
DEU FMD 21(61), 113-123, 2019

113

1 Kütahya İl Özel İdaresi, 43020, Kütahya
2 Bursa Uludağ Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, BURSA

Sorumlu Yazar / Corresponding Author *: gozcan@uludag.edu.tr

Geliş Tarihi / Received: 11.08.2018

Kabul Tarihi / Accepted: 01.10.2018

DOI:10.21205/deufmd.2019216112

Araştırma Makalesi/Research Article

Atıf şekli/ How to cite: ÖZCAN, G., SAVAŞ, Ö. (2019). An Open Source Geographical Information System Tool for Province Administration.
DEUFMD, 21(61), 113-123.

Abstract

We introduce a new open source Geographical Information System tool for public administration. Our
tool contains utilities for the geographical analysis of public governance that supply services to urban,
suburban, and rural areas. We present an architecture that handles content heavy geographical image
data. In order to achieve fast computation time and ensure security, we present a layered architecture.
The tool exploits open source accelerators and interfaces. We also consider client-side development
and provide an open source front-end web framework. We enabled spatial data generation and
presentation utilities. The results denote that our cache usage speeds up the image creation time by
8x. Field experiences show that our Geographical Information System tool contributes to the province
development strategies in a fast, reliable, and scalable form. The tool is still in use by Kütahya
Province Administration.
Anahtar Kelimeler: Computer Engineering, Geographical Information System , Layered Architecture, Data Generation and

Data Presentation, Cache Support

Öz

Bu çalışmada İl özel İdare yönetimi için geliştirilen yeni bir açık kaynak Coğrafi Bilgi Sistemi aracı
tanıtılmaktadır. Araç kentsel, banliyö ve kırsal alanlara hizmet veren kamu yönetimine coğrafi analizi
için yazılım öğeleri içermektedir. Bu amaçla resim verilerini işleyen bir mimari sunulmuştur. Hızlı
hesaplama süresi elde etmek ve ağ güvenliğini sağlamak için katmanlı bir mimari kullanılmıştır. Araç
açık kaynak hızlandırıcıları ve arayüzleri açık kaynaklı bir ön uç web çerçevesi sağlar. Mekansal veri
üretimi ve sunum yardımcı programlarını sağlanmıştır. Sonuçta, önbellek kullanımlarımız resim
oluşturma süresini 8 kat azaltmıştır. Alan deneyimleri, Coğrafi Bilgi Sistemi aracımızın hızlı, güvenilir
ve ölçeklenebilir bir biçimde il gelişim stratejilerine katkıda bulunduğunu göstermektedir. Araç halen
Kütahya İl Özel İdaresi tarafından kullanılmaktadır.
Keywords: Bilgisayar Mühendisliği, Coğrafya Bilgi Sistemleri, Katmanlı Mimari, Veri Oluşturma ve Veri Sunma, Önbellek

Desteği

An Open Source Geographical Information System Tool for
Province Administration

İl Özel İdareleri için Yeni Bir Açık Kaynak Coğrafya Bilgi
Sistemi Yazılım
Ömer Savaş 1 , Gıyasettin Özcan 2*

mailto:gozcan@uludag.edu.tr
https://orcid.org/0000-0002-3513-2818
https://orcid.org/0000-0002-1166-5919

 DEÜ FMD 21(61), 113-123, 2019

114

1. Introduction

Developing internet technology has become the
dominant factor for the end users that require
easy access to media data. Information
processing technologies have enable fast and
reliable access to even the most complex
encyclopaedic data such as spatial context. In
order to present data and location jointly,
Geographic Information Systems have emerged.

A Geographic Information System, GIS stores,
retrieves, analyses, manipulates and presents
geographic data. GIS provides location
information and related verbal information.
Therefore, form of the GIS data is spatial. GIS is
available in many areas including vehicle-
tracking systems, GPS devices, from decision
support systems and strategy planning [1-3].
User profiles of GIS exist in a wide range, from
individual to corporations and even
governments.

Since locations of GIS devices are not centralized,
GIS implementations generally require network
communication. For instance, a company may
need to track all their vehicles on road. In
addition, a government should need to collect
spatial information of rural and urban areas by
means of network devices and store the data in a
centralized server.

