (1.18)
0P () + PR ()

k=1 i=1 \7t=a

holds, where f;i*(n) = max{0, ,(n)},i = 1,2,..,m.
Remark 1.1. It is clear that the system (1.13) with (1.4), (H,), and the condition a,=0 or p;=0, or the system (1.14) with
(1.4) and (H;) for m = 1 reduces to the following problem

—A(r;(M1Au, (M) [P=28u; () = (M wy (n + DIP~2uy (n + 1) (1.19)
uy(a) = 0 =uy(b). (1.20)

Moreover, when a; =p; fori =1,2,...,m,and for k # i,a, = 0 for k = 1,2, ..., m, we obtain a single equation similar to
the equation (1.19) from the system (1.14).

Aktas et al. [1], Aktas [2], Cakmak and Tiryaki [5, 6], Tang and He [9], and Tiryaki et al. [11] established Lyapunov-type
inequalities for the continuous cases of systems (1.13) and/or (1.14) and their special cases. For some of the most recent

works on Lyapunov-type inequalities, the reader is referred to [4, 6, 8-10, 12]. Motivated by the above-mentioned papers, we
establish Lyapunov-type inequalities for systems (1.13) and (1.14) which are better than that of Zhang and Tang [14].

2. MAIN RESULTS

One of the main results of this paper for the system (1.13) is as follows.

Theorem 2.1. Let a, b € Z with a < b — 2. Suppose that hypotheses (H;) with i = 1,2 and (H,) are satisfied. If the system
(1.13) has a solution (u, (n), u,(n)) satisfying Dirichlet boundary conditions (1.15), then the following inequality

B
121

bif*(r)( G@m @ )p‘( Ga@n2 (@) >,,— §
L7 G @ At @) QP @ + 0@

ay
B2\ P>

b-2 B1 By
. G@OmEIPT \P ([ Ga@ma@)Pe )vz
;fz (T) <€1”1‘1(r)+mm-1(r)> <<zp2‘1(r)+nzvz-1(r) =1 1)

holds, where f;* (n) = max{0, f;(n)} fori = 1,2.
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Proof. Let u;(a) = 0 = w;(b) and u;(n) # 0, n € Z[a, b],i = 1,2 hold. Multiplying the first equation of system (1.13) by
uy(n + 1) and the second equation of system (1.13) by u,(n + 1), summing from a to b — 2 and taking into account that
u;(a) =0 =wu;(b) fori = 1,2, we get

b-1 b-2 b-2
D r@BL@P = ) A@hE+ DI% e+ DI < Y fr @O+ DI% g+ DI 22)
and
b—1 b-2 b-2
D n@IB@P =Y L@+ D@+ DI < Y FOhu @+ D@+ DIk @3)

It follows from (1.12), (1.15), and Holder’s inequality that

n bi n pi
lu;(n + D[P = ZAui(T) < <Z|Aui(‘f)|> <
n ri-1 n n
<2 i/ “-m)(r)) D @@ =P ) @b @)1 )
T=a T=a T=a
and
p-1 D b-1 Pi
g (n + V)P = Z ru@)| < Z M@ | <
T=n+1 T=n+1
p-1 piml 4 p-1
D nar@ | r@su@P =P ) @@l 25)
T=n+1 T=n+1 T=n+1
fori=12anda <n < b — 1. Adding (2.4) and (2.5), we have
b-1
, (G (mn;(n))Pi~t .
(n+ VP < (D) Ay ()P 2.6
DI < iy 2, Ol (26)

fori=12anda <n < b— 1. If we take the %—th and %—th powers of both sides of the inequality (2.6) withi =1, we

have
p1—1 % b-1 Z_i
fus(n + 1] < ( zl,ffffg)" 1(:211_1@) > n@lau @ @7
and
By B
p1—1 p, [b-1 P1
s+ 1)1 < ((lp(f_ﬁ(g?f’;)lz,l_l (n)) > n@law @ | 29
respectively. Thus, from (2.2), we have
I OO G A . o)
ua(n + 1] < (ml_ﬂ (n)lmvl—l D Zf @lus (@ + DI uz (e + D] (2.9)

and
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B

D1
(2.10)

B

p1—1 p, [b=2

MRS (c v(gll(:)n :-(7:7)311—1(71)> <Z A @ha G+ DI (x + 1)|az>
1 1 =

a

Multiplying both sides of (2.9) by f1*(n)|uz(n + 1)|*2, summing from a to b — 2, we have
pi—1 D1
((1(‘[)771(‘[)) ) RERCRE)

