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Many researchers have studied permuting tri-derivation and generalized derivation in prime or semi-prime rings, 
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concept of generalized permuting tri-derivation by combining the concepts of generalized derivation and 
permuting tri-derivation. In this article, we have examined the properties of generalized permuting triderivation 
by adding conditions on their traces in prime or semi-prime rings. In addition, we examined the properties of 
two permuting triderivation by giving a relation between their traces. 
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Introduction and Preliminaries 
 

The derivation is one of the important topics of many 
areas of mathematics. It has also been carried to the ring 
in algebra. In 1957, Posner defined the derivation in the 
ring and examined the commutativity of the ring [1]. In 
1991, the generalized derivation in rings was introduced 
by Bresar [2]. Later inspired by partial derivation in 
analysis, in 1980, the symmetric bi-derivation was defined 
by Maksa and the permuting tri-derivation by Öztürk in 
1999 [3-4]. They investigated the commutativity of prime 
or semi-prime rings with the help of conditions on these 
derivations and their traces. After then, many authors 
studied symmetric bi-derivation and permuting tri-
derivation on many kind of algebraic structures as lattice, 
BCK-alebras, MV-algebras, hyperring, etc. [5-10]. In 2017, 
Yazarli defined generalized permuting tri-derivation, 
combining the concepts of generalized derivation and 
permuting tri-derivation in the ring [11]. 

Assume that 𝔄 is a ring and 𝑑: 𝔄 → 𝔄 is an additive 
map. If there exists a derivation 𝛼 of 𝔄 such that 𝑑(𝑎𝑏) =
𝑑(𝑎)𝑏 + 𝑎𝛼(𝑏) in 𝔄, then 𝑑 is called generalized 
derivation. 

Let 𝔄 is a ring and 𝐹(. , . , . ): 𝔄 × 𝔄 × 𝔄 → 𝔄 is a map. 
If 𝐹(𝑎, 𝑏, 𝑐) = 𝐹(𝑎, 𝑐, 𝑏) = 𝐹(𝑐, 𝑎, 𝑏) = 𝐹(𝑐, 𝑏, 𝑎) =
𝐹(𝑏, 𝑐, 𝑎) = 𝐹(𝑏, 𝑎, 𝑐) is provided in 𝔄, then 𝐹 is called 
permuting and a map 𝑓: 𝔄 → 𝔄 defined by 𝑓(𝑎) =
𝐹(𝑎, 𝑎, 𝑎) is called trace of 𝐹(. , . , . ). Suppose that 
𝐹(. , . , . ): 𝔄 × 𝔄 × 𝔄 → 𝔄 is permuting tri-additive, in this 
case 𝐹 satisfies the relation 𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑓(𝑏) +

3𝐹(𝑎, 𝑎, 𝑏) + 3𝐹(𝑎, 𝑏, 𝑏) in 𝔄. A permuting tri-additive 
map 𝐹(. , . , . ): 𝔄 × 𝔄 × 𝔄 → 𝔄 is called permuting tri-
derivation if 𝐹(𝑎𝑑, 𝑏, 𝑐) = 𝐹(𝑎, 𝑏, 𝑐)𝑑 + 𝑎𝐹(𝑑, 𝑏, 𝑐) in 𝔄. 
The trace 𝑓 is an odd function. 

Let 𝔄 be a ring and Γ: 𝔄 × 𝔄 × 𝔄 → 𝔄 be a permuting 
tri-additive map. Then, Γ: 𝔄 × 𝔄 × 𝔄 → 𝔄 is called 
generalized permuting tri-derivation of 𝔄 associated with 
𝐹 if 

 
 Γ(𝑎𝑑, 𝑏, 𝑐) = Γ(𝑎, 𝑏, 𝑐)𝑑 + 𝑎𝐹(𝑑, 𝑏, 𝑐) 
 Γ(𝑎, 𝑏𝑑, 𝑐) = Γ(𝑎, 𝑏, 𝑐)𝑑 + 𝑏𝐹(𝑎, 𝑑, 𝑐) 
 Γ(𝑎, 𝑏, 𝑐𝑑) = Γ(𝑎, 𝑏, 𝑐)𝑑 + 𝑐𝐹(𝑎, 𝑏, 𝑑), 
 
in 𝔄 where 𝐹(. , . , . ): 𝔄 × 𝔄 × 𝔄 → 𝔄 is a permuting 

tri-derivation. 
Example 1 [11] Let 𝔄 be a ring, 𝐹 be a tri-derivation of 

𝔄 and 𝛼: 𝔄 × 𝔄 × 𝔄 → 𝔄 be a tri-additive map. If 
𝛼(𝑎, 𝑏, 𝑐𝑑) = 𝛼(𝑎, 𝑏, 𝑐)𝑑, 𝛼(𝑎, 𝑏𝑑, 𝑐) = 𝛼(𝑎, 𝑏, 𝑐)𝑑 and 
𝛼(𝑎𝑑, 𝑏, 𝑐) = 𝛼(𝑎, 𝑏, 𝑐)𝑑 in 𝔄, then 𝐹 + 𝛼 is a generalized 
𝐹 tri-derivation of 𝔄.  