GIS is a broad term that refers to various
domains, applications, and processes. One of the
first definition of GIS, proposed in 1968,
attempted to design a system for regional
planning [4]. The primary task of the study was
the integrated analysis of social, economic, and
land data for rural development. Afterwards,
researchers considered theoretical concepts of
spatial data handling and practical software
applications. Reader can found advancements
on GIS history in [5-6].

Benefits of rural life, urban life and industry
encouraged the GIS applications. Literature
analyzed and presented various GIS technologies
including data capture, data representation, data
restructuring, projections, accuracy and related
information that comes from different sources.

A GIS should integrate at least four components:
hardware, software, data, and management [7].
For efficiency, all components should be
harmonious. Hardware is the component that
process GIS. Network transmission medium,
CPU, RAM, and cache are some of the most
important components of the GIS. Since GIS
commonly executes spatial data,

implementations require heavy computational
power. Therefore, we must utilize hardware
components efficiently.

Second component, software, provides tools that
retrieve, store, analyze and display GIS
information. For retrieval, GIS software needs
efficient storage, indexing, query management,
visualization and easy access strategies.

Third component is data, and we can be retrieve
it from various locations and adapters. We
should access the data via in its simplest, and
nearest form.

Finally, an efficient GIS must also contain
efficient manipulation and management
technologies. For instance, GIS should introduce
efficient scale methods that minimize
computation expenses and memory
consumption. Even further, some queries may
comprise proximity analysis such as looking for
most suitable locations, frequency analysis of
some goods or “what if” queries.

A GIS must introduce efficient visualization tools.
The tools must handle maps and graphs. In most
cases, the maps should integrate with reports, 3-
D views and images.

Commercial GIS tools generally introduce better
software capabilities. However, biggest
drawback of the commercial GIS tools is the high
price.

In order to overcome high price problem, it is
possible to construct license free GIS solutions
by freeware GIS components. Literature denotes
various license-free GIS tools [8]. However, those
tools aim specific problems. In contrast we aim
to construct a compact GIS by collecting different
components of freeware utilities. However,
integration of GIS components introduced by
different software developers is difficult because
of consistency issues.

In terms of local governments with budget
constraints, satisfactory and open source GIS
tools are highly demanded. In addition, the local
governments need tools that can contribute to
rural and urban development of the province.

In this study, we consider the GIS requirements
of a local government. Particularly, we consider
Kütahya province of Turkey and its geographical
information management. We present an open
source and efficient GIS tool that aim to satisfy
local government requirements.

DEU FMD 21(61), 113-123, 2019

115

The tool enables tools to manage urban and rural
regions of the province as well as area
populations, asphalt and paved roads, springs,
title deeds, forests, farmlands...etc. It ensures
efficient network communication among mobile
devices and servers.

Implemented tool introduces data generation
and data presentation utilities. It also enables
data access by data purchasing, reading from the
ground with GPS, drawing over the satellite
image. We also considered the computational
burden of spatial data processing. In order to
speed up GIS computation we present a layered
architecture. Furthermore, we improved the
speed by means of cache mechanisms.

2. Materials and Methods

In this study, we design a cross-platform web
application, which executes as a complete GIS. It
provides necessary tools and applications to
local governments and municipalities which
have to deal with both rural and urban
development. The tool does not require any
plug-in or commercial licensed components.
Even further, the design does its best to ensure
Open Geospatial Consortium standards [9].

Particularly, the tool has been physically utilized
in Kütahya province of Turkey, where provincial
administration of Kütahya requires reports and
services that are rendered throughout the city
borders. To achieve these goals, geographic
information datasets should be generated,
manipulated, stored and displayed in proper
forms.

In order to ensure flexibility, we designed a GIS
architecture with layers, where a layer can be
replaced by another equivalent. Furthermore,
the tool offers distributed computing. In order to
improve efficiency, it exploits cache mechanisms
that exists in open source market [10]

In addition to flexibility advantage, layered
architecture has at least two more contributions
to our method. These are speed, and security
[11]. In terms of spatial database, parallel data
processing improves computation and ensures
time speed up. In other words, the layered
architecture enables us distributed computing
[12].

Layered architecture also ensures security of the
system since direct access to the data is not
possible [11]. In contrast, distant users can make
direct access to only web servers.
Correspondingly, data access is managed in the

internal layer structure of the GIS. For flexibility,
our architecture consists of database, map
server and, web application layers. The layered
architecture enables distributed computing and
high performance spatial data processing. A
detailed explanation about the layered
architecture is explained in the following
subsections.

