

*Corresponding Author, e-mail: erdal.ozdogan@gazi.edu.tr

Research Article GU J Sci, Part A, 10(4): 452-471 (2023) 10.54287/gujsa.1373305

Gazi University

Journal of Science

PART A: ENGINEERING AND INNOVATION

http://dergipark.org.tr/gujsa

Systematic Analysis of Infrastructure as Code Technologies

Erdal ÖZDOĞAN1* Onur CERAN1 Mutlu Tahsin ÜSTÜNDAĞ2

1 IT Department, Gazi University, Ankara, Türkiye
2 Distance Education Application and Research Center, Gazi University, Ankara, Türkiye

Keywords Abstract

Infrastructure as Code

Network Automation

IaC Tools

Configuration

Management

“Infrastructure as Code” technologies are the network automation concept used in configuring network

devices, allocating network resources, and deploying developed applications. By using machine-

readable codes, various tasks that previously required time and effort can now be done dynamically with

infrastructure as code tools. Although Infrastructure as Code is a technology that brings many advantages

and is still at the beginning of its popularity, there are not enough resource in the literature. In this study,

the key concepts of Infrastructure as Code technologies are discussed and infrastructure as code tools

are systematically examined. The six most used Infrastructure as Code tools were examined in terms of

management, language, data representation, code approach, stateful and stateless, architectural

perspectives. Also, they were compared over these key concepts. The main purpose of this article is to

define, classify, and elucidate the emerging infrastructure as code tools.

Cite

Ozdogan, E., Ceran, O., & Ustundag, M.T (2023). Systematic Analysis of Infrastructure as Code Technologies. GU J Sci, Part A,

10(4), 452-471. doi:10.54287/gujsa.1373305

Author ID (ORCID Number) Article Process

0000-0002-3339-0493

0000-0003-2147-0506

0000-0001-6198-2819

Erdal OZDOGAN

Onur CERAN

Mutlu Tahsin USTUNDAG

Submission Date

Revision Date

Accepted Date

Published Date

09.10.2023

30.10.2023

14.11.2023

12.12.2023

1. INTRODUCTION

Today's Information Technologies (IT) have fundamental needs for both consumers of IT services and the

software development sector that provides these services, such as speed, consistency, and security. With the

support of virtualization and cloud computing technologies, IT resources have begun to be utilized more

efficiently, and the needs of service providers and users have been relatively met. Increasing consumer

demands and new technological trends have necessitated cloud-based resource provisioning to be much faster

and error-resistant. This requirement has led to the use of automation in the sharing and provisioning of

infrastructure resources such as storage, processors, memory, and networking, giving rise to the concept of

Infrastructure as Code (IaC). On the other hand, the growing popularity of cloud technologies has particularly

led to the development of new types of applications targeting cloud environments or efficient operation of

cloud-based applications or network applications, the automation of various infrastructures and the

dynamization of the software development process are required (Tankov et al., 2021). The use of Infrastructure

as Code, which is a software engineering tactic that reduces the technical and organizational distance between

software development and infrastructure provisioning processes, has become quite widespread in the IT sector

(Artac et al., 2017).

IaC is a set of applications that uses "code" instead of manually entered commands to set up virtual machines,

networks, and software packages, and to configure the environments that applications require (Patni et al.,

2020). In IaC technologies, tasks such as provisioning infrastructure and installing software are managed

through automation using code. In cloud service providers, meeting users' varying demands at different times

using traditional methods can be time-consuming and error prone. However, thanks to IaC, efficient

mailto:erdal.ozdogan@gazi.edu.tr
https://doi.org/10.54287/gujsa.1373305
http://dergipark.org.tr/gujsa
https://doi.org/10.54287/gujsa.1373305
https://orcid.org/0000-0002-3339-0493
https://orcid.org/0000-0003-2147-0506
https://orcid.org/0000-0001-6198-2819
https://orcid.org/0000-0001-6198-2819
https://orcid.org/0000-0002-3339-0493
https://orcid.org/0000-0003-2147-0506
https://orcid.org/0000-0001-6198-2819

453
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

distribution and sharing of infrastructure resources can be achieved in much shorter periods. Tasks such as

resource sharing, device configuration, preparation of application development and testing environments,

application deployment, and resource management, as depicted in Figure 1, can be accomplished using various

tools within the IaC framework.

Figure 1. Structure of Infrastructure as Code

Infrastructure as Code, a technology that offers many advantages such as rapid resource sharing, efficient

scalability, and low probability of errors, is still at the early stages of its popularity. Many organizations

providing cloud-based services in the IT market are utilizing IaC technologies. However, there is still limited

understanding of how the code underlying IaC applications can be maintained and developed in a measurable

manner (Artac et al., 2017; Guerriero et al., 2019; Dalla Palma et al., 2020). Also there are challenges

encountered in its implementation (Chen et al., 2018; Sandobalin et al., 2019). While there have been various

research efforts in the literature regarding the widespread adoption of IaC technologies and tools in the

industry, there still exists a shortage of resources on the subject (Kumara et al., 2021; Falazi et al., 2022; Alonso

et al., 2023).

Infrastructure as Code has become a frequently employed tool by software developers with the aim of

facilitating the rapid delivery of DevOps applications and services to end-users. In order to systematically

assess studies related to IaC, research domains for IaC were identified in a mapping study conducted by

Rahman et al. (2019).

Due to the early stage of research in the field of IaC, there is a limited amount of academic literature available

on the subject. Artac et al. (2017) have discussed key elements and abstractions in the Topology and

Orchestration Specification for Cloud Applications (TOSCA) standards, pertaining to IaC. The study

summarizes the specialized TOSCA standard for IaC as a tactic to expedite Development and Operations

(DevOps) based lifecycles, aiming to accelerate the cycle of development and operations activities. In the study

by Sandobalin et al. (2017), a tool is presented that supports the management of IaC based DevOps tools. This

tool enables modeling the current state of infrastructure provisioning in the cloud and facilitates the creation

of scripts. In another work by the same authors, a model-based approach is proposed for infrastructure

provisioning (Sandobalin et al., 2019).

https://doi.org/10.54287/gujsa.1373305

454
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

Dalla Palma et al. (2020) have pointed out that software quality metrics developed for general-purpose

programming languages may not be suitable for IaC. In their relevant study, they focused on a specific IaC

tool and developed a new catalog comprising 46 metrics.

In the study by Opdebeeck et al. (2020) the role transition in Ansible, which is one of the Infrastructure as

Code tools, was analyzed. The authors designed a structural model for Ansible roles and developed a unique

algorithm to extract structural changes between two versions of a role. In a study focused on comparing

Infrastructure as Code tools, an analysis was conducted regarding features that do not lead to runtime errors in

the code but require improvement (known as code smells). The study compared two IaC tools based on these

aspects (Schwarz et al., 2018). The authors categorized deficiencies and features that need improvement in the

code as technology-dependent and technology-independent in their study. In another study related to "code

smells" in Infrastructure as Code, three IaC tools were examined from a security perspective (Rahman &

Williams, 2021).

In Infrastructure as Code applications, very little is still known about sustainability and usability. As a result,

some literature studies have directly focused on this issue. Indeed, in a study conducted by Guerriero et al.,

(2019), semi-structured interviews were conducted with senior developers from various companies. This study

highlighted the state of implementation and the fundamental challenges in software engineering in relation to

IaC adoption, exploring the reasons behind its adoption or non-adoption. The study clearly emphasizes the

need for further research in this field. Furthermore, in the same study, it is noted that the support provided by

existing tools is still limited.

In the study by Shvetcova et al. (2019) a method is proposed for the unified description and deployment of

infrastructures, including hardware and software requirements. In the study, the authors describe an improved

Infrastructure as Code tool's (Ansible) module that deploys the necessary infrastructure in a cloud environment

based on specific descriptions. In the work by Tankov et al. (2021), a novel approach is presented that

significantly simplifies the development of local applications in the cloud, enabling developers to create

infrastructure without needing expert-level knowledge about a specific cloud platform. In the study, a direct

code-based approach was developed for provisioning infrastructure, eliminating the need to create manifest

files for infrastructure allocation. In a study that can be considered an advancement in Infrastructure as Code

application, the author aims to enhance the quality of IaC scripts by identifying the characteristics of the

development process associated with scripts and errors that may compromise security and privacy (Rahman,

2018).

