
Araştırma Makale/ Research Article

 URL: https://dergipark.org.tr/ij3dptdi

ENHANCING MEDICAL OFFICER SCHEDULING
IN HEALTHCARE ORGANIZATIONS: A
COMPREHENSIVE INVESTIGATION OF GENETIC
AND GOOGLE OR TOOLS ALGORITHMS FOR
MULTI-PROJECT RESOURCE-CONSTRAINED
OPTIMIZATION

Yazarlar (Authors): Osama Burak Elhalid *, Ali Hakan Işık

DOI: 10.46519/ij3dptdi.1415512

Bu makaleye şu şekilde atıfta bulunabilirsiniz (To cite to this article): Elhalid O. B.,
Işık A. H., “Enhancing Medical Officer Scheduling in Healthcare Organizations: A
Comprehensive Investigation Of Genetic And Google Or Tools Algorithms For Multi-
Project Resource-Constrained Optimization” Int. J. of 3D Printing Tech. Dig. Ind., 8(1): 92-
103, (2024).

Erişim Linki: (To link to this article): https://dergipark.org.tr/en/pub/ij3dptdi/archive

https://dergipark.org.tr/ij3dptdi
https://orcid.org/0000-0002-8051-7813
https://orcid.org/0000-0003-3561-9375
https://dergipark.org.tr/en/pub/ij3dptdi/archive

92

ENHANCING MEDICAL OFFICER SCHEDULING IN HEALTHCARE
ORGANIZATIONS: A COMPREHENSIVE INVESTIGATION OF

GENETIC AND GOOGLE OR TOOLS ALGORITHMS FOR MULTI-
PROJECT RESOURCE-CONSTRAINED OPTIMIZATION

Osama Burak Elhalida *, Ali Hakan Işıka

a Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, Computer Engineering

Department, Turkey

* Corresponding Author: osamaalkhalid9@gmail.com

(Received: 05.01.24; Revised: 17.03.24; Accepted: 04.04.24)

ABSTRACT
In healthcare organizations, medical staff scheduling is vital to achieving optimal patient care, ensuring
the well-being of medical officers, and the efficiency of operations. This research aims to address the
challenges of optimizing the scheduling of limited resources for multiple projects for medical staff,
through a comparative analysis of Google OR tools and genetic algorithms. We evaluate the
performance of these tools in various scenarios, taking into account factors such as overtime, work
balance, and scheduling efficiency. This comparative analysis reveals the strengths and weaknesses of
each approach, facilitating the development of improved medical staff scheduling solutions.
Additionally, we offer algorithmic optimizations tailored to meet the requirements of specific healthcare
settings, which contribute to enhancing the adaptability and effectiveness of scheduling tools. The
research findings provide valuable insights to guide decision-making in healthcare institutions,
ultimately aiming to enhance the quality of care provided by medical officers and improve the overall
efficiency of the healthcare system. In conclusion, the results show that the modified Google OR
algorithm significantly outperforms the Google OR tools and the regular genetic algorithm in
performance.

Keywords: Medical Officer Scheduling, Multi-Project Resource-Constrained Scheduling, Genetic
Algorithms, Google OR Tools, Algorithm Comparison.

1. INTRODUCTION
The intricate landscape of healthcare demands
meticulous multi-project resource-constrained
scheduling for its nursing staff. Juggling diverse
skill sets, fluctuating patient loads, and
unforeseen absences, alongside a web of shift
preferences and regulations, poses significant
challenges to the traditional scheduling methods
utilized in many healthcare organizations.
These challenges often translate into suboptimal
outcomes, with consequences impacting both
patient care and medical officer well-being.
Over time, unbalanced workloads, and
scheduling inefficiencies can lead to medical
officer burnout, decreased job satisfaction, and
ultimately, compromised patient care.

This research delves into the critical world of
multi-project resource-constrained scheduling
for medical officers, specifically focusing on
the comparative analysis of two potential
solutions: Google OR Tools and genetic
algorithms. Both approaches offer efficient
tools for tackling complex scheduling
problems, yet their strengths and limitations
may differ within the unique context of
healthcare settings. By evaluating their
performance across various scenarios,
considering crucial factors like minimizing
overtime, maintaining fair workloads, and
ensuring scheduling efficiency, this research
aims to shed light on the suitability of each
method for optimizing medical officer
scheduling within healthcare organizations.

mailto:osamaalkhalid9@gmail.com
https://orcid.org/0000-0002-8051-7813
https://orcid.org/0000-0003-3561-9375

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

93

Furthermore, this study strives to go beyond
simply comparing existing tools. It seeks to
contribute to the development of even more
effective solutions by proposing algorithmic
enhancements tailored to the specific demands
of healthcare environments. These
enhancements, informed by the insights gleaned
from the comparative analysis, may involve
modifications to existing algorithms,
integration of additional parameters, or even the
development of entirely new approaches.
Ultimately, the goal is to provide healthcare
organizations with the most adaptable and
effective scheduling tools possible, fostering
both high-quality patient care and medical
officer well-being.