2.1. General overview of architecture

A general view of our GIS architecture and
corresponding layers are shown in Figure 1. In
the figure, A PC or a mobile device can access to
the GIS by means of a server, which is named as
web application. The web application contains
software that handle internet communication.
The web application is able to store and
manipulate database for naive queries. If needed,
a security server can be aligned in front of Web
server as well.

The operating system layer is on the bottom of
the architecture and manages both the GIS
database and the web application layer that
controls network communication. Also it
manages the data transfer protocols among Map
Server and database, DB.

The Map Server [13] functions between the web
application and database. When a GIS query is
requested from a distant host, the query initially
reaches the web application layer. If Web
application cannot respond to the query, it
makes contact with database, DB, via operating
system protocols.

Database queries can be routed to web
application via the Map Server. Database server
keeps the spatial data and interact with Map
Server when needed. The data is stored by
means of index algorithms for fast storage and
retrieval. Spatial data is stored in Hard disk
drives. Due to computer architectural
limitations, storage and retrieval of data from
hard disk drives are slow [14].

As can be seen in the layered architecture of the
model, distant hosts cannot access databases
directly and consequently database security is
enhanced. Also, layered architecture aims to
ensure that high density network
communication processes do not overwhelm
operating system or internal database;
therefore, the workload of database servers can
be reduced.

DEU FMD 21(61), 113-123, 2019

116

Figure 1. General Overview of the Layered
Model

2.2. Database layer

Inside database layer, we need to select most
efficient open access database system. For open
source database administration, MySQL and
PostgreSQL introduce powerful database query
utilities [15]. Depending on the data size,
alternative engines can be incorporated for
database management systems. For example, the
myISAM engine is faster for small scale data sets.
On the other hand, InnoDB is better if database
tables contain large numbers of records or GIS
data set has spatial features [16]. PostgreSQL
and PostGIS are also alternative open source
database management tools. To select the most
convenient option, we compared their
performances by means of 2GB GIS data. Since a
real example needs to handle large size data, we
loaded the both database candidate with the
same GIS data set.

In the Table 1, seven different SQL Queries are
executed. Selected queries are some of the most
common database queries. These are table
creation, create unique index unique, create
unique index updates key, database population,
table scan and aggregate function operation.
Results in Table 1 denote that PostgreSQL
presents better latency performance for our SQL
queries that satisfy provincial requirements. The
results in table guided us to prefer PostgreSQL.

Literature denotes that PostgreSQL introduces
wide range of beneficial features [15]. It has both
object and relational database management
system feature. In terms of extensible and
standards compliance, PostgreSQL is very
powerful. It can handle large workloads and
handle concurrent users.

Table 1. Latency based comparison of Mysql ve
Postgresql for large size data load (>2GB)

SQL Query MySQL
Postgre

SQL

create_tables 0,06 0,02

create_idx_uniques_key 112,25 29,46

create_idx_updates_key 119,33 41,14

populateDatabase 1063,95 331,65

table_scan 4,13 0,64

agg_func 2,9 1,77

2.3. Map server layer

Map Server is a web based software that is used
to share GIS maps. In our tool, the map server
layer has been set between DBMS and Web
application. This layer paves the path for
spatially enabled internet applications. Map
Server inputs the database query results, extract
the spatial features of data and outputs services.
Since stored text information is transformed into
spatial format in this layer, it may require high
computation time. Therefore, selecting the most
efficient open source Map Server may contribute
to GIS performance decently.

We scanned the literature and decided that two
open source map servers are convenient for our
implementation: MapServer [13] and GeoServer
where latter can be downloaded from
“http://geoserver.org/” without fee. In terms of
Kutahya province requirements, the principal
efficiency factor is the response time. We
compared the GeoServer and MapServer by
response time to select most convenient map
server. To do this, we utilized two data sets as
shown in Table 2.

In Table 2, Dataset_1 contains 10.000 geographic
points, whereas Dataset_2 10.000.000
geographic points. We compared Map Servers by

DEU FMD 21(61), 113-123, 2019

117

PostGIS and ShapeFile by means of geospatial
vector data formats [9]. As result, we have
presented four different comparison criteria and
showed in each column of Table 2. Results in
Table 2 denote that GeoServer yields faster
response time for each criteria.