Infrastructure as Code is extensively used in modern times for critical software's code reviews, testing

environments, and development processes. Consequently, the techniques employed while writing code can

also be applied when defining infrastructure (Heap, 2016). The experimental study aimed to enhance the

quality of Infrastructure as Code through practitioner assistance. It aimed to assist practitioners in identifying

the source code characteristics of erroneous IaC scripts (Rahman et al., 2019). In another study focused on

identifying code errors, Dalla Palma et al. (2020) developed an innovative method for error prediction using

three different techniques. In the study by Chen et al. (2018), a machine learning-based approach is proposed

to address frequently occurring errors in Infrastructure as Code.

Considering the studies conducted in the field of Infrastructure as Code, it is evident that development

processes are still ongoing and there is a need for systematic analyses of IaC and IaC tool usage. In our study,

we conduct a static analysis by identifying key concepts used to define Infrastructure as Code tools in both the

literature and grey literature. We explain the features of these tools and compare them. Additionally, within

the framework of these key concepts, we conduct a static examination of these tools, revealing which tools are

used for specific purposes. This study explores the concepts of IaC technology to provide insights and facilitate

future research endeavors. The tools utilized in IaC technology are discussed, and a systematic approach is

employed to analyze key concepts.

The study distinguishes itself by incorporating insights from the latest articles and gray literature sources,

ensuring that the findings are not only grounded in established knowledge but also reflect the most current

trends and developments in the field of IaC technologies. By capturing cutting-edge practices and emerging

https://doi.org/10.54287/gujsa.1373305

455
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

challenges, the research offers a forward-looking perspective, contributing to a more nuanced understanding

of the evolving landscape of IaC tools. Going beyond traditional literature reviews, this study constructs a

recommendation tree for the strategic usage of IaC tools. This structured framework provides practical

guidance to decision-makers and practitioners, aiding them in navigating the complexities of IaC

implementation. By outlining tailored strategies based on specific project requirements, organizational goals,

and integration needs, the research offers actionable insights that can be directly applied in real-world

scenarios.

The rest of the article is organized as follows:

In the methodology section, the IaC tools are examined through key concepts, aligning with the primary

objective of this study. In the third section, an evaluation was conducted based on key concepts, and a

recommendation tree for the strategic usage of IaC tools was generated. The results and discussion section

presents the findings acquired and offers recommendations believed to be beneficial for prospective research

in the realm of IaC technologies. In the final section, the contributions of the study have been presented, and

the article concludes with future potential research directions.

2. METHODOLOGY

This section includes the fundamental concepts that will be used for evaluating Infrastructure as Code tools,

along with explanations of these concepts. Understanding the meanings of these key concepts accurately is

essential for comprehending the efficiency of the tools. The correct interpretation of these key concepts enables

us to grasp the effectiveness of the tools.

The method we followed in the study is shown in Figure 2.

Figure 2. The workflow we followed in this study

Firstly, to identify the most used Infrastructure as Code tools, we conducted searches in ACM Digital Library,

Clarivate Web of Science and Google Scholar for studies published in the last two years using the keywords

"Infrastructure as Code ∨ IaC ∨ IaC Management v IaC Tools". The studies we have examined are presented

in Table 1. Subsequently, we identified the IaC tools discussed in the studies and extracted the key concepts

used in their definitions.

https://doi.org/10.54287/gujsa.1373305

456
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

Table 1. Studies published within the last two years within the scope of the article

No The Examined Studies

1 Automated Application Deployment on Multi-Access Edge Computing: A Survey (Santos et al., 2023)

2 Static Analysis of Infrastructure as Code: a Survey (Chiari et al., 2022)

3 Practitioner Perceptions of Ansible Test Smells (Zhang et al., 2023)

4 Infrastructure as Code for Dynamic Deployments (Sokolowski, 2022)

5 Comparison of infrastructure as code frameworks from a developer perspective (Karlsson, 2023)

6 Infrastructure-as-Code Ecosystems (Opdebeeck et al., 2023a)

7 The SODALITE Model-Driven Approach (Gorroñogoitia et al., 2022)

8 DevOps and IaC to Automate the Delivery of Hands-On Software Lab Exams (Sorour & Hamdy, 2022)

9 Embracing IaC Through the DevSecOps Philosophy (Alonso et al., 2023)

10 IEM: A Unified Lifecycle Orchestrator for Multilingual IaC Deployments (Diaz-De-Arcaya et al., 2023)

11 Extensible Testing for Infrastructure as Code (Spielmann et al., 2023)

12
Control and Data Flow in Security Smell Detection for Infrastructure as Code: Is It Worth the Effort?

(Opdebeeck et al., 2023b)

13
Cybercompetitions: A survey of competitions, tools, and systems to support cybersecurity education (Balon

& Baggili, 2023)

14 Towards Reliable Infrastructure as Code (Sokolowski & Salvaneschi, 2023)

15 Decentralizing Infrastructure as Code (Sokolowski et al., 2023)

16 Formal Verification of Infrastructure as Code (De Pascalis, 2022)

17
A Structured Literature Review Approach to Define Serverless Computing and Function as a Service

(Manner, 2023)

18
“Through the looking-glass." An Empirical Study on Blob Infrastructure Blueprints in TOSCA (Dalla Palma

et al., 2023)

19
Building an IT Security Laboratory for Complex Teaching Scenarios Using ’Infrastructure as Code’ (Soll et

al., 2023)

20 Provisioning Secure Cloud Environment Using Policy-as-code and Infrastructure-as-code (Tripathi, 2023)

21 DevSecOps: A Security Model for Infrastructure as Code Over the Cloud (Ibrahim et al., 2022)

22
A comparison between Terraform and Ansible on their impact upon the lifecycle and security management

for modifiable cloud infrastructures in OpenStack (Gurbatov, 2022)

23 Ansible in different cloud environments (Witt & Westling, 2023)

24 Ansible: A Reliable Tool for Automation (Daffalla Elradi, 2023)

25 DevOps and Tools Used: A Systematic Review (Raj et al., 2022)

26 Adoption of Infrastructure as Code (IaC) in Real World (Murphy, 2022)

https://doi.org/10.54287/gujsa.1373305

457
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

Within the scope of this study, the works that define, examine, or utilize IaC tools are listed in Table 2. The

table illustrates which tools are addressed in each study and the percentage weight of their presence across all

studies.

According to Table.1, the most frequently used tools are Ansible, Puppet, Chef, Terraform, CloudFormation,

and SaltStack. For these tools mentioned in the literature, we determined the most widely used IaC tools for

cloud configuration purposes in 2023, based on Statista (2023). Accordingly, CloudFormation has a usage rate

of 51%, Terraform: 30%, Ansible: 20%, Chef: 14%, Puppet: 15%, and SaltStack: 10%. The usage statistics of

IaC tools covered in this article, which have been the subject of academic studies in the last two years, are also

provided in Table 2.

Table 2. IaC tools are addressed in each study and the percentage weight of their presence

IaC Tool Name References Weight %

Ansible [1],[2],[3],[4],[6],[7],[8],[9],[10],[12],[13],[14],[16],[18],[19],[21],[22],[23],[24],[25],[26] 81%

Chef [1],[2],[4],[7],[9],[10],[12],[13],[14],[16],[18],[19],[21],[22],[23],[24],[25],[26] 69%

CloudFormation [2],[4],[5],[9],[15],[16],[18],[19],[22],[26] 38%

Puppet [1],[2],[4],[7],[10],[12],[13],[14],[21],[22],[23],[24],[26] 50%

SaltStack [10],[13],[16],[21],[24] 19%

Terraform [1],[2],[4],[8],[9],[10],[11],[13],[14],[15],[16],[19],[20],[21],[22],[23],[24],[26] 69%

We examined these tools statically. We identified the keywords that authors used in defining IaC, explaining

IaC tools, or conducting comparisons. Additionally, we browsed the websites of the most frequently used tools

and conducted a gray literature review. This allowed us to identify not only the key concepts from previous

studies but also new concepts (Rahman et al., 2020). These key concepts are provided in Table 3.

Table 3. Key concepts used in definitions

Key Concept References

Approach [1],[2],[4],[5],[13],[16],[21],[22],[23],[26]

Architecture [1],[7],[10],[13],[21],[22],[23],[24]

Idempotency [1],[2],[6],[8],[16],[22]

Programming Language [4],[5],[14],[15],[23],[24]

Data Format [1],[4],[5],[12],[14],[21],[22],[23],[24],[26]

Scalability [1],[15],[19],[22],[24]

Infrastructure State [6],[15],[22]

Management Purpose [1],[2],[6],[7],[8],[9],[10],[11],[12],[14],[15],[16],[20],[22],[26]

Security & Code Smells [2],[12],[19],[24]

Cloud Integration [5],[21],[22]

Application Deployment & Distribution [1],[2],[6],[7],[9],[19]

Usability [2],[5],[7],[12],[13],[14],[19],[24],[26]

When considering the concepts expressed in the studies, it is observed that the most used terms in defining IaC

tools are management purpose, data format, approach, architecture, and usability.

https://doi.org/10.54287/gujsa.1373305

458
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

2.1 IaC Tools

Infrastructure as Code tools use scripts to define, update, and execute the creation of cloud infrastructure. Each

IaC tool has its own scripting language to describe the infrastructure and processes to be carried out.

