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(o, m1, m2)-CONVEXITY AND SOME INEQUALITIES OF
HERMITE-HADAMARD TYPE

HURIYE KADAKAL

ABSTRACT. In this paper, we introduce a new class of extended (a,m1,m2)-
convex functions. Some algebraic properties of these class functions have been
investigated. Some new Hermite-Hadamard type inequalities are derived. Re-
sults represent significant refinement and improvement of the previous results.
Also, the author establish a new integral identity and, by this identity, Hélder’s
and power mean inequality, discover some new Hermite-Hadamard type in-
equalities for functions whose first derivatives are (a,mi, mg)-convex. Our
results are new and coincide with the previous results in special cases.

1. INTRODUCTION
Definition 1. A function f: I CR — R is said to be convex if the inequality
fr+ (1 =t)y) <tflz)+ (1 -1)f(y)

is valid for all z,y € I and t € [0,1]. If this inequality reverses, then the function
f is said to be concave on interval I # ().

This definition is well known in the literature. One of the most important integral
inequalities for convex functions is the Hermite-Hadamard inequality. The following
double inequality is well known as the Hadamard inequality in the literature.

Definition 2. f: [a,b] — R be a convex function, then the inequality
a+b 1 b fla)+ f(b)
< < X
f< 5 )_b_a/af(x)dm_ 5

is known as the Hermite-Hadamard inequality.

Some refinements of the Hermite-Hadamard inequality on convex functions have
been investigated by [3} [0, 14] and the Authors obtained a new refinement of the
Hermite-Hadamard inequality for convex functions.

Received by the editors: January 10, 2019; Accepted: May 08, 2019.

2010 Mathematics Subject Classification. 26A51, 26D10, 26D15.

Key words and phrases. Convex function, m-convex function, (o, m)-convex function,
(e, m1, m2)-vonvex function, Hermite-Hadamard type inequality.

©2019 Ankara University
Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

2128



(o, m1,m2)-CONVEXITY 2129

Definition 3. The function f :[0,b] — R, b > 0, is said to be m-convex function,
where m € [0,1] ; if we have

[tz +m(1 = t)y) <tf(z) +m(l—1t)f(y)
for all z,y € [0,b] and t € [0,1]. We say that the function f is m-concave function

if (—=f) is m -conver.

Obviously, for m = 1 the above definition recaptures the concept of standard
convex functions on [a, b]; and for m = 0 the concept star-shaped functions.
The interested reader can find more about partial ordering of convexity in
[13]. For many papers connected with m-convex and («, m)-convex functions see
([1L[8LITL15]) and the references therein. There are similar inequalities for s-convex
and h-convex functions in [7] and [I4], respectively.

Definition 4. The function f :[0,b] — R, b > 0 is sad to be («, m)-convex, where
(a,m) € [0,1)%, if we have

[tz +m(l=t)y) <% f(z) +m(l —1%)f(y)
for all z,y € [0,b] and t € [0,1]. Denote by K& (b) the class of all (o, m)-convex
functions on [0,b] for which f(0) < 0.

It can be easily seen that for (a,m) = (1,m), («,m)-convexity reduces to
m-convexity; (a,m) = (a,1), (o, m)-convexity reduces to a-convexity and for
(a,m) = (1,1), (e, m)-convexity reduces to the concept of usual convexity defined
on [0,b], b>0.

Definition 5. The function f :[0,b] — R, b > 0, is said to be (mq, mz)-convex, if
f(mate +ma(1 —t)y) <matf(z) +ma(l —1)f(y)

forallz,y € I, t €[0,1] and (m1,mz) € (0,1]2.

Definition 6. Let f : [0,0] — R. If f(tx) < tf(x) is valid for all x € [0,b], then

we say that f(x) is a starshaped function on [0,b].

Definition 7. Let f : [0,b] — R and my € (0,1]. If f (mitx) < mqitf(z) is valid
for allxz € [0,b] and t € [0, 1], then we say that the function f(x) is a mq-starshaped
function on [0,b]. Specially, for m; = 1, we have f (tz) < tf(z).

In [4], Kadakal proved the following theorem for (mq,ms)-convex functions.

Theorem 8. Let the function f : [0,0*] — R, b* > 0, be a (my, mz)-convex
functions with my,mo € (0,1]>. If 0 < a < b < b* and f € Lla,b], then the
following inequalities holds:

P gt | o () ot (5) ot (i) ot ()

b—a 2 ’ 2
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2. (a,m1,m2)-CONVEX FUNCTIONS AND SOME PROPERTIES

In this section, we will begin by setting some algebraic properties for (a, mq,ms)-
convex functions.

