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This paper is mainly concerned with Abelian groups having the lift-
ing property with respect to fully invariant and projection invariant
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Introduction

The notion of lifting is by now well-established object of module theory over associative
unital rings and is useful in some rings (see [7],[8] and [10]). In the present paper, we
try to obtain some possible results on superfluous subgroups, fully invariant subgroups,
projection invariant subgroups and lifting groups.

Let us recall some standard terminology and elementary properties, which will be
necessary in the sequel. They concern projective groups, small subgroups, lifting groups,
fully invariant subgroups and projection invariant subgroups. Throughout this paper G
denotes an abelian group and group means abelian group. Then, “≤" will denote a
subgroup, “≤d" a group direct summand and “S(G)" the set of subgroups of G. We will
refer to [4] and [3] for all undefined notions used in the text.

A subgroup A of a group G is called essential in G, denoted by A ≤e G, if for every
B ∈ S(G), A ∩ B = 0 implies B = 0. The intersection of all essential subgroups of G is
said to be the socle of G, or equivalently, the sum of all simple subgroups of G, denoted
by soc(G). It is easy to see that if A is an essential subgroup of G then soc(G) ≤ A, and
soc(G) = 0 if G has no simple subgroups.

Dually, a subgroup A of a group G is called superfluous (or small; the notation will
be A � G), if G 6= A + B for every proper subgroup B of G. Notice that the zero
subgroup is small subgroup of any group G, also when G = 0. The intersection of all
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maximal subgroups of G is said to be the radical of G, or equivalently, the sum of small
subgroups of G, denoted by rad(G). It is easy to see that if A is a small subgroup of G
then A ≤ rad(G), and rad(G) = G if G has no maximal subgroups. Some properties of
small subgroups and radical are given in [2]. In Section 1, we will obtain new results for
small subgroups.

Let G be a group. According to [2], G is called lifting , if for every A ∈ S(G), there
exists a direct summand B of G such that B ≤ A and A/B is small in G/B, equivalently
G has a decomposition G = G1 ⊕ G2 with G1 ≤ A and G2 ∩ A small in G2, where
G1, G2 ∈ S(G). In module theory, it is well known that, the class of lifting modules is
not closed under taking submodules, factor modules and sums. By this vein, in [9], the
author proved that;
• Assume that M is a lifting module and X a submodule of M . If for every direct

summand K of M , (X + K)/X is a direct summand of M/X then M/X is lifting (see
[9, Theorem 2.1]).

In Section 2, we investigate conditions which ensure that a quotient group of a lifting
group will be a lifting group.

Recall that a subgroup A of G that is carried into itself by every endomorphism of
G is said to be a fully invariant subgroup of G, i.e. if f(A) is contained in A for every
f ∈ End(G). Clearly, 0 and G are fully invariant subgroups of G. We call a finite group
G FI-lifting if for every fully invariant subgroup A of G, there exists a direct summand
B of G such that B ⊆ A and A/B small in G/B. The last part of Section 2, we will
obtain some properties of the finite FI-lifting group and proved that
• Let G be a group and A be a fully invariant subgroup of G. If G is FI-lifting then

G/A is FI-lifting.

Let G be a group. A subgroup A ∈ S(G) is called a projection invariant subgroup if
every projection π of G onto a direct summand maps A into itself, i.e. A is invariant
under any projection of G (see [3]). In section 3, we will characterize these subgroups,
and we will define projection invariant lifting groups, similarly to FI-lifting.

1. Properties of small subgroups

Recall that, a subgroup A of a group G is called superfluous (or small; the notation
will be A� G), if G 6= A+B for every proper subgroup B of G.

(1) We consider the group Z4⊕Z2⊕Z2, i.e. the group G =< a, b, c : 4a = 0, 2b = 0, 2c =
0 >. The subgroups H1 = 0 and H2 =< 2a > are small subgroups of G.
(2) Let Z denote the set of all integers. Then Z(N) = ⊕n≥1Zxn is a free group of
countable rank and does not have small subgroups. But, in the Prüfer group Z(p∞), all
proper subgroups are small.

Lemma 1.1([1, Result 2.2]) If f : G → H is a homomorphism of groups and A � G,
then f(A)� H.

It is easily seen that:

Lemma 1.2 Let A;B ∈ S(G) with A ⊆ B. If A be a small subgroup of G, then the small
subgroups of G/A are the groups of the form B/A with B � G.