Particularly, GeoServer minimizes the response
time by 12X, when large size Shape File is
processed. Therefore we preferred exploit
GeoServer at Map server layer.

Table 2. Query Response Time of Map Server
and GeoServer in milliseconds

 PostGIS ShapeFile

Data set
Data
Set1

Data
Set2

Data
Set1

Data
Set2

Map Server 50 47 39 386

Geo Server 42 42 27 33

2.4. Web application layer

The web application layer of our architecture
manages the following requirements for our
implementation. The requirements are as
follows:

• displays the maps on the browser

• runs the application on all mobile and desktop
browsers

• runs the synchronization, runs database
operations, runs relevant libraries.

• caches frequently used query data.

For display, we exploit Javascript and its map
libraries. Besides, OpenLayers introduces
satisfactory Javascript library to load, display
and render maps from multiple sources. Due to
requirements of the province, it is necessary to
run the application across multi platforms,
including desktop and mobile. To ensure cross
platform capabilities, we used Bootstrap as a
front end framework. In order to synchronize
the tools and data, we exploit CodeIgniter, which
is an MVC framework running on PHP [17].

The GIS must be improved by cache mechanisms
as well. Cache is a physical memory which enable
fast access to information [14]. For efficiency, we
cache the maps that have been generated by Map

Server since generation of a map from textual
information causes big latency. When the same
request come from another user, the Varnish
cache fetches the result from its cache and sends
the response without directing to GeoServer.

2.5 Improving the Scale

When the workload of the Map servers increases,
we’ll need additional computational power to
integrate inside our layered architecture. In
order fulfill the computational requirements of
Map Server, we present two techniques. First
technique is the integration of a cache, which
keeps most frequently used spatial data for
future usage. Our second technique is based on
parallel computation.

We exploit open source Varnish cache [18] as
HTTP accelerator, which stores data in virtual
memory and designed for content heavy
dynamic web pages [19]. The Varnish software
utilizes round robin and random director as load
balancing and presents us an efficient cache
mechanism for geo-spatial data.

Varnish cache helps us to design parallel
computation when the workload is high. When a
single Map Server and Data Server is not
sufficient to compute geo-spatial data, additional
servers can be integrated to our layer based
architecture by means of Varnish cache. As can
be seen in Fig. 2, all requests will first be directed
to varnish cache port inside Map Server.
Thereafter, Varnish cache distributes the load
evenly to the internal servers.

As can be seen in the Fig. 2, Servers are divided
into two groups, where some of them are utilized
as Map Servers, and others are used as Data
Servers. Data Servers are supported by memory
caches that keep frequently used data.

In Fig. 2, there exist multiple groups of servers in
the architecture. The primary group is data and
application servers. The servers in this group
have the same characteristics and they are
connected to a common database, using a
common cache. When a server needs
information, it scans the cache looks. If the
information is not available in the cache,
computationally expensive GIS results will be
generated by the database server, and results
will be sent to the client. GIS results are also
written to the cache simultaneously. If a server
updates the data in the database, the
corresponding data in the cache server is
deleted.

DEU FMD 21(61), 113-123, 2019

118

Requests related to the first group are not cached
with the varnish service. If the incoming requests
are not map requests it will be assigned to the
most convenient server, based on load balancing.
Within the distributed workload, a few more
servers can be added to the data server group
immediately when the application encounters an
unexpected density. Even if it is deemed
necessary, the weight coefficient can be
determined according to the performances of the
servers and some requests can be directed to
other servers.

The second group of servers are the map servers.
These servers should have the same hardware
and software properties and do not store data on
their memory. When the map data request
arrives, the Varnish service checks the cache
first, if the data are not in the cache, the map
server will make a request to the idlest server of
the second group of servers. Response of the
server is sent to the client and cached by Varnish.
In this way, the time-consuming GIS data
generation can be fetched from cache without
reading the map server. The servers in this group
are automatically selected by load balancing, as
in the first group.

In summary, open source Varnish cache
implementation is not only used as a cache, but
also it behaves like a gate between Web
application and internal servers. It also manages
the workload of Servers, which are shown in
Figure 2.