Definition 9. f:[0,b] = R, b > 0, is said to be (a, my, ma)-convex function, if
f(mate +ma(1 = t)y) < mat® f(x) + ma(l —t%)f(y)
forallz,y € I, t€0,1] and (a,mq,mz) € (0,1]3.

We will denote by Ky, .. (b) the class of all (a,my,mg)-convex functions on
interval T for which f(0) < 0. Also, we note that, for any ¢ € [0, 1] and (a, m1, m2) €
(0,1]3, we have

FO) = F(mut®0+ mo(1 —t%).0)
< mltaf(()) + m2(1 — ta)f 0)
0 S [mlta + m2(1 - ta) - ].] f(O)

Since m1t® + mo(1 —t*) — 1 < 0, we get f(0) < 0.
It can be easily seen that for (a, m1, ms) € {(0,0,0),(,1,0),(1,1,0),(1,1,m),
(1,1,1), (e, 1,1), (e, 1,m)} one obtains the following classes of functions: in-
creasing, a-starshaped, starshaped, m-convex, convex, a-convex and (a, m)-convex
functions respectively.

Definition 10. Let f :[0,b] — R and (o, m1) € (0,1)2. If
f(matz) < met® f(x)

is valid for all x € [0,b] and t € [0, 1], then we say that f(x) is («, m1)-starshaped
function on interval [0,b]. Specially, for my =1 and a = 1, we have f(tz) < tf(x).

Remark 11. In Deﬁm’tion@ if we choose mo = 0, we get the concept of (a,mq)-
starshaped functions on interval [0,0].

Proposition 12. If the function f is in the class K,
starshaped.

(b), then it is (e, mq)-

1,M2

Proof. For any z € [0,b], t € [0,1] and (&, m1,m3a) € (0,1]3, we have

f(mitz) = f(mite+me(l—1).0)
< mat® f(x) + ma(1 — %) f(0)
< mat®f(x).
Specially, for my = 1, we have f (tz) < t*f(x). O

Theorem 13. Let f,g:[0,b] = R. If f and g are (o, m1, m2)-convez, then

(i) f+ g is (a,my, my)-conver,
(i)) For ce R (¢ >0) cf is (o, m1,m2)-convex.
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Proof. (i) For z,y € I and ¢t € [0,1], we have
(f +9) (mata +ma(1 — t)y)

= f(mitz + ma(l —t)y) + g (mite + ma(l —t)y)

< maf(x) +ma(l —1%)f(y) + mat®g(z) + ma(l —t%)g(y)
mat® (f +g) (x) + ma(1 = 1%)(f + 9)(v)-
(ii) For ¢ € R (¢ > 0), we obtain

(cf) (matz +ma(1—t)y) < clmnt® f(z) +ma(l — ) f(3)]
< mat®(cf) (@) +ma(l —t%)(cf)(y).

This completes the proof of theorem. (Il

IN

Theorem 14. Let f be a (mq, m2)-convez function. If the function g is a (a, m1, m2)-
convex and increasing, then the function gof is a (a,mq, ma)-convez.

Proof. For z,y € I and t € [0,1], we get
(gof) (matx +ma(1 —t)y) g (f (maitz + ma(1 - t)y))
g (matf(x) + ma(l =) f(y))
mit®g (f(x)) +ma(1 —1*)g (f(y))
mat® (gof) (x) +ma(1 —1%) (gof) (y).
This completes the proof of theorem. O

[IAIA

Theorem 15. Let f,g: I — R are both nonnegative and monotone increasing. If
f and g are (o, my1, ma)-convex functions, then fg is (o, my, ma)-convex function.

Proof. If x < y (the case y < x is similar) then [f(z) — f(y)][g(y) —g(x)] < 0
which implies

f@)g(y) + fy)g(x) < f(x)g(z) + f(y)g(y). (1)
On the other hand for z,y € I and ¢ € [0,1],
(f9) (mata +ma(1 — t)y)
f(mite +ma(1 — t)y) g (mite + ma(l —t)y)
[mit® f(z) + ma(1 — %) f(y)] [mit®g(z) + ma2(1 —t*)g(y)]
mamat®® f(x)g(x) + mamat® (1 — %) f(x)g(y) + mamat®(1 — 1) f(y)g(x)
+mama(1—t%)*f(y)g(y)
mit** f(w)g(x) + mimat® (1 —t%) [f(2)g(y) + f(y)g(x)] + m3(1 — ) (y)g(y).
Using now (2.1), we obtain,
(fg) (mitz + ma(1 — t)y)
< mit* f(@)g(x) + mamat®(1 — %) [f()g(x) + f(¥)g(v)]
+m3(1—t)*f(y)g(y)