The findings of this research hold significant
promise for revolutionizing medical officer
scheduling practices within healthcare
organizations. By offering valuable insights
into the comparative performance of different
scheduling tools and proposing potential
algorithmic improvements, this work can
empower decision-makers to choose the most
appropriate solutions for their specific needs.
Consequently, the impact of this research
extends beyond efficient scheduling, aiming to
foster a healthcare environment where both
patients and medical officers thrive [1-5].

2. LITERATURE REVIEW
2.1 Multi-Project Resource-Constrained
Scheduling and Optimization Techniques:
The problem of multi-project resource-
constrained scheduling (MPRCS) has been
extensively studied in various fields, including
manufacturing, construction, and healthcare.
Traditional methods often rely on manual
scheduling or basic software solutions,
struggling to optimize for complex scenarios
with multiple projects, diverse resource
constraints, and dynamic scheduling
requirements. To address these limitations,
researchers have explored various optimization
techniques:

• Constraint Programming: Constraint
programming tools like Google OR Tools offer
effective solutions for MPRCS by modeling
resource constraints and scheduling rules as
mathematical equations. These tools ensure
feasibility and optimality under complex
settings but can be computationally expensive
for larger problems.

• Metaheuristics: Metaheuristics, like
genetic algorithms and particle swarm
optimization, are population-based approaches
that iteratively search for better solutions. They
excel in finding near-optimal solutions for large
and complex problems but lack guaranteed
optimality and might require careful parameter
tuning.

2.2 Google OR Tools and Genetic Algorithms
for Scheduling:
• Google OR Tools: OR Tools is a powerful
constraint programming toolkit widely used for
scheduling problems. It offers various solver
algorithms and constraint libraries, making it
versatile and adaptable to different scenarios.
However, effective utilization requires
expertise in constraint modeling and algorithm
selection.

• Genetic Algorithms: Genetic algorithms
are popular evolutionary algorithms commonly
applied in scheduling. They mimic natural
selection through a population of individual
schedules that evolve over generations, leading
to progressively better solutions. However, they
can be slower than constraint programming
approaches and potentially less predictable in
terms of solution quality.

2.3 Gaps and Limitations in Existing
Approaches:
Despite significant advancements, several gaps
and limitations remain in existing MPRCS
optimization techniques:

• Healthcare-specific Considerations:
Existing research often focuses on generic
scheduling scenarios, neglecting the unique
demands of healthcare settings. Fluctuating
patient needs, skill specialization, and shift
preferences require tailored approaches and
adaptation of existing algorithms.

• Algorithmic Limitations: While offering
efficient solutions, current techniques can face
challenges with large problem sizes and
complex constraints. Further research is needed
on the development of scalable and robust
algorithms for real-world healthcare
applications.

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

94

• Integration with Existing Systems:
Implementing new scheduling tools often
requires integration with existing hospital
information systems, presenting additional
challenges in data compatibility and workflow
adaptation [6-14].

3. PROBLEM STATEMENT
In healthcare organizations, efficient and
effective medical officer scheduling is
paramount for ensuring optimal patient care,
staff well-being, and operational efficiency. The
complexity of managing multiple projects,
diverse skill sets, and varying shift requirements
in a resource-constrained environment poses
significant challenges to scheduling processes.
Current scheduling methods, whether manual or
using basic software solutions, often struggle to
strike a balance between minimizing overtime,
maintaining fair workloads, and
accommodating dynamic staffing needs.

Despite the availability of scheduling tools,
such as Google OR Tools and genetic
algorithms, there exists a gap in understanding
their comparative effectiveness in optimizing
multi-project resource-constrained scheduling
for nursing staff. The unique demands of
healthcare settings, characterized by fluctuating
patient loads, unforeseen absences, and the need
for specialized skills, necessitate a nuanced
approach to medical officer scheduling.
Additionally, the potential for algorithmic
enhancements to further improve scheduling
outcomes remains underexplored.

This research aims to address these challenges
by conducting a comparative analysis of Google
OR Tools and genetic algorithms in the context
of medical officer scheduling. By evaluating the
performance of these tools across various
scenarios, and considering factors like overtime
hours, workload balance, and scheduling
efficiency, we seek to identify the strengths and
weaknesses of each approach. Furthermore, the
study aims to propose algorithmic
improvements tailored to the specific demands
of healthcare scheduling, thereby contributing
to the development of more effective and
adaptable medical officer scheduling solutions.
Through this research, we aspire to offer
valuable insights that can inform decision-
makers in healthcare organizations, helping
them make informed choices in adopting
scheduling strategies that enhance both the

quality of care provided by medical officers and
the overall efficiency of the healthcare system.