Commonly used IaC tools (Achar, 2021).

Ansible: Ansible is an IT (Information Technology) automation engine that automates cloud applications

(Singh et al., 2016). With both open source and paid versions available, Ansible is primarily utilized as a

configuration management tool for managing resources (Artac et al., 2018). The Ansible management tool

works on almost all Linux machines running Python 2 or 3. Management of infrastructure resources is achieved

through SSH connections established via the node where this configuration management tool operates as seen

in Figure 3. This enables the execution of scripts on remote hardware, the removal of executed scripts, and the

installation of Python libraries. Similarly, configuration can also be performed on remote hardware through

REST APIs (Ning, 2023).

Figure 3. The architecture of Ansible

Chef: Chef is an open-source IaC configuration management tool that enables developers and operations teams

to automate the process of configuring and deploying infrastructure and applications (L’Esteve, 2023). It serves

as a significant IaC tool for managing complex environments. With Chef, users can define infrastructure as

code using a domain-specific language (DSL) called Chef DSL (Mustafa, 2023). This allows for the desired

state of infrastructure components and applications to be defined, including software packages, system

configurations, user accounts, and security settings.

Chef operates by breaking down the configuration process into small, reusable components called "recipes"

and collections of relevant recipes known as "cookbooks" (Figure 4). Recipes are individual components of

the configuration code, while cookbooks are collections of related recipes (Surianarayanan & Chelliah, 2023).

Users can share and reuse cookbooks to create their own infrastructure and applications, thereby facilitating

the management of larger, complex environments.

As seen in Figure 4, Chef also includes a powerful tool called "Chef Server," which serves as a centralized

repository for configuration data and provides a way to manage configuration changes across multiple nodes.

This server ensures that all nodes are consistently configured and aids in simplifying the management of large,

complex environments.

Puppet: Puppet is an IaC configuration management tool that was founded as an open-source solution in 2005

but later evolved into a commercial platform. The Puppet Server, also known as Puppet Master, is the core

https://doi.org/10.54287/gujsa.1373305

459
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

component, which includes the information gathering service called Facter, and components like PuppetDB

that store events, node catalogs, current configurations, and historical data.

Puppet consists of both client and server components. The client, also known as the Agent, is securely installed,

and configured on target machines. The client and server authenticate each other using self-signed certificates.

The Agent collects events under the control of the Facter service and applies configuration changes as directed

by the Puppet Server (Bessghaier et al., 2023). Puppet includes modules that enable connectivity for Cloud

APIs and hardware that cannot run agents. User interactions are typically conducted through SSH and the

command line (Figure 5).

Figure 4. The Chef tool architecture

Figure 5. The architecture of Puppet tool

After the Puppet server is operational, the Puppet Agent tool can be installed on the desired client to manage

it. Server configuration information is stored in the puppet.conf file on the client. The server can now collect

information from the client and update its status with any configuration changes. Notifications to be configured

are stored in manifest files. Notification files typically have a .pp extension and are written in a declarative

language resembling Ruby.

https://doi.org/10.54287/gujsa.1373305

460
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

SaltStack: SaltStack is a decentralized model-based Infrastructure as Code tool that operates through a server

(Zadka, 2019). As seen in Figure 6, it consists of a central server called Salt Master and clients known as Salt

Minions, which act as agents on nodes. One of its notable features is the use of Python scripts and the YAML

language (Ning, 2023). Configuration commands are sent to clients via the SSH protocol as events. In the

SaltStack architecture, clients and configuration templates are organized in groups, allowing for easier

management of the environment. Salt servers can operate redundantly. In case one server becomes unavailable,

clients can seek support from another server. This means that multiple master servers can be utilized.

Terraform: Terraform is an open-source IaC orchestration tool developed by HashiCorp (Gupta et al., 2021).

It is used to create, manage, and update server infrastructure, storage, networking, and various other services

using written configuration files (Terraform, 2023). Terraform enables users to manage infrastructure using

explicitly defined configuration files. With Terraform, users can create and configure resources on various

platforms such as cloud service providers and on-premises virtual machines. Users utilize a language called

HashiCorp Configuration Language (HCL) to define infrastructure in Terraform. HCL allows users to define

infrastructure resources in a human-readable and writable format. In Figure 7, the Terraform architecture is

depicted.

Figure 6. The architecture of Saltstack

Figure 7. The architecture of Terraform

Terraform projects are written in a specialized language called HCL. This language enables the definition and

configuration of infrastructure and is formatted to be readable and writable by humans. The command-line

interface of Terraform allows users to execute Terraform commands. These commands perform various tasks

such as planning, applying, and managing infrastructure.

https://doi.org/10.54287/gujsa.1373305

461
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

Terraform can manage various infrastructures, including different cloud providers or on-premises

infrastructure providers. Each infrastructure provider includes a custom "provider" plugin that enables

Terraform to communicate with these platforms. Terraform's operational state is stored in a 'state file.' This

file is used to track the current state of the managed infrastructure and changes made by Terraform. It is crucial

to securely store this state file as it represents the actual state of the infrastructure. Terraform modules are used

to define reusable infrastructure components. Modules are independent blocks representing different sections

of the infrastructure and can be customized with parameters. Configuration Files: Terraform projects typically

include configuration files such as 'main.tf,' 'variables.tf,' and 'outputs.tf.' These files determine how the

infrastructure is defined and configured. Terraform creates and updates resources as defined, ensuring a

specific state, making it a tool suitable for continuous integration and continuous deployment (CI/CD)

processes without manual intervention.

CloudFormation: CloudFormation is a service provided by Amazon Web Services (AWS) that allows

automatic creation and management of infrastructure resources (AWS, 2023). It is a managed AWS service

that enables users to define AWS infrastructure using template files in JSON or YAML format, known as

templates. These template files assist users in specifying the resources, relationships, and configurations they

want to create. CloudFormation enables users to deploy their infrastructure quickly and in a repeatable manner.

These templates can include resources such as virtual private clouds (VPCs), servers, databases, storage

solutions, and other AWS services. In Figure 8, the CloudFormation architecture is depicted.

Figure 8. The architecture of CloudFormation

Code Pipeline is a fully managed continuous delivery service that automates the build, test, and deployment

phases. Code Commit is a fully managed source control service that hosts secure and scalable Git repositories.

CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software

packages that are ready to deploy. CloudFormation is a service that allows to define and provision AWS

infrastructure as code using a template. The template is a JSON or YAML file that describes the resources

needed and their configurations.

In summary, the user creates a template and pushes it to CloudFormation. CloudFormation then provides

provisioning based on the specified resources. CloudFormation automates tasks such as tracking infrastructure

changes, configuring security settings, and documenting the infrastructure. This allows users to manage their

infrastructures and utilize their resources.

2.2. Key Concepts for Analyzing IaC Tools

Various concepts need to be considered when provisioning network infrastructure and providing a software

development platform. It can be said that these concepts play a key role in the examination and evaluation of

https://doi.org/10.54287/gujsa.1373305

462
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

IaC tools. In this section, these concepts that will be used in the analysis are discussed within the framework

of IaC.

Idempotency: It is a concept that refers to producing the same result every time a software or script is executed

(Rahman et al., 2020). Both in infrastructure provisioning and the delivery of software platforms, the presence

of multiple components such as memory, bandwidth, and platforms are required within a collection structure.

When scripts are executed, it is expected that these collections yield the same results consistently. The concept

of idempotence is related to the situation where a script, even if it has been run before, can be executed again

without causing any harm to the intended collections being created. Within this context, idempotence allows

for the creation of new, consistent, and standard infrastructure while also facilitating the easy generation of

collection components. Another advantage provided by idempotence is the ability to revert to a correctly

functioning configuration to rectify errors stemming from incorrect configurations. When an IaC tool with

idempotence feature is used, it allows for the reversal of erroneous changes and quick reconstruction within a

short period. Idempotence also offers advantages in dynamic structures like cloud computing resource

provisioning. It makes it easier to securely fix infrastructure-related issues, perform gradual upgrades, modify

configurations, or manage scaling (Salonen, 2020). In essence, idempotence ensures that scripts, like code,

reliably achieve the desired end goal on a collection of interconnected resources or components.