IA
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= mat® mat® + ma(1 = )] fz)g(x) + ma(l — %) [mat® +ma(1 —1%)] f(y)g(y)-

Since m1t® + ma(1 — t*) < m < 1, where m = max {mq, ma}. Therefore, we get

(fg) (mitz + ma(1 —t)y) < mut®f(x)g(z) + ma(l —t%)f(y)g(y)
= mt® (fg) (z) + ma(1 =) (fg) (v).

This completes the proof of theorem. O

Theorem 16. Let f : [0,b*] — R a finite function on 2, >~ € [0,b*], (o, m1,m2)-

m1 ’mg
convex with a,my, mo € (0,1]. Then f is on bounded any closed interval [a,b)] .

Proof. Let

v = () oo () omaf () s (o)}
mq mao ma mi
so for any z = ta + (1 — t)b in interval [a, b] , we get
fz) = [fta+(1-1)b)
= f <m1ta + mg(l — t)b>
mi mao

< matof (;ﬁ;) +Fma(l — o) f (nl)

< M.

N

Thus, the function f is upper bounded in interval [a, b] .
Now we notice that any z € [a,b] can be written as %2 +¢ for [¢| < 5%, hence

() - f(é(“ébﬂ)%(“;b—t))

u-‘rb t 1 L‘H)_t
( i >+m2<1—)f< 2 >

my 2¢ ma

In other word, we get

atb | 4 a atb ¢
f<2+) . f<a+b> 2 2<11)f<2>

mq 2« mo

f(

2
a+b> 1M
2 my

v

and similarly,

(%)

DO |
7N
IS
|+
o>

|

~
~
N~~~

1 /a+b 1
f<2< ! +t>+
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a+b a+b
ath ¢ 1 ath ¢
2 >+m1<1—)f<2 >,
mo 2« mq
hence, we obtain

a+b @ «@ atb _
f<2 +t> . 2f<a+b 2m1<11)f<2 )
mo mo mao 20 my

:)
2¢ a+b 2¢ 1
> - 1—— | M
> Zp() -2 (- )
2u o
_2 <a+b>2 1M,
mi 2 mq

and since %‘H’ +t is arbitrary in [a, b], the function f is also bounded below in [a, ] .
This completes the proof of theorem. O

Theorem 17. Let o,mq1,mg € [0,1],b > 0 and fg : [0,b] — R be an arbitrary
family of (o, m1,ma)-convex functions and let f(x) = supg fg(z). If

J= {ue [0,5] - mllm% e [0, 5] andf(u),f(n':l) f(nf;) <oo}

is nonempty, then J is an interval and fis (o, m1, ma)-convex on J.

Proof. Let t € [0,1] and z,y € J be arbitrary. Then

Pl (=) = sup fo(o) (it ma(1 =)L)
< Sup |:m1taf6 (;;) +ma(1—1t%)fs (niﬂ
< mt® s%p fs (51) + ma(1 — %) s%p fa <le2)
= mt*f <x> +ma(1—1t%)f <y> < 0.
mq ma

This shows simultaneously that J is an interval since it contains every point between

any two of its points.
Now, we show that the function f is (mj,msg)-convex on J: If t € [0,1] and
x,y € J, then

[ (matx +mo(1 —t)y)

s%p fa (mitz + ma(1 —t)y)

IN

s%p [mat® fz (z) +ma(1l —t%) f5 (y)]
< mat® s%p fa () + ma(l —1t%) Slgp fs (v)

mit®f (z) + ma(1 —t*) f (y)
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and that the function f is («, m1, m2)-convex on J.
This completes the proof of theorem. ([l

3. HERMITE-HADAMARD INEQUALITY FOR (a,my,m2)-CONVEX
FUNCTIONS

The goal of this paper is to develop concepts of the (a, my, ma)-convex functions
and to establish some inequalities of Hermite-Hadamard type for these classes of
functions.