1_% b-2
) < ;fl (T)IuZ(T + 1)'“2 ((lpl_l("——) + Thpl_l('[)

b-2
(Z frr@ui (T + DM ua(r + 1|

Similarly, if we take the p—z- th and %—th powers of both sides of the inequality (2.6) with i = 2, we have
2 2
a2

@ (fz(n)nz(n))pz_l
o+ DI < (z;’fl(n) P ()

% b-2 D2
> ( fi @lug (e + DIy (z + 1)|ﬁ2> (2.12)

T=a

B2
D2

and
(2.13)

B2

p2—1 p, [b=2

Jup(n + 1)]F2 < (Z ,,(5_21(2)"1(2)3,2_1 (n)> < > @iy + DI g+ 1)|Bz>
2 2 T=a

respectively. Multiplying both sides of (2.13) by £, *(n)|u.(n + 1)|#1, summing from a to b — 2, we have
(Cz (T)TIZ(T)) ) (214)

l_z% b-2
) = Zf @+ DI (zz”z—l(r) + 12712

b-2
(2 £ @l (@ + DI g + DI

By using (2.12) in (2.11) and (2.10) in (2.14), we have
b—2 1_17_11 b-2 Z_z
<Z F1 (@ us(r + D% ua(r + 1)|az> <M, @l + D uy(r + 1)|ﬁz> (2.15)
and i )
1Bz B
b—-2 D2 b-2 121
(Z £ ()lua(r + 1Bt us(z + 1)|Bz> <M, (Z FH @ (0 + D% Juy (7 + 1)|az> , (2.16)
where i )
M, = 1’2 N IGOUNG) i " (@omo) " V 219
LY S ) @ fr @ @17
and
(G@OL@)™ z (L@ @)* "\
BNEUEA ) ( 2 2T ) , (2.18)
&P (@) + P (3)

b-2
M, = Z (T
’ T:afz ( )<(1p1_1('f) +mPr(D)
respectively. If we take e;-th and e,-th powers of both sides of inequalities (2.15) and (2.16), and multiplying the resulting
1-£2)e,

-4

b-2 ( E)el b-2 ( P2
<Zf1+(T)|u1(T+ DI uz(r + 1)|a2> (Zf2+(‘f)|u1(‘f+ DB ua(t + 1)|BZ> <

b-2 %el b-2 p, &2
M, % <Z @+ DI uy(t + 1)|ﬁz> M, (Z £ @l ( + D% uy (z + 1)|a2> _ (2.19)

inequalities, we obtain

Next, we prove that
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b-2
0< ) A @l + DI%un + DI (2.20)
If (2.20) is not true, then
b-2
D A @l @+ DIy + DI = 0, 221)
From (2.2) and (2.21), we have
b-1
0< ) nEBuLEP = Zfl(rnul(r + DIy + DI <
b-2
> At @l @+ DIS (@ + DI = 0, (2.22)

It follows from (H,) with i = 1 that
Au;(n) =0 (2.23)

fora < n < b — 1. Combining (2.6) for i = 1 with (2.23), we obtain that u, (n) = 0 for a < n < b, which contradicts (1.15)
with i = 1. Therefore, (2.20) holds. Similarly, we have
b-2

0< > fF @l + DIF (e + 1P, (2.24)

Now, we choose e; and e, such that
0 <X222fi" Dy (r+ DI%up(r + DI and 0 < 22 £ @y (r+ DIFrfup(x + DIP2 - (2.25)
cancel out in the inequality (2.19), i.e. solve the homogeneous linear system

(2.26)

We observe that by hypotheses p =1 and By B o = 1, this system admits a nontrivial solution, indeed all equations are

equivalent to ( —ﬁ) e; = ﬁ—ez and —e1 (1 —B—) e,. Hence, we may take e; = B and e; =22 and we get the
P1 p2 P1 P

2

inequality (2.1) which completes the proof ]
The following result gives the new Lyapunov-type inequality for the system (1.14).

Theorem 2.2. Leta, b € Z with a < b — 2. Suppose that hypotheses (H,) and (H;) are satisfied. If the system (1.14) has a
solution (u; (n), u,(n), ..., un, (n)) satisfying Dirichlet boundary conditions (1.17), then the following inequality