Approach: In both software development and infrastructure provisioning processes, the desired outcome is to

create an idempotent collection of resources. IaC tools utilize two different approaches to achieve this:

procedural and declarative methods (Bellendorf & Mann, 2020; Vladusic & Radolovic, 2020). The procedural

approach involves preparing automation scripts by performing specific steps each time. In this approach,

scaling creates more management overhead. However, existing configuration scripts are usually more

understandable, making it generally an easier approach. In the declarative approach model, the desired

infrastructure collection is expressed statically through declarations. In IaC tools that use this model, the

existing conditions are examined to provide configurations dynamically, ensuring compatibility by calculating

differences to achieve the desired infrastructure. Ansible and Puppet are declarative-based, while Chef is a

procedural IaC tool (Muthoni et al., 2021).

Stateless: This concept refers to not storing session information or additional details about the used tool on the

server or target systems within the IaC configuration tool. Automation yields the best results when applications

are made stateless. In stateless approaches, each configuration request is treated as an independent request.

This provides advantages in terms of speed and resource consumption (Salonen, 2020).

Architecture: This refers to whether IaC tools require code running as an agent on the target system to perform

the configuration process on the target system (Alonso et al., 2023). Some IaC tools operate in an agent-based

manner, while others work without requiring an agent. The installation of an agent onto the target system adds

an extra process and burden. Therefore, it can be said that the agentless approach is more flexible (Hasbi et al.,

2022). Agent-based approaches often utilize a client/server architecture.

Infrastructure State: The process of changing production infrastructure components while all services or

applications continue to run normally is known as mutable infrastructure. Such infrastructures bring together

and organize components and resources to create a fully functional service or application. If any component,

service, or configuration needs a change, it is updated by redeployment without any editing or modification.

The old version is stopped, releasing resources for reuse, while the new version is compiled, tested, verified,

and deployed. Patching and reconfiguration processes are not performed. One of the significant advantages of

mutable infrastructures is the ability to quickly revert to a previous version when needed. On the other hand,

immutable infrastructures can simplify configuration management by reducing the server space that needs to

be managed by definition files (Johann, 2017).

Programming Language: IaC tools have been developed in various programming languages. The capabilities

of these programming languages naturally determine the capabilities of the IaC tool as well (Rahman et al.,

2021). Library support and module support, as language-specific capabilities, enhance the usability of an IaC

tool. The modular structure provided by the development language assists in ease of maintenance, readability,

and familiarity with the language. Furthermore, it allows changes to be applied incrementally and

https://doi.org/10.54287/gujsa.1373305

463
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

independently (Shvetcova et al., 2019). Therefore, the language of an IaC tool being a widely-used language

or closely related to a high-level programming language is an important advantage.

Data Format: Configuration commands executed by IaC tools need to be in a machine-readable format. For

this purpose, XML, YAML, and JSON data types are commonly used data representation formats (Quattrocchi

& Tamburri, 2023). Having configuration parameters or commands easily extractable in a readable form

enhances the capabilities of an IaC tool. While XML is a self-descriptive data representation format, the

process of extracting parameters for automation processes by machines can be more complex (Wąsowski &

Berger, 2023). JSON is a more commonly used data representation format that expresses data in key-value

pairs. Compared to XML, it is easier to read, and key-value pairs can be extracted more easily. Additionally,

its similarity to the dictionary data format in the Python programming language has provided it with a broader

range of applications. Another data representation format, YAML, consists of a simple structure of key-value

pairs. As a result, it is commonly used for automating device configurations.

Management Purpose: IaC tools are used in the realms of provisioning, configuration, deployment, and

orchestration from a managerial perspective. Provisioning refers to the acquisition of real or virtual computing,

storage, and network infrastructure, enabling communication, bringing services online, and preparing them for

use by operators and developers (Sandobalin et al., 2019). Configuration involves performing the necessary

tasks, processes, and tests to set up fundamental applications and services, as well as preparing a low-level

platform to deploy applications or a higher-level platform. Deployment typically refers to the creation,

arrangement, integration, and preparation of multi-component applications or higher-level platforms across

multiple nodes (Achar, 2021). Orchestration refers to the processes or workflows that connect automation tasks

together to manage workload lifecycles in container environments, dynamically respond to changing

conditions, and provide business advantages such as self-service. This is particularly relevant in container

environments where various tasks are coordinated to achieve efficient and effective management (Artac et al.,

2017).

Scalability: Scalability refers to the ability to manage infrastructure resources in a manner that aligns with the

size, complexity, and requirements of an organization or project. In the context of Infrastructure as Code tools,

scalability indicates the capability to effectively operate in larger and more complex systems. Scalable IaC

solutions are noteworthy for their ability to adapt to factors such as increased workloads, user numbers, or data

volumes. The ability of Infrastructure as Code tools to integrate with the cloud is also related to scalability.

(Patni et al., 2020).

Security & Code Smells: Security in IaC refers to the built-in mechanisms and practices that help ensure the

security of the deployed infrastructure. These features are essential for protecting sensitive data, preventing

unauthorized access, and maintaining the overall security posture of the system. IaC tools often integrate with

secrets management systems to securely store and manage sensitive information such as API keys, passwords,

and certificates. These secrets are accessed programmatically by the IaC scripts without exposing them in the

configuration files (Petrović et al., 2022). IaC tools can integrate with vulnerability scanning tools to identify

security weaknesses in the deployed infrastructure. Automated scans help detect vulnerabilities,

misconfigurations, and potential security threats, enabling timely remediation.

Cloud Integration: Cloud integration capability for IaC tools refers to the ability of these tools to seamlessly

interact and integrate with various cloud service providers' APIs (Application Programming Interfaces) to

provision, manage, and configure cloud resources (Diaz-De-Arcaya et al., 2023). IaC tools with cloud

integration capabilities enable users to automate the deployment and management of cloud-based

infrastructures using code.

3. RESULTS AND DISCUSSION

Infrastructure as Code is an application that defines complex processes, often cloud-based deployments, and

configurations, through machine-readable code. It encompasses tasks such as configuration, resource

allocation, application distribution, and sharing, achieved through various IaC tools. Despite its growing

popularity, this study focuses on fundamental key concepts of IaC tools, as presented in Table 4. The same

table also includes features that reflect the conceptual differences among IaC tools.

https://doi.org/10.54287/gujsa.1373305

464
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

Table 4. Conceptual differences of IaC tools

 Ansible Puppet Chef SaltStack TerraForm CloudFormation

Code

Approach

Procedural Declarative Procedural Declarative Declarative Declarative

Architecture Agentless Client/Server Client/Server Client/Server Agentless,

Client-only

Agentless,

Client-Server

Language Python Ruby Ruby Python Go AWS Lambda

Data Format YAML Embedded DSL DSL / JSON YAML HCL JSON, YAML

Configuration

Tool

Playbook Recipes /

Cookbook

Cookbook States Modules,

Resources

Template

Infrastructure Mutable Mutable Mutable Mutable Mutable /

Immutable

Mutable /

Immutable

Management

Purpose

Orchestration,

Deployment,

Provisioning

System

Management,

Code

Management,

Configuration

Automation,

Reporting

Developer

Based

Infrastructure

Automation,

Automatized

workload

deployment

System

Management,

Orchestration,

Deployment

Orchestration,

Provisioning,

Configuration

Management,

Deployment

Provisioning,

Configuration

Management,

Deployment

Model Push Pull Pull Pull Push / Pull Push/Pull

Ease of Use Easy Medium Medium Easy Hard Medium / Hard

Dependencies Minimal Medium Medium Medium Minimal/

Medium

High

Cloud

Integration

Multi Cloud Multi Cloud Multi Cloud Multi Cloud Multi Cloud AWS Cloud

Idempotency has not been treated as a key value in the comparison and has not been shown in the table, as it

is a goal for all IaC technologies. Puppet is a declarative IaC tool, whereas Ansible and Chef are procedural

ones. The chef, being procedural, requires creating code step by step to specify how to reach an intended end

state. Additionally, a Chef Client agent is needed on each server to be configured. Terraform and

CloudFormation are declarative, allowing users to define the desired state of their infrastructure without

specifying the step-by-step procedures to reach that state.

From an architectural perspective, when examined, the statelessness of IaC tools provides ease of use and

flexibility. In the event of a potential server failure, Salt offers redundancy, making it highly advantageous.