3. Fundamental Utilities

Particularly, our tool is composed of two utility
features. These are GIS data generation utilities,
and GIS data presentation utilities. The GIS data
generation utilities enable spatial data
generation from mobile or desktop scanners. On
the other hand, data presentation utilities
provide facilities to read the spatial data and to
transform into visual form for presentation. In
the following subsections, we explain these
utilities.

Figure 2. Network connection with Varnish
cache model

3.1. Data generation utility

Particularly, in our tool, users can generate
geographical data by logging into a desktop
browser or to a mobile side application without
any other software component. There is a data-
adding screen where a user can add Bing or
Google map as a pad on a map window. From
this screen, user can generate point, line and
polygon data by clicking on the satellite image. In
addition, users can generate their own type of
projections that they want to export, without
depending on the format in the database.

If desired, users can transfer the geographical
data or the coordinates from another CAD
application and insert into data generation
utility tool. In addition, if a land staff logs in from
a mobile browser and clicks the live drawing
button; the tool generates geographical data
using the phone's location. In Figure 3, the user
generates geographical data by walking around
the polygon on line.

 DEÜ FMD 21(61), 113-123, 2019

119

Figure 3. Data Generation from coordinates

3.2. Presentation with different symbols

During the geographical analysis of the province,
users need to distinguish locations, roads,

Villages, etc. For instance, distinguishing paved
roads and asphalt roads is necessary. Therefore,
that investment strategy of the province can be
determined in a clear form. In order to fulfill such
requirements, our GIS presentation utility
should introduce flexibility. For this goal, our
tool enables to present Presentation with
different symbols utility.

Whether user generates the data within
implementation or imports one from another
source, our web application is able to convert
data into visual map form and present the results
in an embedded map. When presenting this, user

can define the symbol method using the SLD,
which is a geographic data styling language.

In Figure 4, user can make village settlement
spots larger or smaller. User can see the villages
that are located in green colored forests.
Additionally, users can change the roads where
the gray color represent asphalt roads and
brown roads are brown. User has also ability to
change the color.

3.3. Geographical or textual search property

User can also search for geographic data in the
system using geographic criteria. We present
several ways for search property. In terms of
geographical search, a user can draw a new
geographic object and bring it into the
intersection, which contains the query object.

Figure 4. Presentation of villages and roads with different symbols

DEU FMD 21(61), 113-123, 2019

120

The user can also fetch the nearest objects as a
customized search method and then export the
data at the point when it is clicked on the map.

Search by means of a Point, Line and Polygon is
available. The tool fetches and presents the
corresponding nearest objects. After that, tool
returns the clicked objects.

In terms of textual search, user writes the name
of the location. The tool returns a map searches
the name in the database. The result returns a
map centering the searched query.

3.4. Interactive map updates

Our tool is interactive. In other words,
geographic data from other sources can also be
added as a layer on the map. The added layer can
also be a dynamic geographic data layer, such as
a vehicle tracking system. Figure 5 illustrates an
interactive map usage. User of the tool is added
as a layer on the map. The user can mark the
vehicle, whose license plate and other
information can be stored in the database. The
user can track its position dynamically.

The interactive map updates are compatible to
Web Map Services, WMS [20]. WMS introduces
HTTP interface that fetches geo-registered web
images from geo-spatial databases. Such feature
improves the flexibility of our tool. In addition,
the interactive map updates also run in harmony
with Web Feature Services, WFS. The interface of
WFS allows to request geo-spatial data from
internet by means of platform independent calls.
As a result, communication between mobile
devices and servers yield efficient outputs. The
tool supports various satellite images. However,
we set the Bing satellite image by default in the
tool.

 3.5. Updates

Particularly, user can maintain the updates by
two approaches. The first approach is periodic
update. The system accesses the remote server
during a period based on user definitions; it
queries the remaining geographic data and
places the data on the screen. The second
approach is based on map movement. In this
case, the tool does not permit periodical updates.
When the user scrolls the map and zooms in and
out, the tool displays by fetching the current data
from the server. The second approach is suitable
for rarely updated locations.

Figure 5. Vehicle tracking update of a user by
means of adding a dynamic geographic data

layer

The tool can also add verbal data provided by
remote services. If there is an associated
geographical data that you are verbally
requesting, you can bring the data onto the map.
For example, tool can visually present a title
deed area on the map, provided by the title deed
service with the person's name.