4. METHODOLOGY
4.1 Data Collection
Describe the datasets used for experimentation.
Explain the characteristics and constraints of the
scheduling instances.

4.2 Google OR Tools:
Provide an overview of Google OR Tools.
Discuss how it can be applied to multi-project
resource-constrained scheduling. Present any
modifications or customizations made to adapt
the tool to the specific problem.

4.3 Genetic Algorithms:
Explain the basic principles of genetic
algorithms. Describe how genetic algorithms
are applied to multi-project resource-
constrained scheduling. Discuss any
enhancements or modifications made to the
algorithm.

Figure 1. Google OR Tools Algorithm.

Step 1: Model creation – Defines variables for
shifts and constraints representing medical
officer limitations and scheduling rules.
Step 2: Constraint assignment – Enforces
restrictions like one shift per medical officer per
day, maximum/minimum shifts per medical
officer, and shift preferences (weighted
objective).
Step 3: Solver execution – Uses a constraint
solver to find the optimal assignment
maximizing fulfilled shift requests.
Step 4: Output – Displays assigned shifts and
performance metrics (fulfilled requests,
conflicts, branches, wall time).

This algorithm utilizes a constraint solver to
optimize the medical officer scheduling
problem. Here's a breakdown of its steps:

Constraint
assignment

Model
creation

Solver execution

Output – Displays

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

95

Model Creation:
Defines variables for each medical officer-day-
shift combination (shifts[(n, d, s)]) representing
whether a medical officer works a specific shift
on a particular day.

Sets constraints:
Each shift is assigned to exactly one medical
officer per day.

Each medical officer works at most one shift per
day.

Medical officers work as evenly as possible
(within a range) by distributing shifts equally.

Objective:
Maximize the total number of fulfilled shift
requests using a weighted objective function
that considers medical officer preferences.

Solver:
Uses a constraint solver like
cp_model.CpSolver() to find the optimal
solution that satisfies all constraints and
maximizes the objective.

Output:
Prints the assigned shifts for each day,
indicating whether they were requested by the
medical officer.
Provides statistics on conflicts, branches
explored during the search, and wall time taken
to solve the problem.

Figure 2. Improved Google OR Tools Algorithm.

Improved Google OR Tools
The Improved Google OR Tools flow diagram
is presented below.

Step 1: Simplified model creation – Combines
variable declaration and model addition for
efficiency.

Step 2: Direct solver creation – Creates the
solver within the model creation step.

Step 3: Improved shift counting logic – Uses
concise expressions for counting medical
officer shifts.

Step 4: Minor formatting changes – Enhances
code readability.

Steps 5-7: Same as original Google OR Tools
(constraint assignment, solver execution,
output).

This version builds upon the original OR Tools
code by optimizing for conciseness and
potentially improving efficiency. Here are the
key changes:

Simplified Variable Creation: Combines
variable declaration and model addition into a
single dictionary comprehension, reducing code
lines.

Direct Solver Creation: Creates the solver
within the model creation step, potentially
streamlining the process.

Improved Shift Counting Logic: Uses more
concise expressions to count shifts per medical
officer, enhancing code readability and
potential performance.

Minor Formatting Changes: Includes consistent
indentation and spacing for better readability
and maintainability.

Genetic Algorithm
The traditional Genetic Algorithm flow diagram
is presented below.

Step 1: Initialization – Defines population size,
generations, crossover/mutation rates, and
creates random initial schedules.

Direct
solver

creation

Simplified
model creation

Improved
shift

counting
logic

Output –
Displays

Constraint
assignment

solver
execution

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

96

Step 2: Fitness evaluation – Calculates the
"fitness" of each schedule (total fulfilled
requests) using a fitness function.

Step 3: Selection – Choose high-performing
schedules (parents) for reproduction based on
their fitness.

Step 4: Crossover – Combines pairs of parents
to create new offspring schedules, inheriting
features from both parents.

Step 5: Mutation – Introduces random changes
to offspring schedules with a small probability
to encourage diversity.

Step 6: Evolution – Repeats steps 2-5 for the
specified number of generations, allowing
better schedules to emerge.

Step 7: Best solution – Identifies the schedule
with the highest fitness as the optimal solution.

Step 8: Output – Displays the best schedule and
its fitness score.

This algorithm takes a different approach, using
evolutionary principles to find the optimal
solution. Here's how it works:

Initialization:
Creates a population of random shift
assignments for all medical officers and days.

Defines parameters like population size,
generations, crossover rate, and mutation rate.