Puppet achieves the same effect through an alternative server, while Chef utilizes a backup server. Similarly,

Ansible, operating without an agent, becomes a preferred configuration tool. Terraform follows a client-only

architecture. It operates as a standalone command-line tool without the need for a central server or agent.

CloudFormation operates using a centralized service architecture. CloudFormation uses a client-server model

where the client (user or automation tool) sends requests to the CloudFormation service, which then takes care

of coordinating the deployment and management.

The languages in which IaC tools are developed contribute to the tool's development and ensuring long-term

support. Ansible is a tool written in the Python language, which is why it has found a broader range of

applications. When examined in terms of data representation, YAML is more akin to natural language and is

considered an easier language compared to XML, JSON, and DSLs due to its higher level of human-

readability. Ansible can be considered more successful in this regard when compared to other tools. However,

there is variability in syntax integrity within playbooks and other components, resulting in differences from

one product to another. Terraform uses the HashiCorp Configuration Language. HCL is designed to be human-

readable and easy to write. It uses a simple syntax with a focus on readability. CloudFormation templates are

written in JSON or YAML. Terraform operates on a different paradigm. Instead of Cookbooks and Recipes,

Terraform uses the concept of modules and resources. Modules are collections of Terraform configurations

and resources represent the infrastructure components. CloudFormation uses a template-based approach in

https://doi.org/10.54287/gujsa.1373305

465
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

which the entire infrastructure is defined as code in a single document.

Configuration management tools like Chef, Puppet, Ansible, and SaltStack inherently follow a mutable

infrastructure paradigm. For example, when a new version of an application needs to be deployed, the software

update runs on existing servers, and changes occur on the nodes. However, over time, as more updates are

performed, each server accumulates a distinct and unique change history. This can lead to difficult-to-diagnose,

subtle configuration errors. SaltStack uses a declarative language called Salt State Language to define how

systems should be configured. The States in SaltStack are similar in concept to Cookbooks in Chef, but the

terminology and approach are different. States define the desired state of a system, and the SaltStack system

then applies those states to manage and configure the infrastructure. Both Terraform and CloudFormation

provide flexibility in managing both mutable and immutable infrastructure.

When viewed from the perspective of server configuration, Ansible, Chef, Puppet, and SaltStack are tools

specifically designed to configure servers using the infrastructure-as-code approach. They utilize configuration

definition files with a Domain Specific Language designed for server configuration. The IaC tool reads

definitions from these files and applies the relevant configuration to a server. Many server configuration tools

use an agent installed on each server. Both Chef and Puppet are designed to work in this manner by default.

The concepts of Pull and Push are related to how changes in infrastructure are applied and managed. Ansible

uses push model to configure. By default, it uses SSH keys to connect to servers and execute commands. It

benefits from not requiring configuration agents installed on managed servers, yet SSH usage can slow down

large-scale networks. Furthermore, Ansible is more focused on orchestration rather than just configuration

management. Puppet, Saltstack and Chef use pull model. Terraform is more explicitly pull-oriented, both

Terraform and CloudFormation can be integrated into CI/CD workflows, allowing for automation and

collaboration in a push-centric or pull-centric manner, depending on the use case and preferences.

Cloud integration is an important feature for IaC tools. While Ansible, SaltStack, Chef, Puppet, and Terraform

support multi-cloud systems such as Google Cloud, AWS, and Azure, CloudFormation is specific to AWS.

Ansible uses modules to interact with cloud APIs, allowing users to manage cloud resources alongside other

infrastructure components. Puppet modules and tasks can be used to manage cloud resources, and there are

specific modules for different cloud providers.

From a development environment perspective, Ansible and SaltStack are perceived as more advantageous

management tools compared to others. These tools are more oriented towards system operators. Conversely,

Puppet and Chef tools are arguably more developer focused. The user-friendliness of Ansible makes it ideal

for entry-level operations. However, Puppet and Terraform, requiring knowledge of Domain Specific

Language, is more developer-oriented in terms of usability when compared to other tools. CloudFormation

utilizes AWS Lambda, a serverless computing service that enables users to execute code without the need to

explicitly provision or manage servers.

When looking at ease of use, various factors such as the structure of tasks, the prevalence of the programming

language, scalability, user knowledge, and code complexity affect usability. In this regard, although Ansible

and SaltStack are perceived as more user-friendly and practical, they can still pose challenges for individuals

like everyday users or professors who lack highly technical expertise. Conversely, Terraform takes it a step

further by introducing its own configuration language, thereby adding another layer of complexity.

Another factor affecting ease of use is the dependencies of the tools being used. Another factor affecting ease

of use is the dependencies of the tools being used. Ansible requires minimal dependencies on the managed

nodes. It communicates using SSH for Unix-based systems and Windows. Therefore, it doesn't necessitate

agent installation on target machines. Terraform is a standalone binary that doesn't require installation on the

target systems. It communicates with APIs of cloud providers and other infrastructure services. While it has

minimal dependencies, the necessary provider plugins need to be available. Chef requires the installation of a

Chef client on each node that it manages. This client communicates with the Chef server. The server, in turn,

stores configuration data and cookbooks. SaltStack uses a master-minion architecture. The Salt Minion needs

to be installed on target nodes, and they communicate with the Salt Master. While this introduces some

dependencies, SaltStack is known for its flexibility and scalability. Puppet follows a master-agent architecture

https://doi.org/10.54287/gujsa.1373305

466
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

similar to SaltStack. The Puppet agent needs to be installed on managed nodes, communicating with the Puppet

Master. It also requires the installation of the Puppet server. CloudFormation is specific to AWS and is

primarily used within the AWS ecosystem. Users need to have AWS credentials and permissions.

Dependencies are managed by AWS itself.

In light of all these key concepts, we developed a recommendation tree regarding which tool to use. This tree

structure is provided in Figure 9.

Figure 9. Differentiation based on the features of IaC tools

Provisioning, orchestration, and configuration applications can be implemented using Infrastructure as Code

(IaC) tools. Depending on the purpose, a network automation or cloud application can be developed by

following the tree structure shown in Figure 9. For example, if the goal is to provide provisioning and one is

familiar with which data format (HCL, YAML, JSON), options like CloudFormation or Terraform can be

chosen. If an orchestration process needs to be performed, the choice between Ansible and Terraform depends

on whether Cloud integration is multi-cloud supported or specific to AWS. To make the selection more

specific, choosing between a Push model or a push&pull model can be determined, and a choice between these

two IaC tools can be made. Relative concepts such as ease of use were not taken into consideration when

constructing the tree structure.

This tree structure has been created to clarify the specific use of Infrastructure as Code tools. Objectives,

architecture, programming language, data format, and cloud integration capability, among other distinguishing

features, assist in focusing on each IaC tool's particular strengths. For instance, for the purpose of provisioning,

tools like Cloudformation and Terraform are recommended, while a choice between Ansible and Terraform

may be necessary for orchestration processes. Additionally, taking into account factors such as compatibility

with a specific cloud infrastructure and ease of use, this tree structure guides the selection of IaC tools tailored

to specific use cases. Consequently, users can make more informed and effective decisions when choosing the

most suitable IaC tool for their needs.

4. CONCLUSION

In this study, a comprehensive systematic review of Infrastructure as Code tools has been presented with the

aim of assessing the current state, highlighting potential future trends, and emphasizing existing challenges.

This study significantly contributes to the existing literature by conducting a comprehensive and systematic

review of Infrastructure as Code tools. By thoroughly examining IaC tools through key concepts and

fundamental aspects such as code approach, architecture, language, data format, configuration tool,

infrastructure management, model, and ease of use, this research provides valuable insights into the current

state of IaC technologies. The study not only identifies the characteristics and advantages of these tools but

also emphasizes the positive impact of integrating multiple IaC tools within the same environment on network

automation processes.

https://doi.org/10.54287/gujsa.1373305

467
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

In addition to the comprehensive analysis of Infrastructure as Code tools, this study stands out by focusing on

the latest updates from articles and gray literature sources. By extracting key concepts from these recent

publications, the research ensures that the findings are not only grounded in established knowledge but also

reflect the most current trends and developments in the field of IaC technologies. This approach provides a

forward-looking perspective, allowing for a nuanced understanding of the evolving landscape of IaC tools. By

incorporating insights from the latest articles and gray literature, the study captures cutting-edge practices and

emerging challenges, enriching the overall analysis, and contributing to a more holistic view of the subject

matter. This approach not only strengthens the validity of the research findings but also positions the study as

a valuable resource for both scholars and practitioners seeking up-to-date and relevant information on IaC

tools. This study goes a step further by constructing a recommendation tree for the strategic usage of IaC tools.