@yt
(z Om@)" T\
lef ¢ )H @ i) | 2 (227)

holds, where f;*(n) = max{0, f;(n)} fori = 1,2, ..., m

Proof. Let u;(a) = 0 = u;(b) and u;(n)  0,n € Z[a, b],i = 1,2, ..., m hold. Multiplying the i-th equation of system (1.14)
by u;(n + 1) and summing from a to b — 2 and taking into account that u;(a) = 0 = u;(b) fori = 1,2,...m, we get

b—-1 b-2 m b-2 m
Y n@lsu@P =) l (@ Jruece+ 1)|ak] <> [ﬁ-*(r) [ Jrusce+ 1)|“k] 2.28)
T=a T=a k=1 T=a k=1

fori =1,2,...,m. By using u;(a) = 0, (1.12) and Hélder’s inequality, we get

zn: Au;(7) "

<
T=a

fug(n + DI =
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i1

n pi n n
(Z nl/(l-m)(r)) (Z ri (r)mui(mm) AR OPRICTOTE (229)
T=a T=a T=a
fori =1,2,..,mand a < n < b — 1. Similarly, by using u;(b) = 0, (1.12) and Hélder’s inequality, we get
b-1
(it DI < 9271 ) r@lsu@I (230)
T=n+1

fori=12,..,manda <n < b—1. Adding (2.29) and (2.30), we have

pi-1 b-1
fu (n + 1P < C,,(fg(gf fj]),)g o D @@ 231)

fori =12,..,manda < n < b — 1. If we take the %—th power of both sides of the inequality (2.31), we obtain

231

] ] pi—1 % b-1 bi
s+ 1)|ais< (D) ) <Zn(r)|Au,-(r)|m> . 232)

PN ) + Pl (n)

=a

Multiplying both sides of (2.31) by f;* (n) [Tit: |lux (n + 1), summing from a to b — 2, we have
k#i
b-2 m b-2 &
C@n@)P=t \
ff@| e+ D% < < - X
Z l_[ ’ Z P Pl

b-1 pi m
<Z n(r)mui(r)m) @ | Jrwee+ i (233)

T=a

k#i
fori =1,2,...,m. By using (2.28) in (2.33), we have

@i

b—1 b-2 i [ p-1 pi m
| GOmMEP ™ \p N .
Zan(r)mi(r)ms;(am_lm +m1’i‘1(r)> <;r,-<r)mui(r)|pt> fi (r)];[luk(rﬂn € (234)

fori =1,2,...,m. Therefore, by using (2.31) in (2.34), we have

b-1 1‘% m [b-1 % b2 m @ (T)T)k(‘f))pk_l g—:
) . pi Pk +
Y n@ur | < [{ D @i Zf ® H ( T nkpk_l(r)> (235)

T=a k=1 \ t=q
ki

fori =1,2,..,m. If we take the e;-th power of both side of the inequalities (2.35) for i = 1,2, ...,m, and multiplying the

resulting inequalities, we obtain

m [ b-1 (1—2—:)(31-
[ [ 2. n@muce <
i=1 \1=a
m | m b-1 Z_’;:b—z m _— a €i
K + (S @ (D) Pk
]—1[ D(;m(r)mk(mv) Zf (r)Q(zkpk_l(T) e (2:36)

k#i

and hence

m /b-1 o %Z%{ﬁ
I (Z n(r)mui(r)m) <|] (Z rk(r)|Auk(r)|vk> x

i=1 \7=a k=1 \7t=a
b-2 1 Sk “

m - m —
+ ((k (®ni (T))pk Pk

LIVS7 L NPt @ +mepe 1 ()

It is easy to see that by using similar technique to the proof of Theorem 2.1, we obtain the following inequality
b-1

0< z 7, (D) Ay () |Pe (2.38)

T=a
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fori =1,2,...,m. Now, we choose e; such that 0 < Y.2-17;(t)|Au;(7)|Pt fori=1,2,..,m cancel out in the inequality
(2.37), i.e. solve the homogeneous linear system

(p1 —ar)e; —are; —aje3 — - — ey, = 0
—aze; + (P2 — az)e; —azez — - —aze, =0 (2.39)
—Qmer — Apey — Apez — =+ (pm - am)em =0
We observe that by hypothesis Z}’il% = 1, this system admits a nontrivial solution, indeed all equations are equivalent to

m m

a; Z (247

~t e | = e Zk

Pi\ = L = Pr
k#i k#i

fori =1,2,...,m. Hence, we may take ¢; = % fori=1,2,...,m, and we get the inequality (2.27) which completes the

proof.m
Remark 2.1. It is easy to see that if we use generalized Hélder’s inequality to the inequalities (2.1) and (2.27), then they
reduce to the inequalities (1.16) and (1.18) obtained by Zhang and Tang [14], respectively. Thus, they are sharper than
(1.16) and (1.18). Moreover, if we take r;(n) = 1 and p, = 2 in the problem (1.19)-(1.20), then Theorems 2.1, 2.2, B, and C
are equivalent. In this case, from the inequalities (1.16), (1.18), (2.1), and (2.27), we get

b-2

Zf1+(r)(r—a+1)(b—r—1) >h-a (2.40)

If we also take m = 2 in the system (1.14),_and B1 = a;and B, = a, in the system (1.13), then Theorems 2.1 and 2.2 are
equivalent.