Let us briefly recall the notion of projective group. A group G is called projective if
every diagram

G

g
~~

f

��
B // C // 0

with exact row can be completed by a homomorphism h : G→ B ([3, Page 74]).

Proposition 1.3 We consider the following commutative diagram;

0

��

0

��

0

��
0 // A′ α //

η

��

B′
β //

µ

��

G′ //

λ

��

0

0 // A
f // B

g // G // 0

where η(A′)� A and λ(G′)� G. If G is a projective group then µ(B′)� B.

Proof. Clear. �

Let A be an arbitrary group category and A′ be a group category with, for G,H ∈ A,
morphisms Hom(G,H) in A′:

Hom(G,H) = lim
−→

Hom(G,H/B).

where Hom(G,H/B) is in A and the direct limit is taken over the upwards direct family
of small subobjects B of H. Let z : A → A′ be the canonical functor which is identity
on objects. We shall denote the image z(f) of a morphism f in A by f , i.e. if f : G→ H

and g : H → U be two morphisms in A′, then we have f : G→ H/H ′ and G : H → U/U ′

for suitable H ′ � H and U ′ � U .

Lemma 1.4 Let G,H be two groups and f : G → H/H ′ be a morphism with H ′ � H.
Then the following statements are equivalent.

(1) f : G→ H is the zero morphism.
(2) f(G)� H/H ′.

Proof. (1)⇒ (2) Since f : G→ H is the zero morphism, there is a small subgroup H ′′ of
H with H ′ ⊆ H ′′ and the canonical projection π : H/H ′ → H/H ′′ such that π ◦ f is the
zero morphism. This implies that f(G) ⊆ H ′′/H ′, so that H ′′/H ′ � H/H ′ by Lemma
1.2.
(2)⇒ (1) Assume f(G)� H/H ′. By Lemma 1.2, f(G) = H ′′/H ′ with H ′′ � H. Since
f = Im(π ◦ f), then f = 0. �

Theorem 1.5 Let G,H be two groups and f : G→ H/H ′ be a morphism with H ′ � H.
Then:

(1) f : G→ H is a monomorphism if and only if the inverse image of f of all small
subgroups of H/H ′ are small subgroup of G.

(2) f : G→ H is an epimorphism if and only if f is an epimorphism.



(3) f : G→ H is an epimorphism if and only if f is an epimorphism with Ker(f)�
G.

Proof. (1) (:⇒) Let A/H ′ � H/H ′, D = f−1(A/H ′), and consider the embedding
ε : D → A. Then Im(fε) ⊆ A/H ′, and so Im(fε) � H/H ′. By Lemma 1.4, f ◦ ε =

f ◦ ε = 0. It follows that ε = 0. That is D = f−1(A/H ′) is small in G.
(⇐:) Let G′ � G, we consider the homomorphisms α : A → G/G′ and β : G/G′ →
(H/H ′)/f(A). Assume that fα = 0. Now f ′ ◦ α(A) � (H/H ′)/f(G′) by Lemma 1.4.
Let α(A) = C/G′ for some C ∈ S(G) with G′ ⊆ C. Then f ′ ◦ α(A) = f(C)/f(G′).
By Lemma 1.2, we can see that f(C) � H/H ′. By hypothesis, f−1(f(C)) � G. Since
C ⊆ f−1(f(C)), then C � G. Hence α(A) = C/G′ � G/G′ and so α = 0 by Lemma
1.4.
(2) (:⇒) We consider the canonical projection π : H/H ′ → (H/H ′)/f(G′). Then π ◦ f =
0. By hypothesis, π = 0. Since Im(π) is small and π is onto, we have (H/H ′)/f(G′) = 0.
(⇐:) Let f : G → H/H ′ be an epimorphism with H ′ � H, α : H → S/S′ be a
homomorphism with S′ � S and α ◦ f = 0. Consider β : H/H ′ → (S/S′)/α(H ′) be an
induced homomorphism by α. Then β ◦ f : G→ (S/S′)/α(H ′) is an homomorphism, so
that Im(β ◦ f)� (S/S′)/α(H ′). Hence Im(β ◦ f) = β(H)/β(H ′), and so β(H)� S/S′.
This implies that β = 0.
(3) Follows from (1) and (2). �

We know that Z(N) = ⊕n≥1Zxn does not have small subgroups. But, in the Prüfer
group Z(p∞), all proper subgroups are small. Let p be a prime and A ∈ S(Z(N)) generated
by px1 and pxn+1 − xn for every ≥ 1. Then Z(N)/A ∼= Z(p∞). Let G be a group, let
f : G → Z(N) be a homomorphism and we consider the canonical projection π : Z(N) →
Z(N)/A . Assume that π ◦ f = 0. Then (π ◦ f)(G) is a finite subgroup of Z(N)/A. It
is easily seen that π does not have a kernel α, where α : G → Z(N) a group morphism.
Furthermore, since the Prüfer groups Z(p∞) are a set of cogenerators for the category of
all groups, there exits a non-zero group morphism ξ : G→ Z(p∞) and ξ(G) is a group of
dual Goldie dimension 1.