Theorem 18. Let f: I — R be a (a, my, ma)-convex function with (e, my, ma) €
(0,13, If 0<a<b< oo and f € Lla,b], then the followz'ng mequalities hold:

i F(52) < St ) f () e+ (1= 3 3 ) dy

1. ﬁ fa f(-’E) dr < min{ lf(m1)+am2f(mz) mlf(m1)+am2f<m72) }

a+1 ’ a+1

Proof. i. By the (a, my, ms)-convexity of the function f, we have

f<a+b> _ [tz +ma(1 = )] + [ma (1= 052 + matst]
2 2

1 b 1 b
= fl=m tiﬂ-@(l—t)f + =mo tf-l-@(l—t)i
2 mi mi mo 2 mo ma mi

Q%mlf <ta + 120 - t)b>

my my ma2

+ <1— ;a) maf (tb+mQ(1—t)m1>

Now, if we take integral the last inequality on ¢ € [0, 1] and choose mix = ta+(1—t)b
and moy = tb+ (1 — t)a, we deduce

f(a;_b>§21a njla/fmw d:E—l—(l—) i /f

ii. By using the (o, mq, mg)-convexity of the function f, if the variable is changed
asu=ta+ (1—1t)b

1 1 1
/Of(ta+(17t)b)dt = b_a/o £ (u) du

/01 {tamlf (ni) + (1=t maf (7722)] !

mlf(m )—|—am2f (m2>
a+1

IN

IA
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and similarly for z = tb + (1 — ¢)a, then

1 1 1
/Of(tb+(1—t)a)dt = b—a/o f(z)dz

So, we have

my f (ml) +amayf (%) myf ( ) +amaf (L)

b
b—a/a f (z) dz < min

This completes the proof of theorem. ([l

Remark 19. Under the conditions of Theorem[18, if m1 =1, mgo = m, then, the
following inequality holds:

b a mf (L) mf (2 a
/fu)dxgmm{ﬂw () f(m)+f()}.

b—a 2 ’ 2
This inequality is the Hermite-Hadamard inequality for the m-convex functions [15].
Remark 20. Under the conditions of Theorem[18,

i) If o« =mq =mg =1, then, the following inequality holds:

/f o < L0 410)

This inequality is the Hermite-Hadamard mequalzty for the convex functions [5].
(ii) If o =mq1 =1, mg = m, then, the following inequality holds:

’ am amf (<
/f(x)dx<min{f()+ IG) 100+ f<m>},

b—a

b—a 2 ’ 2

This inequality is the Hermite-Hadamard inequality for the m-convex functions [2].
(iti) If o= s, my = mg = 1, then, the following inequality holds:

P(2) 2 5 [ ot < min L1220 10 40}

This inequality is the Hermite-Hadamard inequality for the s-convex functions in
the first sense [10].
(iv) If mq =1, mg = m, then, the following inequality holds:

/b Fa)ds < min{f(a) +amf (L) f(b)+amf(Z) } .

b—a a+1 ’ a+1
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This is the Hermite-Hadamard inequality for the («, m)-convex functions [12].

Theorem 21. Let the function f : [0,0*] — R, b* > 0,be a (a,m1,m2)-convex
functions with o, my,my € (0,1]3. If m = min {my,ms}, 0 < a <b< 2 <b* and
ferL [a, %], then the following inequalities holds:

a+b 1 my b T 1 msa b Y
(57 <z [ (e (1) o2 [ ()

Proof. By the (a, m1, mg)-convexity of the function f, we have

f a _|_ b f [mltﬁ + mg(l — t)%] + |:m1(1 — t)mil + mgt%}
2 2

_ f(;ml [t al +mz(1_t)b} +%m2 {tnl;ijlu—t)“D

m mi mao mo mi

< imlf (ta+(1—t)b)+ <1_1)m2f(tb+(1—t)a)'
20 ma 2¢ ma

Now, if we take integral the last inequality on ¢ € [0, 1] and choose = ta+ (1 —t)b
and y = tb + (1 — t)a, we deduce

a+b 1 my b T 1 my b Y
f( 2 ><zab—a/af%)“*(“za)b—alf(m)dy

This completes the proof of theorem. O

Remark 22. Under the conditions of Theorem [2), if &« = my = mgo = 1, then, the
following inequality holds:

b
f(a;b> < bia/a f(@)dz

This inequality is the left hand side of Hermite-Hadamard inequality for the convex
functions [13].