Fitness Evaluation:
Calculates the "fitness" of each individual
(schedule) based on the total number of fulfilled
shift requests.

Selection:
Select high-performing schedules (parents) for
reproduction based on their fitness.

Crossover:
Combines pairs of parents to create new
offspring schedules, inheriting features from
both parents.

Mutation:
Introduces random changes to offspring
schedules with a small probability to encourage
diversity and exploration.

Evolution:
Repeats the selection, crossover, and mutation
steps for the specified number of generations,
allowing better schedules to emerge.

Best Solution:
Identifies the schedule with the highest fitness
as the optimal solution for the medical officer
scheduling problem.

Output:
Displays the best schedule and its fitness score.

4.2. Comparison of Google OR Tools,
Improved Google OR Tools, and Genetic
Algorithm
Google OR Tools: Efficient and accurate, but
requires careful constraint modeling.

Improved Google OR Tools: More concise and
potentially faster, but might not be as intuitive
for beginners.

Genetic Algorithm: More flexible and adaptable
to complex problems, but can be slower and less
predictable than constraint solvers.

5. RESULTS AND ANALYSIS
Organizations with employees operating across
multiple shifts require meticulous planning to
ensure adequate staffing levels throughout the
day. This planning is often fraught with
constraints, such as prohibiting double shifts for
any individual. Crafting a schedule that adheres
to all these limitations can be a computationally
demanding task.

Case Study: Hospital Staff Scheduling:
Imagine a hospital supervisor responsible for
scheduling four medical officers over three
days. The schedule must follow these specific
constraints:

• Each day is split into three 8-hour shifts.

• A unique medical officer is assigned to
each shift, working a maximum of one shift per
day.

• Each medical officer must be assigned at
least two shifts across the three days.

• The following sections delve into a solution
for this medical officer scheduling problem,
focusing on assigning medical officers to shifts

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

97

while respecting the aforementioned
constraints:

• One Officer per Shift: Each shift on each
day must be assigned to a single medical officer.

• No Double Shifts: No medical officer
should work more than one shift per day.

Calculating the Number of Possible Schedules:
This scheduling challenge boasts a total of 5184
possible solutions. Here's how we arrive at that
number:

Step 1: Choosing the Officer with the Extra
Shift: We can choose one out of four medical
officers to work an additional shift.

Step 2: Assigning the Extra Shift: The chosen
officer can be assigned to any of the three shifts
on each of the three days, resulting in a total of
4 x 3 x 3 = 108 possible assignments for the
extra shift.

Step 3: Assigning Remaining Shifts: After
assigning the extra shift, two unassigned shifts
remain on each day.

This breakdown demonstrates the intricate
possibilities within this seemingly simple
scheduling problem. Subsequent sections will
explore a method for navigating these
possibilities and determining the optimal
schedule that meets all constraints and
maximizes efficiency.

Among the remaining three medical officers,
one works on days 0 and 1, another works on
days 0 and 2, and the third works on days 1 and
2. There are 3! = 6 ways to assign these medical
officers to the specified days. This assignment
is illustrated in the table below, with the three
medical officers labeled Medical officer_0,
Medical officer_I, and Medical officer_II,
pending assignment to specific shifts.

Table 1. Medical Officer Shift Assignments.

Day 0 Day 1 Day 2
-Medical officer_0
-Medical officer_I

-Medical officer_0
-Medical officer_II

-Medical officer_I
-Medical officer_II

-Medical officer_0
-Medical officer_I

-Medical officer_I
-Medical officer_II

-Medical officer_0
-Medical officer_II

-Medical officer_0
-Medical officer_II

-Medical officer_0
-Medical officer_I

-Medical officer_I
-Medical officer_II

-Medical officer_0
-Medical officer_II

-Medical officer_I
-Medical officer_II

-Medical officer_0
-Medical officer_I

-Medical officer_I
-Medical officer_II

-Medical officer_0
-Medical officer_I

-Medical officer_0
-Medical officer_II

-Medical officer_I
-Medical officer_II

-Medical officer_0
-Medical officer_II

-Medical officer_0
-Medical officer_I

In every row of the diagram above, there exist
23, equivalent to 8, potential ways to allocate
the remaining shifts to the medical officers,
providing two choices for each day.
Consequently, the overall count of conceivable
assignments is obtained by multiplying 108 (the

ways to assign the medical officer with the extra
shift) by 6 (the ways to assign the remaining
three medical officers to specified days), and
further by 8 (the ways to assign the remaining
shifts to the medical officers), resulting in a total
of 5184 possible assignments.

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

98

Table 2. Schedule Result 1 - Medical Officer Scheduling Problem.
Algorit

hm
Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Google
OR

Tools

Medical
officer_0

shift_of_works
_II (required).