2. The lifting condition for a quotient group and fully invariant lifting groups

We start with the following proposition.

Proposition 2.1 Let G be a lifting group and X ∈ S(G). If, for every direct summand
K of G, (X +K)/X is a direct summand of G/X then G/X is a lifting group.

Proof. Let A/X ≤ G/X. Since G is lifting, there exists a direct summand D of G such
that D ⊆ A and A/D is small in G/D. By hypothesis, (D+X)/X is a direct summand of
G/X. Clearly, (D+X)/X ⊆ A/X. Now we show that A/(D+X) is small in G/(D+X).
Let G/(D+X) = A/(D+X)+L/(D+X) for some subgroup L/(D+X) of G/(D+X).
Then G = A+L implies that G/D = A/D+L/D. Since A/D is small in G/D, we have
G = L. Therefore A/(D +X) is small in G/(D +X). Thus G/X is lifting. �

Let G be a group (not necessary finite or abelian). A subgroup A of G is called fully
invariant if for every f : G→ G, f(X) ⊆ X (see [3, page 8]).

Let F (G) denote the set of all fully invariant subgroups of G. We give by stating the
next lemma.



Lemma 2.2 Let G be a group.
(1) The set F (G) is closed under taking sums and intersections.
(2) Let G = A⊕B and C ∈ F (G). Then C = (C ∩A)⊕ (C ∩B).
(3) If X ≤ Y ≤ G such that Y ∈ F (G) and X ∈ F (Y ), then X ∈ F (G).
(4) If G = ⊕i∈IXi and S ∈ F (G), then S = ⊕i∈Iπi(S) = ⊕i∈I(Xi ∩ S), where π is

the i− th projection homomorphism of G.
(5) If X ≤ Y ≤ G such that X ∈ F (G) and Y/X ∈ F (G/X), then Y ∈ F (G).

Proof. (2) See [3, Lemma 9.3].
(5) Let f : G → G be any group homomorphism. Then f(X) ⊆ X. Now, consider the
homomorphism h : G/X → G/X defined by h(g + X) = f(g) + X, (g ∈ G). Then
h(Y/X) ⊆ Y/X. Clearly, h(Y/X) = (f(Y ) +X)/X. Therefore f(Y ) ⊆ Y .
The proof of the other properties can be seen similarly. �

By [2, Proposition 2.1], S(G) with respect to inclusion is a modular self dual lattice.
Recall that a group G is called distributive if its lattice of subgroups is a distributive
lattice.

Theorem 2.3 Let G be a lifting (finite) group.
(1) If G is distributive, then G/A is lifting for every A ∈ S(G).
(2) Let A ∈ S(G) and e(A) ⊆ A for all e2 = e : G → G. Then G/A is lifting. In

particular, for every fully invariant subgroup B of G, G/B is lifting.

Proof. (1) We know that if a finite group G is distributive and lifting then every primary
component of G is Zpn , so by [2, Theorem 2.3] the factor group G/A is lifting.
(2) Let D be a direct summand of G. Then G = D ⊕ D′ for some D′ ∈ S(G), and so
|G| = |G : D|.|G : D′| and D ∩D′ = 0 by [2, Proposition 3.1]. Consider the projection
map e : G → D. Then e2 = e : G → G. By hypothesis, e(A) ⊆ A and hence e(A) =
A ∩ D. Since (A ∩ D) ∩ (A ∩ D′) = 0 and |A| = |A : A ∩ D|.|A : A ∩ D′|, we have
A = (A∩D)⊕ (A∩D′) by [2, Proposition 3.1]. It is also easy to see that D∩ (A∩D′) =
0 and |D + A| = |(D + A) : D|.|(D + A) : (A ∩ D′)|, and D′ ∩ (A ∩ D) = 0 and
|D′+A| = |(D′+A) : D′|.|(D′+A) : (A∩D)|, therefore (D+A)/A = (D⊕ (A∩D′))/A
and (D′ +A)/A = (D′ ⊕ (A ∩D))/A. Hence

G = D ⊕D′ = D +A+D′ +A = [D ⊕ (A ∩D′)] +D′ +A

implies that
G/A = (D ⊕ (A ∩D′))/A+ (D′ +A)/A.