By creating this structured framework, the research provides practical guidance to decision-makers and

practitioners in navigating the complexities of IaC implementation. The recommendation tree outlines tailored

strategies based on the specific requirements and goals of different projects and organizations.

This structured approach not only helps in the selection of appropriate IaC tools but also guides users on their

optimal utilization, ensuring alignment with organizational objectives, scalability, security, and efficiency. The

recommendation tree serves as a valuable roadmap, aiding in the decision-making process and enhancing the

strategic deployment of IaC tools within diverse contexts. By integrating this strategic perspective, the study

not only enriches the scholarly discourse but also offers actionable insights that can be directly applied in real-

world scenarios, making it a valuable resource for both academic research and practical implementations in

the field.

This study contributes to our understanding of the overall performance and utilization of IaC tools, potentially

helping shape future developments more effectively. In addition, aspects such as security, resource utilization,

and user-friendliness were not considered within the scope of this study. Conducting research that evaluates

IaC tools based on these features would lead to more effective benefits from IaC technologies. Similarly, when

considering scenarios involving the simultaneous use of multiple IaC tools in the same environment,

conducting analysis and studies on the integration and interoperability of these tools would provide positive

contributions to network automation processes.

While aspects like security, resource utilization, and user-friendliness were not within the scope of this study,

the research highlights the need for future investigations in these areas. By evaluating IaC tools based on these

features and conducting analysis on the integration and interoperability of multiple tools in the same

environment, future studies can further enhance the effectiveness and benefits of IaC technologies,

contributing significantly to the advancement of network automation processes.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Achar, S. (2021). Enterprise SaaS Workloads on New-Generation Infrastructure-as-Code (IaC) on Multi-Cloud

Platforms. Global Disclosure of Economics and Business, 10(2), 55-74.

https://www.doi.org/10.18034/gdeb.v10i2.652

Alonso, J., Piliszek, R., & Cankar, M. (2023). Embracing IaC Through the DevSecOps Philosophy: Concepts,

Challenges, and a Reference Framework. IEEE Software, 40(1), 56-62.

https://www.doi.org/10.1109/MS.2022.3212194

Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., & Tamburri, D. A. (2017, May 20-28). DevOps:

Introducing infrastructure-as-code. In: Proceedings of the IEEE/ACM 39th International Conference on

Software Engineering Companion (ICSE-C 2017), (pp. 497-498). https://www.doi.org/10.1109/ICSE-

C.2017.162

Artac, M., Borovsak, T., Di Nitto, E., Guerriero, M., Perez-Palacin, D., & Tamburri, D. A. (2018, April 30 -

May 4). Infrastructure-as-Code for Data-Intensive Architectures: A Model-Driven Development Approach.

https://doi.org/10.54287/gujsa.1373305
https://www.doi.org/10.18034/gdeb.v10i2.652
https://www.doi.org/10.1109/MS.2022.3212194
https://www.doi.org/10.1109/ICSE-C.2017.162
https://www.doi.org/10.1109/ICSE-C.2017.162

468
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

In: Proceedings of the IEEE 15th International Conference on Software Architecture (ICSA 2018), (pp. 156-

165). https://www.doi.org/10.1109/ICSA.2018.00025

AWS Architecture Blog. (2023). AWS Cloudformation (Accesed:13/11/2023) URL

Balon, T., & Baggili, I. (Abe). (2023). Cybercompetitions: A survey of competitions, tools, and systems to

support cybersecurity education. Education and Information Technologies, 28(9), 11759-11791.

https://www.doi.org/10.1007/s10639-022-11451-4

Bellendorf, J., & Mann, Z. Á. (2020). Specification of cloud topologies and orchestration using TOSCA: a

survey. Computing, 102(8), 1793-1815. https://www.doi.org/10.1007/s00607-019-00750-3

Bessghaier, N., Sayagh, M., Ouni, A., & Mkaouer, M. W. (2023). What Constitutes the Deployment and Run-

Time Configuration System? An Empirical Study on OpenStack Projects. ACM Transactions on Software

Engineering and Methodology, 33(1), 1-37. https://www.doi.org/10.1145/3607186

Chen, W., Wu, G., & Wei, J. (2018, October 15-18). An Approach to Identifying Error Patterns for

Infrastructure as Code. In: Proceedings of the 29th IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW 2018), (pp. 124-129). https://www.doi.org/10.1109/ISSREW.2018.00-19

Chiari, M., De Pascalis, M., & Pradella, M. (2022, March 12-15). Static Analysis of Infrastructure as Code: a

Survey. In: Proceedings of the IEEE 19th International Conference on Software Architecture Companion

(ICSA-C), (pp. 218-225). https://www.doi.org/10.1109/ICSA-C54293.2022.00049

Daffalla Elradi, M. (2023). Ansible: A Reliable Tool for Automation. Electrical and Computer Engineering

Studies, 2(1), 1-10. https://www.doi.org/10.58396/eces020104

Dalla Palma, S., van Asseldonk, C., Catolino, G., Di Nucci, D., Palomba, F., & Tamburri, D. A. (2023).

“Through the looking-glass …” An empirical study on blob infrastructure blueprints in the Topology and

Orchestration Specification for Cloud Applications. Journal of Software: Evolution and Process, 1-22.

https://www.doi.org/10.1002/smr.2533

Dalla Palma, S., Di Nucci, D., Palomba, F., & Tamburri, D. A. (2020). Toward a catalog of software quality

metrics for infrastructure code. Journal of Systems and Software, 170, 110726.

https://www.doi.org/10.1016/j.jss.2020.110726

De Pascalis, M. (2022). Formal verification of infrastructure as code. MSc Thesis, Polytechnic University of

Milan.

Diaz-De-Arcaya, J., Osaba, E., Benguria, G., Etxaniz, I., Lobo, J. L., Alonso, J., Torre-Bastida, A. I., &

Almeida, A. (2023, April 15-19). IEM: A Unified Lifecycle Orchestrator for Multilingual IaC Deployments.

In: Proceedings of the Companion of the 2023 ACM/SPEC International Conference on Performance

Engineering (ICPE 2023), (pp. 195-199). https://www.doi.org/10.1145/3578245.3584938

Falazi, G., Breitenbucher, U., Leymann, F., Stotzner, M., Ntentos, E., Zdun, U., Becker, M., & Heldwein, E.

(2022, March 12-15). On Unifying the Compliance Management of Applications Based on IaC Automation.

In: Proceedings of the IEEE 19th International Conference on Software Architecture Companion (ICSA-C

2022), (pp. 226-229). https://www.doi.org/10.1109/ICSA-C54293.2022.00050

Gorroñogoitia, J., Radolović, D., Vasileiou, Z., Meditskos, G., Karakostas, A., Vrochidis, S., & Bachras, M.

(2022). The SODALITE Model-Driven Approach. In: E. Di Nitto, J. Gorroñogoitia Cruz, I. Kumara, D.

Radolović, K. Tokmakov, & Z. Vasileiou (Eds.), Deployment and Operation of Complex Software in

Heterogeneous Execution Environments (pp. 23-52). SpringerBriefs in Applied Sciences and Technology,

Springer, Cham. https://www.doi.org/10.1007/978-3-031-04961-3_3

Guerriero, M., Garriga, M., Tamburri, D. A., & Palomba, F. (2019, September 29 - October 4). Adoption,

Support, and Challenges of Infrastructure-as-Code: Insights from Industry. In: Proceedings of the IEEE

International Conference on Software Maintenance and Evolution (ICSME 2019), (pp. 580-589).

https://www.doi.org/10.1109/ICSME.2019.00092

Gupta, M., Chowdary, M. N., Bussa, S., & Chowdary, C. K. (2021, October 22-23). Deploying Hadoop

Architecture Using Ansible and Terraform. In: Proceedings of the 5th International Conference on Information

https://doi.org/10.54287/gujsa.1373305
https://www.doi.org/10.1109/ICSA.2018.00025
https://aws.amazon.com/tr/blogs/architecture/category/management-tools/aws-cloudformation/
https://www.doi.org/10.1007/s10639-022-11451-4
https://www.doi.org/10.1007/s00607-019-00750-3
https://www.doi.org/10.1145/3607186
https://www.doi.org/10.1109/ISSREW.2018.00-19
https://www.doi.org/10.1109/ICSA-C54293.2022.00049
https://www.doi.org/10.58396/eces020104
https://www.doi.org/10.1002/smr.2533
https://www.doi.org/10.1016/j.jss.2020.110726
https://www.doi.org/10.1145/3578245.3584938
https://www.doi.org/10.1109/ICSA-C54293.2022.00050
https://www.doi.org/10.1007/978-3-031-04961-3_3
https://www.doi.org/10.1109/ICSME.2019.00092

469
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

Systems and Computer Networks (ISCON), (pp. 1-6).

https://www.doi.org/10.1109/ISCON52037.2021.9702299

Gurbatov, G. (2022). A comparison between Terraform and Ansible on their impact upon the lifecycle and

security management for modifiable cloud infrastructures in OpenStack. MSc Thesis, Blekinge Institute of

Technology.