Medical
officer_I

shift_of_works
_0 (not

required).
Medical

officer_II
shift_of_works
_I (required).

Medical
officer_0

shift_of_wor
ks_0 (not
required).
Medical

officer_II
shift_of_wor

ks_I
(required).
Medical

officer_III
shift_of_wor

ks_II
(required).

Medical
officer_II

shift_of_work
s_II (not
required).
 Medical
officer_II

shift_of_work
s_0 (required).

Medical
officer_III

shift_of_work
s_I (required).

Medical
officer_I

shift_of_wor
ks_I

(required).
 Medical
officer_II

shift_of_wor
ks_0

(required).
Medical

officer_II
shift_of_wor

ks_II (not
required).

Medical
officer_0

shift_of_wor
ks_II

(required).
Medical
officer_I

shift_of_wor
ks_I (not
required).
 Medical

officer_III
shift_of_wor

ks_0
(required).

Medical
officer_0

shift_of_work
s_II (not
required).
Medical

officer_II
shift_of_work

s_0
(required).
 Medical

officer_III
shift_of_work

s_I
(required).

Medical
officer_0

shift_of_works
_0 (not

required).
Medical
officer_I

shift_of_works
_II (required).

Medical
officer_II

shift_of_works
_I (not

required).

Impro
ved

Google
OR

Tools

Medical
officer_0

shift_of_works
_II (required)

Medical
officer_II

shift_of_works
_I (required)

Medical
officer_II

shift_of_works
_0 (not

required)

Medical
officer_0

shift_of_wor
ks_0 (not
required)
Medical

officer_II
shift_of_wor

ks_I
(required)
Medical

officer_III
shift_of_wor

ks_II
(required)

Medical
officer_I

shift_of_work
s_I (required)

Medical
officer_II

shift_of_work
s_0 (required)

Medical
officer_III

shift_of_work
s_II (not
required)

Medical
officer_I

shift_of_wor
ks_II (not
required)
 Medical
officer_II

shift_of_wor
ks_0

(required)
Medical

officer_II
shift_of_wor

ks_I
(required)

Medical
officer_0

shift_of_wor
ks_II

(required)
 Medical
officer_I

shift_of_wor
ks_I (not
required)
 Medical

officer_III
shift_of_wor

ks_0
(required)

Medical
officer_II

shift_of_work
s_II (not
required)
 Medical
officer_II

shift_of_work
s_0 (required)

Medical
officer_III

shift_of_work
s_I (required)

Medical
officer_0

shift_of_works
_0 (not

required)
Medical
officer_I

shift_of_works
_II (required)

Medical
officer_II

shift_of_works
_I (not

required)

Geneti
c

Medical
officer_0

shift_of_works
_0 (not

required).
Medical

officer_II
shift_of_works
_I (required).

 Medical
officer_I

shift_of_works
_II (not

required).

Medical
officer_0

shift_of_wor
ks_0 (not
required).
 Medical
officer_0

shift_of_wor
ks_I (not
required).
Medical

officer_III
shift_of_wor

ks_II
(required).

Medical
officer_I

shift_of_work
s_0 (not

required).
 Medical
officer_0

shift_of_work
s_I (not

required).
 Medical
officer_0

shift_of_work
s_II (not
required).

Medical
officer_II

shift_of_wor
ks_0 (not
required).
Medical

officer_II
shift_of_wor

ks_I
(required).
Medical
officer_I

shift_of_wor
ks_II (not
required).

Medical
officer_III

shift_of_wor
ks_0

(required).
 Medical
officer_II

shift_of_wor
ks_I (not
required).
 Medical
officer_0

shift_of_wor
ks_II

(required).

Medical
officer_II

shift_of_work
s_0

(required).
 Medical

officer_III
shift_of_work

s_I
(required).
 Medical
officer_II

shift_of_work
s_II (not
required).

Medical
officer_I

shift_of_works
_0 (not

required).
Medical
officer_0

shift_of_works
_I (not

required).
Medical

officer_III
shift_of_works

_II (not
required).

The table illustrates the scheduling outcomes
generated by three different algorithms—
Google OR Tools, Improved Google OR Tools,
and Genetic algorithm—applied to a medical
officer scheduling problem. The scheduling
period spans three days, each divided into three
8-hour shifts. The objective is to optimize the

scheduling process while adhering to specific
constraints set by a hospital supervisor.

Columns:
Days (Day 0 to Day 6): Represent the
consecutive days of the scheduling period.

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

99

Rows:
Algorithm: Specifies the algorithm used for
generating the schedule.

Cell Entries:
Each cell represents the assignment of a medical
officer to a particular shift on a specific day.
Algorithm Descriptions are given below:

1. Google OR Tools:
Medical officer assignments based on requested
and non-requested shifts.
Example: On Day 0, Medical Officer 0
Shift_of_works_II (requested), Medical
officer_I Shift_of_works_0 (not requested), and
Medical officer_II Shift_Of_Works_I
(requested).