4. SOME NEW INEQUALITIES FOR (a,mi,m2)-CONVEXITY
In [0], Kirmaci used the following lemma to prove Theorems.

Lemma 23. Let f: I* C R — R be a differentiable mapping on I*, a,b € I* (I*
is the interior of I) with a <b. If f' € L]a,b], then we have

it [ s (450

1 1

= (b—a) [/Qtf’(ta—k(l—t)b)dt—k/ (t—1)f (ta+ (1 — t)b) dt

1
0 3
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The main purpose of this section is to establish new estimations and refinements
of the Hermite-Hadamard inequality for functions whose first derivatives in absolute
value are (o, my,mg)-convex. For this, we will use the following lemma.

Lemma 24. Let f: I° CR — R be a differentiable mapping on I°, mya, mab € I°
with mya < mab. If f' € L[mya, mab], then the following equality

mab
L [ e g (M)

mab —mia /4 2

1

= (m2b—mya) l/OQ tf' (mata 4+ mo(1 — t)b) dt

+ ﬁ(t — 1) f" (mita 4+ ma(1 — t)b) dt]

2

holds for t € [0,1] and my,mz € (0,1]?.

Proof. By integration by parts and then by changing of variable = mita+mo(1—
)b, we get

% 1
/ tf (mita + ma(1 — t)b) dt + / (t —1)f" (mita+ ma(1 —t)b) dt
0 3

f(mata +mao(1 — )b |?
mob — mia
I (mita + ma(1 —t)d)

— t—1
mab — mia ( )

1
1 2
t 1—1)b)dt
b [ Flmtat ma(1 = 1)

1

0

1
+ ;/ f(myta+mo(1 —1¢)b)dt

1 mab—mia
2

1 mab 1 mia + mob
—Wﬁlaf<x>d$—m2b_mlaf< > )

Thus, the proof of lemma is completed. O

Theorem 25. Let f: I° CR — R be a differentiable mapping on I°, mia, mab €
I° with mya < mab and f' € Lmya,mab]. If |f'| is (a,m1,m2) -convex on the
interval [mya, mab], then the following equality

mob
L [ e - g () |

mab—mia S, . 2

s ity (g )| o)

holds for t € [0,1] and v, m1,mz € (0,1]3.
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Proof. Using Lemma [24] and the inequality

[ (mata +ma(1 — £)b)| < mat™ [f'(a)| + ma(1 —1%) [f()]

we get

1 mab mya + mob
do —
mob — mia /mla flw)de f< 2 )

’ (mab — mya)

IN

0

IN

1
+A [t = 1] (mat® |f'(a)] +m2(1—t°‘)|f’(b)l)dt]

IN

1

2

= (map =) | 2L (G s ) m 0

(@+2)2072 "8 (a+2

1 a—+3

+ <(a+1) (a+2) (a+1) (a+2)2a+2)m1|f/(a)|

X [/2 tf' (mita + mo(1 — t)b) dt + /11(75 — 1) f" (mita + ma(1 — t)b) dt

(1mab —mia) l / e (mat® | £/(@)] + ma(1 — ) |£()]) e

(msb — mya) V@ (mat® [ f(@)] +ma (6 — 1Y | £ (0)]) dt

+/ (ma (£ = t270) f'(a) + ma(1 = £) (1 =) [f (D)) dt]

1 1 a+3
*(8‘ (@t (@+2) ' (a+1)(a+2)205

1

where

-

[N

2 1
ttat = ——
A (a4 2)20+27
1
8

/ (t—t*th)dt = !
0

(o + 2)20+27

)malr ]

= =) { |y (1 ) | @
it @rnEry (@ 1) o)

|
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1
/(t(x_ta-i-l)dt _ 1 _ a+3
1

; @+D@+2) (@+D(@+22e7’
1
1 1 a+3
1—t)(1—t9dt = =— + .
/é( A ) 8 (a+1)(a+2) (a+1)(a+2)20+2
This completes the proof of theorem. ([l

Remark 26. Under the conditions of Theorem 25, if we take oo =mq =mo =1,
then our result coincides with [6].

Theorem 27. Let f:I° CR — R be a differentiable mapping on I°, mia, mab €
I° with mia < mab and f' € L[mya,mg2b], and let ¢ > 1. If |f'| is (o, m1, m2)-
conver on the interval [mya, mab|, then the following equality

mob
‘ 1 / f@)dz — f (mla—i—mgb)

maeb —myia /., 2

1 o [ | £ @) = ma | fO)* | malf (B)"]
= (memla)<(p+1)2p+1> H (a+1)20Ht T }

1

+(Wﬂ_momumw—mnmm%+mﬂﬂwﬂq

(a+1)20+1 2

holds for t € [0,1] and o, my,ma € (0, 1], where % + % =1.
Proof. Using Lemma Holder’s integral inequality and the inequality
[f (mata+ma(1 = )b)[" < mit® |f'(a)]" +ma(1 —t*) [f(D)]",

we obtain

1 m2b mia + mob
|m2b—m1a/ f(x)dm—f ( 2 )

mia

< (msb—mia) V #]1f (mata +ma(1 — t)b)] dt
0
1
+/1 |t—1||f’(m1ta+m2(1—t)b)|dt1
< (mob—mia) (/02tpdt> (/O |f’(m1ta+m2(1t)b)th>