3.6. Legend and filtering features

Inside a map, we may need to use symbols to
present brief explanation. However, users do not
need to know the meaning of the symbols before.
In order to solve the problem, we define map
legends. A map legend presents visual
explanation to symbols on the map.

User can display legends separately for each
layer or display the legends for all data in a batch.
By means of legends, we can easily define the
borders, roads, road maintenance, bridges,
vents, retaining walls, tunnels, residential areas,
etc. at the same time.

In database, filtering is the manipulation of the
data to make it favorable for the user. Filtering
outputs the records that ensure qualifying
criteria. With filtering feature, it is possible to
transform the general map into a report screen.

For each layer we can generate separate filters.
Unless the filter deactivation, the tool shows the
map as filtered. For example, for planning
purposes, it may be necessary to present the
villages in a county with a population of over
100. When user executes such query via
"Filtering feature", the tool introduces the
necessary map that shows the villages that
provides the condition.

DEU FMD 21(61), 113-123, 2019

121

3.7. 3D world feature

One of the most versatile feature of the GIS tool
is the presentation of 3D world feature. 3D world
feature can be used for planning and
presentation. For planning, geographical
properties of a region can be seen more clearly.
So that optimal investment locations can be
determined by 3D world feature. For instance,
forestry regions and easiest access paths to the
forests can be observed by 3D model.

In the tool, we represent asphalt roads with blue
color and forestry regions with green color. So
that, a strategic investment plan can be initiated
by the 3D model. 3D model is a commonly
preferred tool for presentation. In order to
explain the requirements, 3D tools present
simple proofs to explain the needs.

4. Speeding up Our GIS Tool with Cache

Utilities

There exist several computational burdens
during GIS program executions. One of the
reason is based data features. Because of the size
of locational data, GIS implementations utilize
large size datasets. On the other hand, recorded
GIS data are generally complex. For instance,
user can represent locations by polygons. Even
further records size of a polygon is not
deterministic and resources can be stored in a
distributed database. Therefore, data fetch
operations from various resources cause latency.

Introducing new features to the GIS
implementations also increases computation
time. For instance, introducing the legend
feature causes extra processing capacity. In
order to present features such as Update, legend,
or filtering, complex computational procedures
are necessary.

One of the most fundamental computational
burden of GIS occurs when it transforms textual
data into geographical form or vice versa. In
order to present GIS data, each GIS component
and its coordinate address are stored in a textual
database. When needed, the tool fetches textual
GIS information from database. Depending on
the coordinates, tool places the component into
visual map. In order to ensure the procedures,
complex image processing procedures are
necessary.

To speed up the GIS performance, cache utilities
are good option [21-22]. Cache is a memory that
stores frequently used geographical data on the
map. Given that information is in cache, we gain

time since computer do not need to fetch textual
data from database. We also do not need to
transform textual data into visual form and align
on the map.

In terms of writing a web application, scalability
is one of the main issue. GIS implementation
designers need to consider whether the
application is able to serve mass users with
available equipment. When we embed the cache
utilities in the architecture in a relevant form,
our web based GIS; implementation yields fast
data presentation and generation opportunities.
To strengthen our claim, we support the details
of cache implementations with experimentation
and empirical results.

In this study, we have use three different cache
utilities for efficient GIS implementation. For a
web based GIS implementation, we prefer the
use of the following open source cache utilities:
APC, Varnish cache and CodeIgniter cache. Each
cache utility introduces specific advantage. We
explain them in the following subsections.

4.1. Optimization with APC Cache and

CodeIgniter Cache

APC, Alternative Php cache, is an open source
cache for Php. It provides robust framework for
caching and reduces pitfalls of interpreter
languages. Our tool utilizes APC, since we exploit
an interpreter language, Php during web
application design. APC stores the opcodes in
memory and consequently reduces the access to
disk. As a result, the implementation reduces
both file access and opcode generation costs.

For efficiency, we exploit CodeIgniter, which is
an open source Php framework, containing pre-
written methods and classes. It enables to cache
the pages in their fully rendered state. We aim to
speed up caching with CodeIgniter cache.