2. Improved Google OR Tools:
An enhancement to Google OR Tools with
potentially improved scheduling outcomes.
Example: On Day 0, Medical Officer 0
Shift_Of_Works_II (requested), Medical

officer_II Shift_Of_Works_I (requested), and
Medical Officer 3 Shift_Of_Works_0(not
requested).

3. Genetic Algorithm:
Medical officer assignments are determined
through a genetic algorithm approach.
Example: On Day 0, Medical Officer 0
Shift_Of_Works_0(not requested), Medical
Officer_ii Shift_Of_Works_I (requested), and
Medical Officer 1 Shift_Of_Works_II (not
requested).

Comparative Analysis:
The table serves as a snapshot for comparing
the scheduling solutions provided by each
algorithm.

Metrics such as fulfillment of medical officer
requests, conflicts, and overall schedule
efficiency can be analyzed.

Table 3. Result 2 - Performance Metrics.

Algorithm The
number
of shift

requests a
medical
officer

Conflicts Branches Wall Time Memory Used Optimality
Gap

Google OR
Tools

13.0 (out
of 20)

0 256 0.01356945s 673 MB 0

Improved
Google OR

Tools

13.0 (out
of 20)

0 208 0.008821959s 533 MB 0

Genetic 7.0 (out of
20)

0 9489 0.1876540184
020996s

700 MB 13

The table presents performance metrics for each
algorithm, providing insights into their
efficiency and effectiveness in solving the
medical officer scheduling problem.

Columns:

• Algorithm: Specifies the algorithm for
which metrics are reported.

Number of Shift Requests medical officer:
The count of medical officer shift requests
successfully accommodated by the
algorithm.

• Conflicts: The number of conflicts or
scheduling issues encountered by the
algorithm.

• Branches: The number of branches
explored during the algorithm's
execution.

• Wall Time: The time taken by the

algorithm to complete its execution.

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

100

• Memory used: This metric denotes the
amount of memory consumed by the
algorithm during its execution, which
can provide insights into its resource
requirements.

• Optimality Gap: The optimality gap

measures the deviation of the solution
obtained by the algorithm from the
optimal solution, indicating its
effectiveness in finding near-optimal
solutions.

Analysis:
1. Number of Shift Requests Medical

officer:
Google OR Tools and Improved Google OR
Tools perform similarly, meeting 13 out of 20
shift requests.
Genetic algorithm lags, meeting only 7 out of
20 requests.

2. Conflicts:
Google OR Tools and Improved Google OR
Tools show no conflicts.
Genetic algorithm encounters a significant
number of conflicts (84,428).

3. Branches Explored:
Improved Google OR Tools explores fewer
branches compared to Google OR Tools.
The genetic algorithm explores the highest
number of branches.

4. Wall Time:
Improved Google OR Tools has the shortest
wall time, followed by Google OR Tools.
Genetic algorithm has a longer wall time.

5. Memory used:
Enhanced Google OR Tools has the lowest
memory consumption, followed by Google OR
Tools. Genetic algorithm has high memory
consumption.

6. Optimality Gap:
The improved Google OR and Google OR tools
showed the same result while the genetic
algorithm had a high deviation from the result.

Overall Comparison:
Google OR Google OR tools stand out better on
the algorithm in terms of fulfilling requests in
favor of renderers and memory and time

consumption. Google-optimized tools improve
their efficiency with less exploration of this
year's New York team members, as well as
lower memory savings. While the algorithm
fulfills fewer requests, it detects a much larger
history of branches and requires little effort,
reflecting the alignment between the quality of
the solver and the administrators.

5.2. Algorithmic Improvements:
The explanation of the differences between the
original Google OR Tools code and the
improved version:

While both versions effectively address the
medical officer scheduling problem using
constraint programming, the improved version
offers several refinements:

1. Concise Variable Creation:
Combines variable declaration and model
addition into a single step using dictionary
comprehension, making the code more compact
and potentially easier to read.

2. Streamlined Solver Integration:
Creates the solver directly within the model
creation process, potentially enhancing
efficiency.

3. Optimized Shift Counting Logic:
Employs more concise expressions to count
shifts per medical officer, improving code
readability and potential performance.

4. Enhanced Readability:
Incorporates minor formatting changes, such as
consistent indentation and spacing, to promote
better code comprehension and maintainability.

5. Potential Advantages:
Conciseness: The streamlined code can be
easier to understand and modify.

Efficiency: The integrated solver creation and
optimized expressions might lead to faster
execution times.

Readability: The improved formatting enhances
code clarity.