Since [D⊕ (A∩D′)]∩ (D′+A) = (A∩D′)⊕ (A∩D), we have G/A = (D⊕ (A∩D′))/A⊕
(D′ +A)/A. Thus by Proposition 2.1, G/A is lifting. �

LetG be a lifting finite group. In Theorem 2.3, we proved that, for every fully invariant
subgroup B of G, G/B is lifting. Now, we determine a generalization of the lifting groups.
We say the group G is FI-lifting if for every A ∈ F (G), there exists a direct summand
B of G such that B ⊆ A and A/B small in G/B. Clearly, G is FI-lifting if and only
if for every A ∈ F (G), there is a decomposition G = G1 ⊕ G2 such that G1 ≤ A and
G2 ∩A� G2.

Theorem 2.4 Let G be a finite group and A ∈ F (G). If G is FI-lifting then G/A is
FI-lifting.



Proof. Let B ∈ S(G) with A ⊆ B and assume that B/A is a fully invariant subgroup of
G/A. By Lemma 2.2, Y ∈ F (G). Since G is FI-lifting, there exists a direct summand
D of G such that D ≤ B and B/D � G/D. Assume G = D ⊕D′ for some D′ ∈ S(G).
Then G = D + D′, D ∩ D′ = 0 and |G| = |G : D|.|G : D′|. Let π be the projection
with the kernel D and i : D′ → G the inclusion map. Now, α = iπ : G → G be a
homomorphism of G. Since A,B ∈ F (G), we have α(A) ⊆ A and α(B) ⊆ B. It is
easy to see that B = α−1(B). Now, α−1(A) ⊆ B = α−1(B). Let K ∈ S(G) with
α−1(A) ⊆ K and G/α−1(A) = (B/α−1(A)) + (K/α−1(A)). Then G = B +K and since
B/D is small in G/D, G = K. Therefore (B/A)/(α−1(A)/A) � (G/A)/(α−1(A)/A).
Now, we want to show that α−1(A)/A is a direct summand of G/A. Since G = D ⊕D′,
then G = α−1(A) + D′. Therefore G/A = (α−1(A)/A) + (D′ + A)/A. Since α−1(A) ∩
(D′ + A) = A + (α−1(A) ∩ D′) = A, we have (α−1(A)/A) ∩ (D′ + A)/A = 0. Finally,
|G/A| = |G/A : (α−1(A)/A|.|G/A : (D′ + A)/A|. Hence α−1(A)/A is a direct summand
of G/A by [2, Proposition 3.1]. �

In [2, Page 68-69], the authors pointed out, any finite direct sum of lifting groups need
not be again a lifting group.

Let G 6= 0. If every proper subgroup of G is small in G, then G is called hollow. Finite
hollow groups are lifting (see [2]).

Corollary 2.5 Let G 6= 0 be a finite group. Then

(1) If G is a finite direct sum of lifting (or hollow ) groups, then G is FI-lifting.
(2) Assume that G is an FI-lifting group. If G has no proper direct summands then

every proper fully invariant subgroup of G is small in G.

Proof. Clear. �

Theorem 2.6 Let G be an FI-lifting group. Then every fully invariant subgroup of the
quotient group G/rad(G) is a direct summand.

Proof. Let A/rad(G) be any fully invariant subgroup of G/rad(G). Then A ∈ F (G) by
Lemma 2.2. By hypothesis, there exists a decomposition G = G1⊕G2 such that G1 ≤ A
and A ∩ G2 � G2. Since A ∩ G2 is also small in G, then A ∩ G2 ≤ rad(G). Thus
(A/rad(G)) ∩ ((G2 + rad(G))/Rad(G)) = 0. It follows that G/rad(G) = (A/rad(G)) ⊕
((G2 + rad(G))/Rad(G)), as required. �

3. Projection invariant lifting groups

Proposition 3.1 Let G be a group with F (G) = S(G) and let G = A⊕B.

(1) Then F (A) = S(A) and F (B) = S(B).
(2) There is no non-zero homomorphism from A to B and from B to A.
(3) Let πA : G→ A and πB : G→ B. Then the natural projections πA and πB are

central idempotents of the endomorphism group of G.