In this study, we modified the indexing
technique of the cached files by means of kernel
development. Particularly, we sorted the cached
files according to index order, similar to URL
indexing. Thus, search among cached files
becomes faster. This technique also
discriminates cached data of different languages.
In order to evaluate caching, we queried the
villages of the province, where a page lists 10
villages.

We repeated the same query three times, where
first execution does not exploit cache. At second
iteration, we exploited only APC. At last query,

DEU FMD 21(61), 113-123, 2019

122

we used both APC and Codeigniter cache. We
present the page generation time in Table 3.

Table 3 has three lines, where each line denotes
a specific experiment. First line is the result,
where experiment does not utilize cache. The
table denotes that maximum duration time
occurs when we do not utilize caching. Second
line utilizes only APC. Results show that APC
speeds up page generation time. We observe the
maximum improvement when we utilize APC
and Codeigniter caches collaboratively. In this
case, we observe 25X improvement on page
generation time when compared to page
generation without cache.

Table 3. Map Server Side Benchmark Results for
APC, CodeIgniter Cache

State
Page Generation

Time (ms)

Without cache 0,1955

With cache 0,1046

With APC+CodeIgniter Cache 0,0069

4.2. Optimization with varnish cache

In order to handle dynamic GIS tools for content
heavy information we exploited Varnish
software, which is also open source. Varnish is
efficient in high profile dynamic web sites [18].
Varnish is preferred since it supports high-traffic
efficiently by means of heavily threaded
architecture. Varnish utilizes virtual memory
and enables harmony among operating system
and utilized GIS caching [19].

Recall that Varnish cache takes place at the front
side of the Map Server, where operating system
manages the incoming network data. As
explained in Fig. 2, the network connections are
initially access Varnish cache. Our architecture
deliberately put the Varnish on the front side of
Map layer to prevent situations where operating
system caches data, while Map Server writes the
same data to disk for evaluation, we made a GIS
query for the village roads in Kütahya province.
We present the picture generation time in Table
4. In the table, response time of the Varnish
cache was 8 milliseconds. When compared to
best page generation of 69 milliseconds, results

imply that utilization of Varnish cache speeds up
the picture generation by approximately 8X.

Table 4. Map Server Side Benchmark Results for
Varnish Cache

State
Picture Generation

Time (ms)

Without cache 69

With Varnish cache 8

5. Discussion and Conclusion

A GIS must handle spatial data, which is content
heavy. Furthermore, GIS should ensure mobile
access and GPS management utilities to present
efficient network access. Consequently,
development of a GIS software solutions is
becoming expensive and commercial licenses of
GIS solutions require high annual prices.

In this study, we developed an open source GIS
tool for provincial governments. The
architecture of our GIS tool exploits open source
resources. We use open source database, cache,
and GIS server utilities. We introduce a new
layered-based GIS architecture and integrate the
utilities in a frame with web programming.

Our GIS tool introduces both data generation and
data presentation utilities. In terms of data
generation, we introduce various options for the
users. User can either import data coordinates
from another platform, or exploit GPS and
mobile phones to determine the coordinates. A
user can also select locations from a map.

In terms of data presentation, we introduce
various opportunities. Using geographic styling
language features, we introduce options to
discriminate roads, villages or other properties
by colouring and symbols. In addition, we
introduce geographical or textual search
properties. Interactive map updates, legends, 3D
world views are some of the most essential parts
of the application.

The architecture of the GIS tool supports both
desktop and mobile platforms. Because of mobile
platform opportunities, we can collect and
analyze geographic information in the field.

To enable fast response to the user queries, we
utilized cache methods. Particularly, we

DEU FMD 21(61), 113-123, 2019

123

improved content heavy dynamic web pages by
means of Varnish cache. Furthermore, we
ensured harmony among APC and CodeIgniter
caches to reduce GIS computation. Feedback in
Kütahya province indicates that our GIS tool
ensures efficient solution.

Acknowledgements

During development of the GIS tool, governance
of Kütahya supplied all dataset. The authors of
this study are grateful to the government
officials of the province.