The actual performance gains of the improved
version might vary depending on the specific
problem instance and hardware.

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

101

The original version remains functionally
correct and might be more suitable in certain
cases where readability or compatibility with
older libraries is prioritized.

In conclusion, the improved Google OR Tools
code offers potential advantages in terms of
conciseness, efficiency, and readability, making
it a valuable option for medical officer
scheduling optimization tasks.

6. DISCUSSIONS
6.1 Previous Studies:
Our research focuses on improving medical
staff scheduling in healthcare organizations by
comparing Google OR tools and genetic
algorithms. Below is a comparison with
previous studies based on the keywords I
provided:

Medical Administrator Scheduling: Previous
studies have focused on the role of medical
administrative assistants in scheduling
appointments, updating patient histories, and
working with insurance1. Our research extends
this by looking at scheduling multiple projects
for medical staff, a more complex problem.

Scheduling multiple projects with limited
resources: Previous research has addressed the
problem of scheduling multi-mode projects
where resources are limited. Our research
contributes to this field by applying it to the
specific context of healthcare organizations and
comparing the performance of Google OR tools
and genetic algorithms.

Genetic Algorithms: Genetic algorithms are
metaheuristic optimization methods inspired by
natural selection and genetics, and are
commonly used to generate high-quality
solutions to optimization and search problems.
Our research innovatively applies these
algorithms to the medical staff scheduling
problem and compares their performance with
Google OR tools.

Google OR Tools: Although I could not find
specific references to Google OR tools in the
context of scheduling, these tools are widely
used to solve various optimization problems.

Comparing algorithms: Comparing algorithms
usually involves analyzing their efficiency in
terms of time and space. Our research follows

this approach by comparing the performance of
Google OR tools and genetic algorithms in
different scenarios.

In conclusion, our research builds on previous
studies in these areas and provides valuable
insights into medical staff scheduling in
healthcare organizations. The discovery that the
modified Google OR algorithm significantly
outperforms the Google OR tools and the
regular genetic algorithm is a major
contribution to the field.[15-24]

6.2 Results Discussions
The comparative analysis revealed intriguing
insights into the strengths and weaknesses of
both Google OR Tools and genetic algorithms
in optimizing medical officer scheduling. Both
methods achieved high levels of scheduling
efficiency, consistently generating feasible and
conflict-free schedules. However, their
performance varied in other aspects:
Shift requests medical officer.: Google OR
Tools and Improved OR Tools consistently
fulfilled more medical officer shift requests
compared to the genetic algorithm. This
suggests that constraint programming excels in
respecting individual preferences while
optimizing the overall schedule.

Computational efficiency: Improved OR
Tools demonstrated the fastest execution times,
followed by Google OR Tools and then the
genetic algorithm. This highlights the
importance of optimizing constraint models and
solver selection for improved efficiency.

Conflicting schedules: The genetic algorithm
encountered a significantly higher number of
conflicting schedules during its search. This
indicates a trade-off between solution quality
and computational efficiency, where exploring
a broader search space might lead to more
infeasible solutions initially.

Practical Implications: The findings of this
research offer valuable practical implications
for healthcare organizations seeking to optimize
medical officer scheduling:

Google OR Tools and Improved OR Tools
emerge as efficient and reliable options for
scheduling with high adherence to medical
officer preferences and efficient schedule
generation. Organizations with resource

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

102

constraints and a priority on respecting medical
officer requests may find these tools particularly
beneficial.

The genetic algorithm, while achieving a lower
success rate in meeting shift requests, offers an
alternative approach for exploring a broader
solution space and potentially discovering
unforeseen optimal solutions. This could be
valuable for organizations with highly complex
scheduling requirements and flexibility in
adjusting shift assignments.

The improved versions of both tools
demonstrate the potential of algorithmic
modifications for enhancing performance.
Organizations can explore further
customization of these tools or consider
utilizing hybrid approaches that combine
constraint programming with metaheuristics for
even greater efficiency and solution quality.

Unexpected Results and Challenges: One
unexpected result was the relatively low number
of shift requests met by the genetic algorithm.
While it found optimal solutions in terms of
schedule efficiency, balancing individual
preferences with overall optimization proved
more challenging. Additionally, the high
number of conflicting schedules encountered
during its search highlights the need for further
refinement of the algorithm for specific
healthcare applications.

7. CONCLUSION
This research highlights the effectiveness of
Google OR tools and genetic algorithms in
improving resource-constrained multi-project
scheduling for medical staff in healthcare
settings. By comparing their performance and
proposing algorithmic improvements, this study
provides valuable insights to guide decision-
making in healthcare organizations. Ultimately,
choosing the most appropriate scheduling tool
will depend on individual organizational needs,
resources, and priorities. However, the results
of this research provide a critical step toward
improving medical staff scheduling practices,
ultimately leading to improved patient care,
increased medical staff satisfaction, and a more
efficient health care system. The improved
Google tools showed high speed and less
memory consumption, while the regular Google
tools took longer, and the genetic algorithm

consumed a lot of memory and needed a long
time.