Hasbi, M., Reza Aristiadi Nurwa, A., Febriyan Priambodo, D., Riski Aulia Putra, W., Sinar Nusantara, S., &

Siber dan Sandi Negara, P. (2022). Infrastructure as Code for Security Automation and Network Infrastructure

Monitoring. Teknik Informatika Dan Rekayasa Komputer, 22(1), 203-217.

https://www.doi.org/10.30812/matrik.v22i1.2471

Heap, M. (2016). Ansible: from beginner to pro. Apress. https://www.doi.org/10.1007/978-1-4842-1659-0

Ibrahim, A., Yousef, A. H., & Medhat, W. (2022, May 8-9). DevSecOps: A Security Model for Infrastructure

as Code over the Cloud. In: Proceedings of the 2nd International Mobile, Intelligent, and Ubiquitous

Computing Conference (MIUCC 2022), (pp. 284-288).

https://www.doi.org/10.1109/MIUCC55081.2022.9781709

Johann, S. (2017). Kief Morris on Infrastructure as Code. IEEE Software, 34(1), 117-120,

https://www.doi.org/10.1109/MS.2017.13

Karlsson, D. (2023). Comparison of infrastructure as code frameworks from a developer perspective. MSc

Thesis, Linköping University.

Kumara, I., Garriga, M., Romeu, A. U., Di Nucci, D., Palomba, F., Tamburri, D. A., & van den Heuvel, W. J.

(2021). The do’s and don’ts of infrastructure code: A systematic gray literature review. Information and

Software Technology, 137(March), 106593. https://www.doi.org/10.1016/j.infsof.2021.106593

L’Esteve, R. C. (2023). Applying DevOps. In: R. C. L’Esteve (Eds.), The Cloud Leader’s Handbook:

Strategically Innovate, Transform, and Scale Organizations (pp. 105-122). Apress.

https://www.doi.org/10.1007/978-1-4842-9526-7_7

Manner, J. (2023, July 2-8). A Structured Literature Review Approach to Define Serverless Computing and

Function as a Service. In: Proceedings of the IEEE International Conference on Cloud Computing, (pp. 516-

522). https://www.doi.org/10.1109/CLOUD60044.2023.00068

Murphy, O. (2022). Adoption of Infrastructure as Code (IaC) in Real World Lessons and practices from

industry. MSc Thesis, JAMK University of Applied Sciences.

Mustafa, O. (2023). Understanding DevOps Concepts. In: A Complete Guide to DevOps with AWS: Deploy,

Build, and Scale Services with AWS Tools and Techniques (pp. 37-78). Apress.

https://www.doi.org/10.1007/978-1-4842-9303-4_2

Muthoni, S., Okeyo, G., & Chemwa, G. (2021, December 9-10). Infrastructure as Code for Business

Continuity in Institutions of Higher Learning. In: Proceedings of the International Conference on Electrical,

Computer and Energy Technologies (ICECET), (pp. 1-6).

https://www.doi.org/10.1109/ICECET52533.2021.9698544

Ning, A. (2023, February 24-26). An Ansible-based Distributed Application Architecture Rapid Deployment

Scheme. In: Proceedings of the IEEE 2nd International Conference on Electrical Engineering, Big Data and

Algorithms (EEBDA), (pp. 972-975). https://www.doi.org/10.1109/EEBDA56825.2023.10090753

Opdebeeck, R., Zerouali, A., Velazquez-Rodriguez, C., & Roover, C. De. (2020, September 28 - October 2).

Does Infrastructure as Code Adhere to Semantic Versioning? An Analysis of Ansible Role Evolution. In:

Proceedings of the 20th IEEE International Working Conference on Source Code Analysis and Manipulation

(SCAM 2020), (pp. 238-248). https://www.doi.org/10.1109/SCAM51674.2020.00032

Opdebeeck, R., Zerouali, A., & Roover, C. De. (2023a). Infrastructure-as-Code Ecosystems. In: T. Mens, C.

De Roover, & A. Cleve (Eds.), Software Ecosystems: Tooling and Analytics (pp. 215-245). Springer

International Publishing. https://www.doi.org/10.1007/978-3-031-36060-2_9

https://doi.org/10.54287/gujsa.1373305
https://www.doi.org/10.1109/ISCON52037.2021.9702299
https://www.doi.org/10.30812/matrik.v22i1.2471
https://www.doi.org/10.1007/978-1-4842-1659-0
https://www.doi.org/10.1109/MIUCC55081.2022.9781709
https://www.doi.org/10.1109/MS.2017.13
https://www.doi.org/10.1016/j.infsof.2021.106593
https://www.doi.org/10.1007/978-1-4842-9526-7_7
https://www.doi.org/10.1109/CLOUD60044.2023.00068
https://www.doi.org/10.1007/978-1-4842-9303-4_2
https://www.doi.org/10.1109/ICECET52533.2021.9698544
https://www.doi.org/10.1109/EEBDA56825.2023.10090753
https://www.doi.org/10.1109/SCAM51674.2020.00032
https://www.doi.org/10.1007/978-3-031-36060-2_9

470
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

Opdebeeck, R., Zerouali, A., & De Roover, C. (2023b, May 15-16). Control and Data Flow in Security Smell

Detection for Infrastructure as Code: Is It Worth the Effort?. In: Proceedings of the IEEE/ACM 20th

International Conference on Mining Software Repositories (MSR 2023), (pp. 534-545).

https://www.doi.org/10.1109/MSR59073.2023.00079

Patni, J. C., Banerjee, S., & Tiwari, D. (2020, July 2-4). Infrastructure as a Code (IaC) to Software Defined

Infrastructure using Azure Resource Manager (ARM). In: Proceedings of the International Conference on

Computational Performance Evaluation (ComPE 2020), (pp. 575-578).

https://www.doi.org/10.1109/ComPE49325.2020.9200030

Petrović, N., Cankar, M., & Luzar, A. (2022, November 15-16). Automated Approach to IaC Code Inspection

Using Python-Based DevSecOps Tool. In: Proceedings of the 30th Telecommunications Forum (TELFOR),

(pp. 1-4). https://www.doi.org/10.1109/TELFOR56187.2022.9983681

Quattrocchi, G., & Tamburri, D. A. (2023). Infrastructure as Code. IEEE Software, 40(1), 37-40.

https://www.doi.org/10.1109/MS.2022.3212034

Rahman, A. (2018, May 27 - June 3). Characteristics of defective infrastructure as code scripts in DevOps.

In: Proceedings of the International Conference on Software Engineering, (pp. 476-479).

https://www.doi.org/10.1145/3183440.3183452

Rahman, A., Barsha, F. L., & Morrison, P. (2021, October 18-20). Shhh: 12 Practices for Secret Management

in Infrastructure as Code. In: Proceedings of the IEEE Secure Development Conference (SecDev 2021), (pp.

56-62). https://www.doi.org/10.1109/SecDev51306.2021.00024

Rahman, A., Farhana, E., Parnin, C., & Williams, L. (2020, June 27 - July 19). Gang of eight: A defect

taxonomy for infrastructure as code scripts. In: Proceedings of the International Conference on Software

Engineering, (pp. 752-764). https://www.doi.org/10.1145/3377811.3380409

Rahman, A., Parnin, C., & Williams, L. (2019, May 25-31). The Seven Sins: Security Smells in Infrastructure

as Code Scripts. In: Proceedings of the International Conference on Software Engineering, (pp. 164-175).

https://www.doi.org/10.1109/ICSE.2019.00033

Rahman, A., & Williams, L. (2021). Different Kind of Smells: Security Smells in Infrastructure as Code

Scripts. IEEE Security and Privacy, 19(3), 33-41. https://www.doi.org/10.1109/MSEC.2021.3065190

Raj, K. A., Anand, A., & Sahana, V. (2022). DevOps and Tools Used: A Systematic Review. (Accessed:

12/11/2023) URL

Salonen, E. (2020). Software Project Services using Infrastructure-as-Code. MSc Thesis, University of Vaasa.