Remark 2.2. Note that since f;"(n) < |f; (n)|, the inequality (2.40) is better than the inequality (1.11) with k = 1. Moreover,
by using

+b b —a\?
Mn)=(n—a+1)(b-n—-1)< max M(n)zM(a——l)z( a)
asnsb—1 2 2
in the inequality (2.40), we get
b-2
4
+ _

Z @ zp—. (2.41)

Therefore, if we take f;(n) > 0, then when b — a — 1 is odd, (2.41) is the same as (1.1). However, (2.41) is worse than (1.1)
when b —a — 1 is even.

Now, we apply our Lyapunov-type inequalities to obtain a lower bound for the first eigencurve in the generalized spectra.
Let a, b € Z with a < b — 2. We consider here the following difference system

—A(|Au1(n)|p1_2Au1(n)) = Larqm)uy(n + D 2wy (n + Duy(n 4+ 1[92 - |up, (n + 1)[%m
—A(18uz (M) [P272Auy () = pa2q(m)|ug (n + D% fup(n + D% 2up(n + 1) - Jug (n + D] (2.42)

_A(lAum(n)|pm_2Aum(n)) = Amamq(n)lul(n + D% ]uy(n + 1)]% - |um(n + 1)|am_2um(n +1)
where qg(n) > 0,1; € R, p; and «; are the same as those in the hypothesis (Hs), and u; satisfies Dirichlet boundary conditions

u;(a) =0=u;(b), yy(n) £0,n € Zla+1,b—-1],i =1,2,...,m. (2.43)

We define the generalized spectrum S of a nonlinear difference system as the set of vector (14,15, ..., A,,) € R™ such that the
eigenvalue problem (2.42)-(2.43) admits a nontrivial solution.

Boundary problem (2.42)-(2.43) is a generalization of the following p;-Laplacian difference equation
—A(18w; (W) [Pr~2Auy () = 119wy (0 + D[Py (n + 1) (2.44)
with Dirichlet boundary conditions
wu(@)=0=u,(b), uyy(n) Z0,n€Zla+1,b—1], (2.45)
where p; > 1,1; € R, and g(n) > 0. When p; = 2, Atkinson [3, Theorems 4.3.1 and 4.3.5] investigated the existence of

eigenvalues for (2.44)-(2.45), see also [13].

Let f;(n) = A;a;q(n) for i = 1,2, ...,m. Then we can apply Theorem 2.2 to boundary problem (2.42)-(2.43) and obtain a
lower bound for the m-th component of any generalized eigenvalue (14,15, ..., A,,) of the system (2.42).
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Theorem 2.3. Let a, b € Z with a < b — 2. Assume that 1 < p; < oo, @; > 0 satisfy Zm 2= 1,and qg(n) > 0 for alln € Z.

Then there exists a function h(A;,2,, ..., A,,—1) such that |A,,]| = h(A;, 45, ..., Apq1) for every generalized eigenvalue
(A1, A3, ..., A,y of problem (2.42)-(2.43), where h(A;, A5, ..., A;p—q) is given by

“Pm
AT

T 25 (@@ @) Ve
_ U —l‘ k k
h(ll '/12 > '/1711—1) - U g(llllal)p ; Q(T) B <(kpk—1(_[) + T]kpk_l(r)> . (246)

Proof. For the eigenvalue (A3, 2y, ..., An), (2.42)-(2.43) has a nontrivial solution (u;(n),u;(n), ..., um(n)). That is the
system (1.14) with f;(n) = A;a;q(n) has a solution (uy (), u,(n), .., uy, (n)) satisfying (1.17), it follows from (2.27) that
fitn) = Lja;q(n), foralln € Z,i = 1,2, ..., m, and that

@i

S 1bS ™ Ge@m @t e[
= 1:1[ ,zafl B (ka_l(f) + T]kpk_l(T)>

Cr@ne (@)1 e
n(l’l )" n [Z a )ﬂ 4PN + nk”k‘l(f)> )

@ GOt \p
g(waim Z (@ l_[ ( AT (T)> .

Hence, we have

“Pm
= W o VT
Zi T T
Al 2 — n(uimi)m Z q(@ H( P ) . (2.47)

) = o1 Sk (™) + ()
This completes the proof.m
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