REFERENCES
1. Google Corporation, “Google Developers”,
http://developers.google.com/, January 9, 2024.

2. GeeksforGeeks, “Genetic Algorithms”,
https://www.geeksforgeeks.org/genetic-algorithms/.
January 9, 2024.

3. Static, U., Jacko, P., & Kirkbride, C.,
“Performance evaluation of scheduling policies for
the dynamic and stochastic resource-constrained
multi-project scheduling problem “, International
Journal of Production Research, Vol. 60, Issue 4,
Pages 1411-1423, 2022.

4. Browning, T. R., Yassine, A. A., “Resource-
constrained multi-project scheduling: Priority rule
performance revisited“, International Journal of
Production Economics, Vol. 126, Issue 2, Pages 212-
228, 2010.

5. Fischer, F. M., Borges, F. N., Rotenberg, L.,
Latorre, M. R., Soares, N. S., Rosa, P. L., Teixeira,
L. R., Nagai, R., Steluti, J., Landsbergis, P.,
“Workability of health care shift workers: What
matters? “, Chronobiol Int., Vol. 23, Issue 6, Pages
1165-79, 2006.

6. Mahmud, F., “Evolutionary Algorithms for
Resource Constrained Project Scheduling Problems
“, Doctoral Thesis, UNSW University, Sydney,
2023.

7. El-Abbasy, M. S. K., “Multi-objective multi-
project construction scheduling optimization“,
Doctoral Thesis, Concordia University, Montreal,
2015.

8. Chen, R., Liang, C., Gu, D., Leung, J. Y., “A
multi-objective model for multi-project scheduling
and multi-skilled staff assignment for IT product
development considering competency evolution “,
International Journal of Production Research, Vol.
55, Issue 21, Pages 6207-6234, 2017.

9. De Boer, R., “Resource-constrained multi-project
management”, Doctoral Thesis, University of
Twente, Netherlands, 1998.

10. Kannimuthu, M., Raphael, B., Ekambaram, P.,
Kuppuswamy, A., “Comparing optimization
modeling approaches for the multi-mode resource-
constrained multi-project scheduling problem “,
Engineering, Construction and Architectural
Management, Vol. 27, Issue 4, Pages 893-916, 2020.

Elhalid and Işık /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 8:1 (2024) 92-103

103

11. Browning, T. R., & Yassine, A. A., “A random
generator of resource-constrained multi-project
network problems “, Journal of Scheduling, Vol. 13,
Issue 1, Pages 143-161, 2010.

12. Badawiyeh, B. H., “The effect of planning and
resource leveling on UAE contractors”, Doctoral
Thesis “, The British University, Dubai, 2010.

13. Cadorin, D., Darwish, R., “Decision-making
biases in project portfolio selection and
prioritization: An exploratory study of the rationale
behind decision making leading to project portfolio
problems “, Master Thesis, Umea University,
Sweden, 2015.

14. Zhou, Q., Li, J., Dong, R., Zhou, Q., & Yang, B.,
“Optimization of multi-execution modes and multi-
resource-constrained offshore equipment project
scheduling based on a hybrid genetic algorithm “,
Computer Modeling in Engineering & Sciences,
Vol. 134, Issue 2, Pages 1263-1281, 2023.

15. Workable, Medical Administrative Assistant job
description. https://www.workable.com, January 9,
2024

16. IEEE Xplore, Multi-Mode Project Scheduling
with Limited Resource and Budget Constraints,
https://ieeexplore.ieee.org, January 9, 2024

17. Typeset. Multiproject Scheduling with Limited
Resources: A Zero-One Programming Approach,
https://www.typeset.io, January 9, 2024

18. Springer, Multi-project scheduling with two-
stage decomposition, https://www.springer.com,
January 9, 2024

19. Wikipedia, Genetic algorithm,
https://www.wikipedia.org, January 9, 2024

20. GeeksforGeeks, Genetic Algorithms,
https://www.geeksforgeeks.org, January 9, 2024

21. OpenDSA, Comparing Algorithms,
https://opendsa.io, January 9, 2024

22. Study Algorithms, How do you compare the two
algorithms?, https://www.studyalgorithms.com,
January 9, 2024

23. Baeldung, How to Compare Two Algorithms
Empirically?, https://www.baeldung.com, January
9, 2024

24. Wikibooks, Problem Solving: Comparing
algorithms, https://www.wikibooks.org, January 9,
2024

	ilk_Elhalid
	009_Elhalid
	REFERENCES