Lemma 1 [13] Let 𝔄 be a prime ring. If there exists a 
right ideal of 𝔄 which is contained in ℨ(𝔄), 𝔄 must be 
commutative where ℨ(𝔄) be the center of 𝔄  

In this article, we will apply the problems examined for 
generalized bi-derivations in the article of Ali, Shujat, Khan 
in 2015 to generalized permuting tri-derivations [12]. 

 

 
Results 

 
In the Theorem 1, Theorem 2 and Theorem 3, we will assume that 𝔄 be a prime ring with 2,3-torsion free, 𝔅 be a 

non-zero ideal of 𝔄, ℨ(𝔄) be the center of 𝔄, Γ is a generalized permuting tri-derivation with associated permuting tri-
derivation F, γ is the trace of Γ and f is the trace of F. 
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Theorem 1 If [γ(a), a] = 0 in 𝔅 and 𝔄 is non-commutative then Γ is a left tri-multiplier on 𝔅. 
Proof. Assume that 
 [𝛾(𝑎), 𝑎] = 0 𝑖𝑛 𝔅 (1) 
 
Writting a + b instead of a, for b ∈ 𝔅 in (1), we get 
 
 [Γ(a, a, a), b] + 3[Γ(a, a, b), a] + 3[Γ(a, a, b), b] (2) 
 +3[Γ(a, b, b), a] + 3[Γ(a, b, b), b] + [Γ(b, b, b), a] = 0. 
 
Substituting −b instead of b in (2) and subtracting from (2), we get 
 
 [Γ(a, a, b), b] + [Γ(a, b, b), a] = 0. (3) 
 
Writting a + b instead of b, for b ∈ 𝔅 in (3) and using (1) and (3), we get 
 
 [Γ(a, a, a), b] + 3[Γ(a, a, b), a] = 0 (4) 
 
Substituting br for b, for r ∈ 𝔄 in (4) and using (4), we get 
 
 b[Γ(a, a, a), r] + 3Γ(a, a, b)[r, a] + 3[b, a]F(a, a, r) (5) 
 +3b[F(a, a, r), a] = 0. 
 
Writting a instead of r, for a ∈ 𝔅 in (5), we obtain 
 
 3[b, a]F(a, a, a) + 3b[F(a, a, a), a] = 0. (6) 
 
Substituting rb instead of b, for r ∈ 𝔄 in (6) and using (6), we get 
 
 [r, a]bF(a, a, a) = 0. (7) 
 
Writting rs instead of r, s ∈ 𝔄 in (7), we get 
 
 [r, a]sbF(a, a, a) = 0, a, b ∈ 𝔅 and r, s ∈ 𝔄. 
 
From here, we obtain [r, a] = 0 or bF(a, a, a) = 0 for all a, b ∈ 𝔅 and r ∈ 𝔄, since 𝔄 is prime ring. If [r, a] = 0, then 

𝔅 ⊆Z(𝔄). In this case, 𝔄 is commutative ring. This is a contradiction. Assume that bF(a, a, a) = 0 for all a, b ∈ 𝔅 If we 
write a + c, c ∈ 𝔅 instead of a, we have 

 
 bF(a, a, a) + 3bF(a, a, c) + 3bF(a, c, c) + bF(c, c, c) = 0 
 
for all a, b, c ∈ 𝔅. Writting −c instead of c and comparing last two expressions we get bF(a, c, c) = 0. Writting c + d 

instead of c, d ∈ 𝔅, we get bF(a, c, c) + 2bF(a, c, d) + bF(a, d, d) = 0. That is, bF(a, c, d) = 0 in 𝔅. Thus, we obtain that 
Γ(ad, b, c) = Γ(a, b, c)d on 𝔅. 