1

1 % 1 . 1
+</O It — 1| dt) (/ mat® (@) + ma(1 — )£/ (b)] dt>
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< (meob—mya)

X (/02 t”dt) (/02 (mat® |f'(a)|* + ma(1 —t*) [f/(b)]") dt)
1 VAR i
+ ([ [t —1J7 dt) ([ (mat® [f'(a)|* + ma(1 —t*) [f'(b)]") dt)

2 2

_ L\ [[mlf @ —ma O, malf®)]
= (mab—mua) ((p+1)2p+1> H (o + 1)20F1 T }
N (ma | f/ (@) =ma[f'®)") | ma|f (b)* :
S S (a+1)2a2+1 g ’
where

3 1 » 1
/0 tPdt = /% ‘t— 1‘ dt = W

3 N 1 3 N 1 1
/Otdt = W’ /0 (1_t )dt:§_m’

1 1
1 1 1 1 1
tdt = 1-— 1—-tYdt = = — 1——].
I U A e e )

2

O

Remark 28. Under the conditions of Theorem [25, if we take oo =mq =mo =1,
then our result coincides with [6].

Theorem 29. Let f:I° CR — R be a differentiable mapping on I°, mia, mab €
I° with mia < mab and f' € L[mya,mgb], and let ¢ > 1. If |f'| is (o, m1, m2)-
conver on the interval [mya, mab|, then the following equality

1 mab mya + maob
’mgb—mla/ f(z)dz — f < 2 )‘

mia

3_ my | (a)|? —ma [f'(OD)|Y mao|f(B)|*
< (mab— mia) 2} [( | Ea)me'z oI, |8<>|>

Q=

my f/@)" = ma [/ [, a3\ . mal /(BTN
+< (a+1)(a+2) (1_2a+2>+ 8 ) ]

holds for t € [0,1] and a,m1,ma € (0,1]2, where % + % =1
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Proof. Using Lemma 24 well-known power mean inequality and the inequality
[f (mata +ma(1 = )b)|" < mat® |f'(a)|* +ma(1 —1%) [f(D)|",

we get

1 m2b mia + mob
‘mgb —mia /,, f(z)dz — f ( 2 )

11a

IN

(mab — m1a) [/02 1t] | f" (mita + mo(1 — t)b)| dt

2

1 =5 / .1 7
(msb — mia) [(/O |t|dt> (/0 ] |f (mayta +mao(1 — t)b)] dt)
1 1-3 1 7
+ ([ [t — 1|dt> <[ [t — 1| |mt*f'(a) + ma(1 — t“)f’(b)|th> ]

1
+ /1 [t — 1] |f" (mita + mo(1 — t)b)] dt]

IN

2

<mw—nu@[<A MQ (A ¢ [mat | 7/(@) +mﬂ1—wnfwﬂ]ﬁ>

+ ([ It —1] dt) </1 [t = 1] [mat® | f'(a)|* 4+ ma(1 =) | f/(b)|] dt) ]
-4 } } i

= (m2b—mia) |:(;) <m1 |f'(a)|q/0 toTLdt + meo \f/(b)\q/o (t— t‘”‘l)dt)

+ (é)l‘i <m1f’<a)|‘1[(1—t)tadt+m2f/(b)q[(l_t>(1_ta)dt>;]

IN

3_ my | (@) —ma | £/ ma | £/()7\ @
- m”_mwﬁgl(lvémmwi“”'*ZQ())

my |f/@)" = ma [/ O [, a3 . mal S/ (BTN
+< (a+1)(a+2) (1_2a+2)+ 8 )1

where integrals can be calculated as above. (]
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Corollary 30. Under the conditions of Theorem [29, if we take ¢ = 1, then the

fol

lowing inequality holds:

mob
1 / F@)de — f (mla;—mgb)

mab —mia S, .

< (mgb—mia) [(anfl')f(/éa}r' 2) <1 - 20‘1+1>

e lf O (5 ey (w0
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