References

[1] Aloquili, O., Elbanna, A. and Al-Azizi, A. 2009.
Automatic vehicle location tracking system based on
GIS environment, IET software, Vol. 3, no. 4, pp. 255-
263. DOI: 10.1049/iet-sen.2008.0048

[2] Pradhan, B. 2013. A comparative study on the
predictive ability of the decision tree, support vector
machine and neuro-fuzzy models in landslide
susceptibility mapping using GIS, Computers &
Geosciences, Vol. 51, pp. 350-365. DOI:
10.1016/j.cageo.2012.08.023

[3] Siljander, M., Venäläinen, E. Goerlandt, F. and
Pellikka, P. 2015. GIS-based cost distance modelling
to support strategic maritime search and rescue
planning: a feasibility study, Applied Geography, Vol.
57, pp. 54-70. DOI: 10.1016/j.apgeog.2014.12.013

[4] Tomlinson, R.F. 1968. A Geographic Information
System for regional planning, in land evaluation,
CSIRO Symposium Organized in Cooperation with
UNESCO, Melbourne, Australia 200-210.

[5] Foresman, T.W. 1998. The History of Geographic
Information Systems: Perspectives from the
Pioneers, 1st Edition. Prentice HALL PTR, New
Jersey, 397 s.

[6] Goodchild, M.F. 2010. Twenty years of progress:
GIScience in 2010, Journal of Spatial Information
Science, Vol. 1, pp. 3-20. DOI:
10.5311/JOSIS.2010.1.2

[7] Heywood, I., Cornelius, S., and Carver, S. 2006. An
Introduction to Geographical Information Systems,
3rd Edition, Prentice Hall, Essex, 426 s.

[8] Steiniger, S., and Hunter, A.J.S. 2012. Free and open
source GIS software for building a spatial data
infrastructure, in: Proc Geospatial free and open
source software in the 21st century, pp. 247-261,
Nantes, France

[9] Reichardt, M. 2017. Open Geospatial Consortium
Standards, 1st Edition, The International
Encyclopedia of Geography, Wiley, USA,

[10] Wilson, P.R., Johnstone, M.S., Neely, M, and Boles, D.
1995. Dynamic storage allocation: A survey and
critical review. International Workshop on Memory
Management, Scotland, September 27-29, 1-78.

[11] Elmasri, R. 2008. Fundamentals of database systems,
6th edition, Addison-Wesley, 1172 s.

[12] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C.
and Tuecke, S. 2000. The data grid: Towards an
architecture for the distributed management and
analysis of large scientific datasets, Journal of
network and computer applications, Vol. 23, pp.
187–200, DOI: 10.1006/jnca.2000.0110

[13] Vatsavai, R. R., Burk, T. E., & Lime, S. 2008. University
of Minnesota Map Server ss 1197 – 1205., Shekhar,
S., & Xiong, H. ed. 2008. Encyclopedia of GIS, Springer
US, 1369 s.

[14] Patterson, D., and Hennessy, J.L. 2006. Computer
Architecture A Quantitative Approach, 4th Edition,
Morgan Kaufmann, 704 s.

[15] Rowe, L.A., and Stonebraker, M.R. 1987. The
POSTGRES data model, 13th International
Conference on Very Large Data Bases, September 1-
4, England, 83-96.

[16] Comparing PostgreSQL vs. MySQL, 2012,
http://posulliv.github.io/2012/06/29/mysql-
postgres-bench/ Accessed: 2014-06-30.

[17] Blanco, J.A., and Upton, D. 2009. CodeIgniter 1.7.,
Packt Publishing, Birmingham, UK, 282 s.

[18] Velázquez, F., Lyngstøl, K., Heen, T.F., and Renard, J.
2018. Varnish Book, https://book.varnish-
software.com/4.0/

[19] Tanenbaum, A.S. and Bos, H. 2014. Modern operating
systems, 4th edition, Pearson, 1072s.

[20] Scharl, A., and Tochtermann, K. 2009. The Geospatial
Web: How Geobrowsers, Social Software and the
Web 2.0 are Shaping the Network Society, Springer
Science & Business Media, isbn: 1846288266

[21] Li, H., Nakazato, H., and Ahmed, S.A. 2017. Request
Expectation Index Based Cache Replacement
Algorithm for Streaming Content Delivery over ICN,
Future Internet, vol. 9, no. 4, 83, DOI:
10.3390/fi9040083

[22] Paul, S., Fei, Z, 2001. Distributed caching with
centralized control, Computer Communications, Vol.
24, no.2, pp. 256-268, DOI: 10.1016/S0140-
3664(00)00322-4