Theorem 2 If γ(a) ∘ a = 0 in 𝔅 and 𝔄 is non-commutative ring, then Γ is a left tri-multiplier on 𝔅. 
Proof. Assume that  
 γ(a) ∘ a = 0 in 𝔅 (8) 
 
Writting a + b instead of a, for b ∈ 𝔅 in (8) and using (8), we get 
 
 3Γ(a, a, b)a + 3Γ(a, b, b)a + Γ(b, b, b)a + Γ(a, a, a)b 
 +3Γ(a, a, b)b + 3Γ(a, b, b)b + 3aΓ(a, a, b) + 3aΓ(a, b, b) 
 +aΓ(b, b, b) + bΓ(a, a, a) + 3bΓ(a, a, b) + 3bΓ(a, b, b) = 0. (9) 
 
Substituting −b for b in (9) and subtracting from (9), we get 
 Γ(a, b, b)a + Γ(a, a, b)b + aΓ(a, b, b) + bΓ(a, a, b) = 0. (10) 
 
Writting a + b instead of b, for b ∈ 𝔅 in (10) and using (8) and (10), we obtain 
 
 0 = Γ(a, a, a)b + 3Γ(a, a, b)a + 3aΓ(a, a, b) + bΓ(a, a, a). (11) 
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Substituting bc instead of b, c ∈ 𝔅 in (11), we get 
 
 0 = Γ(a, a, a)bc + 3Γ(a, a, b)ca + 3bF(a, a, c)a 
 +3aΓ(a, a, b)c + 3abF(a, a, c) + bcΓ(a, a, a) (12) 
 
If we multiply (11) by c on the right side and compare with (12), then we have 
 
 0 = 3Γ(a, a, b)[c, a] + 3bF(a, a, c)a + 3abF(a, a, c) + b[c, Γ(a, a, a)]. (13) 
 
In (13), writting a instead of c, we get 
 
 3bf(a)a + 3abf(a) + b[a, γ(a)] = 0. (14) 
 
Substituting rb instead of b, for r ∈ 𝔄 in (14), we get 
 
 3rbf(a)a + 3arbf(a) + rb[a, γ(a)] = 0. 
 
Multiplying (14) by r on the right side and subtracting from last equation, we have 
 
 [a, r]bf(a) = 0, 
 
since 𝔄 is 3-torsion free. 
Since 𝔄 is non-commutative ring, we get bf(a) = 0 for all a, b ∈ 𝔅. Writting a + c instead of a, we get 
 
 0 = bF(a, a, c) + bF(a, a, c), 
 
since 𝔄 is 3-torsion free. Substituting −c instead of c, we get bF(a, a, c) = 0 for a,b, c ∈ 𝔅. From here, F = 0 on 

𝔅 Thus, we obtain that Γ(ad, b, c) = Γ(a, b, c)d on 𝔅  
Theorem 3 Let 𝔄 be a semiprime ring with 2,3-torsion free and 𝔅 be a non-zero ideal of 𝔄. If [γ(a), a], [f(a), a] ∈

ℨ(𝔄) in 𝔅, then [γ(a), a] = 0 in 𝔅.  
Proof. Assume that γ is centralizing on 𝔅. That is, 
 
 [γ(a), a] ∈ ℨ(𝔄) in 𝔅 (15) 
 
Writting a + b instead of a, for b ∈ 𝔅 in (15) and using (15), we get 
 

 
[γ(a), b] + [γ(b), a] + 3[Γ(a, a, b), a] + [Γ(a, a, b), b]

+3[Γ(a, b, b), a] + 3[Γ(a, b, b), b] ∈ ℨ(𝔄)
 (16) 

 
Taking −b instead of b in (16) and subtracting from (16), we get 
 

 
[γ(a), b] + [γ(b), a] + 3[Γ(a, a, b), a]

+3[Γ(a, b, b), b] ∈ ℨ(𝔄),
 (17) 

 
since 𝔄 is 2,3-torsion free. 
Writting b + c instead of b, for c ∈ 𝔅 in (17) and using (17), we get 
 

 
[Γ(b, b, c), a] + [Γ(b, c, c), a] + [Γ(a, b, b), c] + 2[Γ(a, b, c), b]

+2[Γ(a, b, c), c] + [Γ(a, c, c), b] ∈ ℨ(𝔄),
 (18) 

 
since 𝔄 is 3-torsion free. 
Replacing −b by b in (18) and subtracting from (18), we get 
 
 [Γ(b, b, c), a] + [Γ(a, b, b), c] + 2[Γ(a, b, c), b] ∈ ℨ(𝔄) (19) 
 
Taking b instead of c in (19), we get 
 
 [γ(b), a] + 3[Γ(a, b, b), b] ∈ ℨ(𝔄) (20) 
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Writting b2 instead of a and using γ is commuting on 𝔅, 
 
 5[γ(b), b]b + 3b[f(b), b] ∈ ℨ(𝔄). 
 