Sandobalin, J., Insfran, E., & Abrahao, S. (2017, June 25-30). An Infrastructure Modelling Tool for Cloud

Provisioning. In: Proceedings of the IEEE 14th International Conference on Services Computing (SCC 2017),

(pp. 354-361). https://www.doi.org/10.1109/SCC.2017.52

Sandobalin, J., Insfran, E., & Abrahao, S. (2019, September 15-20). ARGON: A model-driven infrastructure

provisioning tool. In: Proceedings of the ACM/IEEE 22nd International Conference on Model Driven

Engineering Languages and Systems Companion (MODELS-C 2019), (pp. 738-742).

https://www.doi.org/10.1109/MODELS-C.2019.00114

Santos, A., Bernardino, J., & Correia, N. (2023). Automated Application Deployment on Multi-Access Edge

Computing: A Survey. IEEE Access, 11(July), 89393-89408.

https://www.doi.org/10.1109/ACCESS.2023.3307023

Schwarz, J., Steffens, A., & Lichter, H. (2018, September 4-7). Code smells in infrastructure as code. In:

Proceedings of the International Conference on the Quality of Information and Communications Technology

(QUATIC 2018), (pp. 220-228). https://www.doi.org/10.1109/QUATIC.2018.00040

Shvetcova, V., Borisenko, O., & Polischuk, M. (2019, September 13-14). Domain-Specific Language for

Infrastructure as Code. In: Proceedings of the Ivannikov Memorial Workshop (IVMEM 2019), (pp. 39-45).

https://www.doi.org/10.1109/IVMEM.2019.00012

https://doi.org/10.54287/gujsa.1373305
https://www.doi.org/10.1109/MSR59073.2023.00079
https://www.doi.org/10.1109/ComPE49325.2020.9200030
https://www.doi.org/10.1109/TELFOR56187.2022.9983681
https://www.doi.org/10.1109/MS.2022.3212034
https://www.doi.org/10.1145/3183440.3183452
https://www.doi.org/10.1109/SecDev51306.2021.00024
https://www.doi.org/10.1145/3377811.3380409
https://www.doi.org/10.1109/ICSE.2019.00033
https://www.doi.org/10.1109/MSEC.2021.3065190
https://www.researchgate.net/publication/364567954_DevOps_and_Tools_Used_A_Systematic_Review
https://www.doi.org/10.1109/SCC.2017.52
https://www.doi.org/10.1109/MODELS-C.2019.00114
https://www.doi.org/10.1109/ACCESS.2023.3307023
https://www.doi.org/10.1109/QUATIC.2018.00040
https://www.doi.org/10.1109/IVMEM.2019.00012

471
Erdal OZDOGAN, Onur CERAN, Mutlu Tahsin USTUNDAG

GU J Sci, Part A 10(4) 452-471 (2023) 10.54287/gujsa.1373305

Singh, N. K., Thakur, S., Chaurasiya, H., & Nagdev, H. (2016, September 4-5). Automated provisioning of

application in IAAS cloud using Ansible configuration management. In: Proceedings of the 1st International

Conference on Next Generation Computing Technologies (NGCT 2015, September), (pp. 81-85).

https://www.doi.org/10.1109/NGCT.2015.7375087

Sokolowski, D. (2022, November 14-18). Infrastructure as code for dynamic deployments. In: Proceedings of

the 30th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations

of Software Engineering, (pp. 1775-1779). https://www.doi.org/10.1145/3540250.3558912

Sokolowski, D., & Salvaneschi, G. (2023, March 13-17). Towards Reliable Infrastructure as Code. In:

Proceedings of the IEEE 20th International Conference on Software Architecture Companion (ICSA-C 2023),

(pp. 318-321). https://www.doi.org/10.1109/ICSA-C57050.2023.00072

Sokolowski, D., Weisenburger, P., & Salvaneschi, G. (2023). Decentralizing Infrastructure as Code. IEEE

Software, 40(1), 50-55. https://www.doi.org/10.1109/MS.2022.3192968

Soll, M., Helmken, H., Belde, M., Schimpfhauser, S., Nguyen, F., & Versick, D. (2023, May 1-4). Building

an IT Security Laboratory for Complex Teaching Scenarios Using “Infrastructure as Code.” In: Proceedings

of the IEEE Global Engineering Education Conference (EDUCON, 2023-May), (pp. 1-8).

https://www.doi.org/10.1109/EDUCON54358.2023.10125250

Sorour, A., & Hamdy, A. (2022, July 21-23). DevOps and IaC to Automate the Delivery of Hands-On Software

Lab Exams. In: Proceedings of the 6th International Conference on Computer, Software and Modeling

(ICCSM), (pp. 28-35). https://www.doi.org/10.1109/ICCSM57214.2022.00012

Spielmann, D., Sokolowski, D., & Salvaneschi, G. (2023, October 22-27). Extensible Testing for Infrastructure

as Code. In: Proceedings of the Companion Proceedings of the 2023 ACM SIGPLAN International Conference

on Systems, Programming Languages, and Applications: Software for Humanity, (pp. 58-60).

https://www.doi.org/10.1145/3618305.3623607

Statista (2023) Usage of cloud configuration tools worldwide in 2023, current and planned. (Accessed:

13/11/2023) URL

Surianarayanan, C., & Chelliah, P. R. (2023). Cloud Integration and Orchestration. In: Essentials of Cloud

Computing: A Holistic, Cloud-Native Perspective (2nd ed., pp. 305-319). Springer International Publishing.

https://www.doi.org/10.1007/978-3-031-32044-6_11

Tankov, V., Valchuk, D., Golubev, Y., & Bryksin, T. (2021). Infrastructure in Code: Towards Developer-

Friendly Cloud Applications. In: 36th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2021), (pp. 1166-1170). https://www.doi.org/10.1109/ASE51524.2021.9678943

Terraform (2023). Terrafform documentation. (Accessed: 10/11/2023) URL

Tripathi, A. (2023). Provisioning Secure Cloud Environment Using Policy-as-code and Infrastructure-as-

code. MSc Thesis, School of Computing National College of Ireland.

Vladusic, D., & Radolovic, D. (2020, September 1-4). Infrastructure as Code for Heterogeneous Computing.

In: Proceedings of the 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing (SYNASC), (pp. 1-2). https://www.doi.org/10.1109/SYNASC51798.2020.00011

Wąsowski, A., & Berger, T. (2023). Concrete Syntax. In: Domain-Specific Languages: Effective Modeling,

Automation, and Reuse (pp. 87-142). Springer International Publishing. https://www.doi.org/10.1007/978-3-

031-23669-3_4

Witt, A., & Westling, S. (2023). Ansible In Different Cloud Environments. MSc Thesis, Mälardalen University.

Zadka, M. (2019). Salt Stack. In: DevOps in Python: Infrastructure as Python (pp. 121-137). Apress.

https://www.doi.org/10.1007/978-1-4842-4433-3_10

Zhang, Y., Wu, F., & Rahman, A. (2023, March 13-17). Practitioner Perceptions of Ansible Test Smells. In:

Proceedings of the IEEE 20th International Conference on Software Architecture Companion (ICSA-C 2023),

(pp. 325-327). https://www.doi.org/10.1109/ICSA-C57050.2023.00074

https://doi.org/10.54287/gujsa.1373305
https://www.doi.org/10.1109/NGCT.2015.7375087
https://www.doi.org/10.1145/3540250.3558912
https://www.doi.org/10.1109/ICSA-C57050.2023.00072
https://www.doi.org/10.1109/MS.2022.3192968
https://www.doi.org/10.1109/EDUCON54358.2023.10125250
https://www.doi.org/10.1109/ICCSM57214.2022.00012
https://www.doi.org/10.1145/3618305.3623607
https://www.statista.com/statistics/511293/worldwide-survey-cloud-devops-tools/
https://www.doi.org/10.1007/978-3-031-32044-6_11
https://www.doi.org/10.1109/ASE51524.2021.9678943
https://developer.hashicorp.com/terraform?product_intent=terraform
https://www.doi.org/10.1109/SYNASC51798.2020.00011
https://www.doi.org/10.1007/978-3-031-23669-3_4
https://www.doi.org/10.1007/978-3-031-23669-3_4
https://www.doi.org/10.1007/978-1-4842-4433-3_10
https://www.doi.org/10.1109/ICSA-C57050.2023.00074