Proof. (1) and (2) LetX ∈ S(A) and f : A→ B. Then f can be extended to a g : G→ G,
so that g(B) = 0. By [3, Lemma 9.5], we have f(X) = g(X) ≤ X. The rest is clear.
(3) Let G = A⊕B and π denote the projection of G with kernel B. Let f : G→ G and



g = a+ b′ where a ∈ A, b ∈ B. By (1), we have F (A) = S(A) and F (B) = S(B), so that
f = f ′ + f ′′ where f ′ : A→ A, f ′′ : B → B. Now

π(g) = a
f(g) = f ′(a) + f ′′(b)
f(a) = f ′(a)
f(b) = f ′′(b).

Then
f(π(g)) = f(a) = f ′(a) = π(f(g))

for all g ∈ G. This follows that fπ = πf for all endomorphism f of G. �

Let G be a group. We say that G has summand intersection property if the intersection
of any two direct summands of G is a direct summand of G and we denote it by SIP
(see [5],[6],[12]).

Theorem 3.2 Let G be a finite group with F (G) = S(G). Then G has the SIP.

Proof. Let G be a finite group with F (G) = S(G). Let A and B be two direct summands
of G with F (A) = S(A) and F (B) = S(B). Then, there exists A′, B′ ∈ S(G) such that
G = A⊕A′ = B⊕B′. Note that A∩A′ = 0 and |G| = |G : A|.|G : A′|, and B∩B′ = 0 and
|G| = |G : B|.|G : B′|. Let α and β be the natural projections such as G = A⊕A′ α−→ A

and G = B⊕B′ β−→ B with A = α(G) and B = β(G). Since α(G)∩A′ = 0, β(G)∩B′ = 0,
|G| = |G : α(G)|.|G : A′| and |G| = |G : α(G)|.|G : B′|, we have G = α(G) ⊕ A′ and
G = β(G) ⊕ B′ by [2, Proposition 3.1]. By hypothesis and Lemma 2.2(2), we have
α(G) = α(G) ∩ β(G) ⊕ α(G) ∩ B′. It follows that A ∩ B = α(G) ∩ β(G) is a direct
summand of G. Hence G has the SIP . �

Let G be a group. A subgroup A ∈ S(G) is called a projection invariant subgroup if
every projection π of G onto a direct summand maps A into itself, i.e. A is invariant
under any projection of G (see [3, Page 50]). Let P (G) denote the set of all projection in-
variant subgroups of G. We list below some of the basic properties of projection invariant
subgroups that will be needed in this paper.

Lemma 3.3 Let G be a group and A ∈ S(G). Then;
(1) A ∈ P (G) if and only if π(A) = A ∩ π(G) for every projection π of G.
(2) A ∈ P (G) if and only if A is an intersection of projection invariant subgroups

G.
(3) The set P (G) is closed under taking any sums and intersections.
(4) If A ∈ P (G) with direct summand of G, then A ∈ F (G).
(5) Let G = G1⊕G2 be a decomposition and A ∈ P (G). Then A = (A∩G1)⊕ (A∩

G2).
(6) If G = ⊕i∈IGi and A ∈ P (G), then A = ⊕i∈Iπi(A) = ⊕i∈I(Gi ∩ A), where πi

is the i-th projection homomorphism of G along Gi.

Proof. See [3, Page 50]. �

Theorem 3.4 Let G be a group with P (G) = S(G). Then;
(1) If A is a direct summand of G, then P (A) = S(A) and F (A) = S(A).
(2) G has the SIP.



Proof. (1) Assume that P (G) = S(G) and G = A⊕B with A,B ∈ S(G). Let πA : G→ A
be the canonical projection and let X ∈ S(A). We consider the canonical projection
π : A = A ⊕ (0) → A. Then p = ππA is a projection of G and π(X) = p(X) which is
contained in X because P (G) = S(G). It follows that X ∈ P (A).
(2) It follows from Lemma 3.3 and Theorem 3.2 �

A group G is called PI-lifting if for every A ∈ P (G), there exists a direct summand
B of G such that B ⊆ A and A/B � G/B.

Lemma 3.5 Let G be a finite group.
(1) G is PI-lifting.
(2) For every A ∈ P (G), there is a decomposition A = D ⊕ S with D a direct

summand of G and S small in G.