Setting [γ(b), b] = s, [f(b), b] = t and 5[γ(b), b]b + 3b[f(b), b] = z, we get 3bt = z − 5sb, b ∈ 𝔅 
Now, we calculate 
 
 [γ(a2), a2] = [Γ(a2, a2, a2), a2] 
 = [γ(a), a]a4 + a[γ(a), a]a3 + 3a2[F(a), a]a2 
 +3a[F(a), a]a3 + 3a3[F(a), a]a + 3a2[F(a), a]a2 
 +a4[F(a), a] + a3[F(a), a]a. (21) 
 
Since 3at = z − 5sa, we get from (21), 
 
 −18a4s + 4a3z + 2a4t ∈ ℨ(𝔄). (22) 
 
Commuting with γ(a), we have  
 
 [γ(a), −18a4s + 4a3z + 2a4t] 
 = −18s[γ(a), a4] + 4z[γ(a), a3] + 2t[γ(a), a4] 
 = −72a3s2 + 12a2zs + 8a3st = 0. 
 
Again commuting with γ(a), we obtain 
 
 [γ(a), −72a3s2 + 12a2zs + 8a3st] 
 = −216a2s3 + 24s2az + 24s2a2t = 0. 
 
From here, we have 
 
 [γ(a), −216a2s3 + 24s2az + 24s2a2t = 0] 
 = −512s4a + 40s3z = 0. 
 
Finally, 
 
 [γ(a), −512s4a + 40s3z] 
 = −512s5 = 0. 
 
That is, s = 0 from 𝔄 is semiprime ring. Thus, γ is commuting on 𝔅  
Theorem 4 Let Δ and Γ be permuting tri-derivations with δ, γ the traces of Δ and Γ, respectively and 𝔄 is non-

commutative prime ring. If  δ(a)a + aγ(a) = 0 in 𝔅, then Γ = 0 and Δ = 0.  
Proof. Assume that δ(a)a + aγ(a) = 0 for b ∈ 𝔅. Writting a + b instead of a, for b ∈ 𝔅, we get 
 
 0 = δ(a + b)(a + b) + (a + b)γ(a + b) 
 = δ(b)a + 3Δ(a, a, b)a + 3Δ(a, b, b)a 
 +δ(a)b + 3Δ(a, a, b)b + 3Δ(a, b, b)b 
 +aγ(b) + 3aΓ(a, a, b) + 3aΓ(a, b, b) 
 +bγ(a) + 3bΓ(a, a, b) + 3bΓ(a, b, b). (23) 
 
Taking −a instead of a in (23) and subtracting from (23), we have 
 
 Δ(a, a, b)b + Δ(a, b, b)a + bΓ(a, a, b) + aΓ(a, b, b) = 0. (24) 
 
Substituting b + c for b, for c ∈ 𝔅 in (24) and using (24), we get 
 
 Δ(a, a, b)c + Δ(a, a, c)b + 2Δ(a, b, c)a (25) 
 +bΓ(a, a, c) + cΓ(a, a, b) + 2aΓ(a, b, c) = 0. 
 
Writting cd instead of c, d ∈ 𝔅 in (25), we get 
 
 0 = Δ(a, a, b)cd + Δ(a, a, c)db + cΔ(a, a, d)b 
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 +2Δ(a, b, c)da + 2cΔ(a, b, d)a + bΓ(a, a, c)d 
 +bcΓ(a, a, d) + cdΓ(a, a, b) + 2acΓ(a, b, d) + 2aΓ(a, b, c)d. (26) 
 
Multiplying (25) by d on the right side and comparing with (26), we get 
 
 0 = Δ(a, a, c)[d, b] + cΔ(a, a, d)b + 2Δ(a, b, c)[d, a] 
 +2cΔ(a, b, d)a + bcΓ(a, a, d) + c[d, Γ(a, a, b)] 
 +2acΓ(a, b, d). (27) 
 
In (27), writting rc instead of c, for r ∈ 𝔄, we get 
 
 0 = rΔ(a, a, c)[d, b] + Δ(a, a, r)c[d, b] + rcΔ(a, a, d)b 
 +2rΔ(a, b, c)[d, a] + 2Δ(a, b, r)c[d, a] + 2rcΔ(a, b, d)a 
 +brcΓ(a, a, d) + rc[d, Γ(a, a, b)] + 2arcΓ(a, b, d). (28) 
 
Multiplying (27) by r on the left side and comparing with (28), we get 
 
 Δ(a, a, r)c[d, b] + 2Δ(a, b, r)c[d, a] + [b, r]cΓ(a, a, d) 
 +2[a, r]cΓ(a, b, d) = 0. (29) 
 
Writting a instead of b and d in (29), we obtain 
 
 [a, r]cγ(a) = 0. 
 
From here, 𝔅 ⊆ ℨ(𝔄) or γ(a) = 0 in 𝔅. Since 𝔄 is non-commutative, we obtain γ(a) = 0. And so, Γ = 0 and Δ = 0. 
. 
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