Proof. (1) ⇒ (2) Let A ∈ P (G). Since G is PI-lifting, there exists a decomposition
G = G1 ⊕ G2 such that G1 ≤ A and G2 ∩ A � G2. Then G1 ∩ G2 = 0 and |G| = |G :
G1|.|G : G2| by [2, Proposition 3.1]. Note that A = G1 + (A ∩ G2), G1 ∩ (A ∩ G2) = 0,
and |A| = |A : G1|.|A : (A ∩G2)|. Therefore A = G1 ⊕ (A ∩G2), as required.
(2) ⇒ (1) Assume that every element of P (G) has the stated decomposition. Let A ∈
P (G). By hypothesis, there exists a direct summand D of G and a small subgroup S of
G such that A = D ⊕ S. Then A = D + S, D ∩ S = 0 and |A| = |A : D|.|A : S| by
[2, Proposition 3.1]. Since D is a direct summand of G, by [2, Proposition 3.1], we have
G = D ⊕ D′ for some D′ ∈ S(G). Consider the natural epimorphism π : G −→ G/D.
Then π(S) = (S +D)/D = A/D small in G/D. Therefore G is PI-lifting. �

Theorem 3.6 Let G = ⊕ni=1Gi. If each Gi is PI-lifting, then G is PI-lifting.

Proof. Let A ∈ P (G). It is easy to see that for every 1 ≤ i ≤ n, A ∩ Gi is projection
invariant in Gi. Since Gi is PI-lifting for every i, there exists a direct summand Di
of Gi such that Di ≤ A ∩ Gi and (A ∩ Gi)/Di is small in Gi/Di for every i. Note
that D = ⊕ni=1Di is a direct summand of G and D ⊆ ⊕ni=1(A ∩ Gi). By Lemma 3.3,
⊕ni=1(A ∩Gi) = A.
Now consider the homomorphism β : ⊕ni=1(Gi/Di)→ (⊕ni=1Gi)/D with (g1+D1, ..., gn+
Dn) → (Σni=1gi) + Di, where gi ∈ Gi for 1 ≤ i ≤ n. Then β(⊕ni=1((A ∩ Gi)/Di)) =
(⊕ni=1(A ∩Gi))/D.
Since any finite sum of small subgroups again a small subgroup, ⊕ni=1((A ∩ Gi)/Di) �
⊕ni=1(Gi/Di). Then (⊕ni=1(A ∩Gi))/D � G/D. �

Proposition 3.7 Let G be a finite group and X ∈ P (G). Assume that X ′/X ∈ P (G/X)
where X ⊆ X ′ ⊆ G. Then X ′ ∈ P (G). If G is a PI-lifting group then G/X is PI-lifting.

Proof. Let Y ∈ S(G) with X ⊆ Y and let Y/X ∈ P (G/X). By assumption, Y is a
projection invariant subgroup of G, i.e., Y ∈ P (G). Since G is a PI-lifting group, there
exists a direct summand D of G such that D ≤ Y and Y/D � G/D. Assume G = D⊕D′
for some D′ ∈ S(G). Then D ∩ D′ = 0 and |G| = |G : D|.|G : D′| by [2, Proposition
3.1]. Let π be the projection with the kernel D and i : D′ → G the inclusion map. Now,
α = iπ : G → G be a homomorphism of G. Since X,Y ∈ P (G), then α(X) ⊆ X and
α(Y ) ⊆ Y . It is easy to see that Y = α−1(Y ). Now, α−1(X) ⊆ Y = α−1(Y ).

Let K ∈ S(G) with α−1(X) ⊆ K and G/α−1(X) = (Y/α−1(X))+(K/α−1(X)). Then
G = Y + K and, since Y/D is small in G/D, G = K. Therefore Y/α−1(X) is small in
G/α−1(X), namely (Y/X)/(α−1(X)/X)� (G/X)/(α−1(X)/X). Now, we want to show
that α−1(X)/X is a direct summand of G/X. Since G = D⊕D′, then G = α−1(X)+D′.



Therefore G/X = (α−1(X)/X)+(D′+X)/X. Since α−1(X)∩(D′+X) = X+(α−1(X)∩
D′) = X and |G| = |G : α−1(X)|.|G : D′|, then α−1(X)/X is a direct summand of G/X
by [2, Proposition 3.1]. Hence G/X is a PI-lifting group. �

Theorem 3.8 Let G be a finite group with P (G) = S(G) and G has a decomposition
G = G1⊕G2. Then G is a PI-lifting group if and only if G1 and G2 are PI-lifting groups.

Proof. By Theorem 3.6 and Proposition 3.7. �
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