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Abstract

For risk management and stable pricing in the cryptocurrency market, it is necessary to determine 
the interdependence of speculative behaviour and crypto assets. The correlation and high volatility 
caused by the interdependence of financial assets in the cryptocurrency market can lead to spreading 
risks. The study aims to measure the speculative behaviour and spillover effect in the prices of financial 
assets in the cryptocurrency market. The study used the SADF test, the generalized Dickey-Fuller test 
(GSADF), and the frequency domain causality test of Breitung and Candelon (2006) to determine 
the speculative behaviour and spillover effect in the prices of financial assets in the cryptocurrency 
market. Empirical evidence of speculative bubble formation between January 1, 2018, and December 
2021 for the cryptocurrency assets covered in the study (ADA, BNB, BTC, DOGE, ETH, XLM, and 
XRP) is presented. Moreover, the frequency domain causality results obtained in the study show a 
contagion and spillover effect between crypto assets. The results provide essential information on the 
development of speculative behaviour and spread risk in the formation of financial asset prices in the 
cryptocurrency market.
Keywords: Cryptocurrency Markets; Bubbles; Spread Risks; Right-tailed Unit Root Tests, Frequency 
Domain Causality
JEL Classification: D53, F38, G00

1. Introduction

Developed financial markets have positive effects on economic growth and development. One 
of the most studied factors among the determinants of a well-developed financial system is the 
interdependence among financial assets. The main reason is the integration of financial markets 
and assets as part of globalization. Globalization causes a shock in one country’s financial 
system to spread rapidly to the rest of the world (Polat and Eş-Polat, 2022). A similar situation 
applies to the cryptocurrency market. The lack of a regulatory and supervisory mechanism in 
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the cryptocurrency market and the still developing and immature technology of blockchain 
technology increases the volatility in the relevant market, increasing the correlation and 
cooperation relationship between the assets in the cryptocurrency market.

The high correlation relationship between assets in the cryptocurrency market is one factor that is 
also effective in financial decision-making. This is because, as Huynh (2019) states, determining 
the degree of interdependence between financial instruments is essential for developing portfolio 
management and hedging strategies. Therefore, in assessing the degree of cooperation in the 
cryptocurrency market, the management of financial assets is critical to the forecasting and 
pricing process. Another important topic is the interdependence between financial markets, 
the development of the movement and volatility of financial instruments, and asset prices. In 
particular, unstable pricing in financial markets can have substantial effects that can lead to a 
global financial crisis, as was the case in the 2008 global crisis. In this context, it can be assumed 
that one factor that triggers these strong effects on modern financial markets and instruments is 
the increasing correlation and volatility in the cryptocurrency market.

Research on the causes of high correlation and volatility in the cryptocurrency market is gaining 
momentum in two different areas (Moratis, 2021). One is that fundamental external factors 
such as economic, financial, and geopolitical uncertainty cause high correlation and volatility 
in the cryptocurrency market (Giudici and Abu-Hashish, 2019; Smales, 2019; Panagiotidis et 
al., 2018; Moratis, 2021). The other is intrinsic fundamentals, such as increased volatility in the 
cryptocurrency market and the high correlation between crypto assets (Francés et al., 2018; Ji et 
al., 2019). As these internal and external factors prevent investors from reducing risk, they inhibit 
market dynamics in cryptocurrency and all financial markets.

The primary motivation of this study is to determine the speculative behaviours and the spillover 
effect in the prices of seven crypto assets (ADA, BNB, BTC, DOGE, ETH, XLM, and XRP) are 
dominant in terms of market value in the crypto money market. Compared to other related 
studies examining speculative price behaviour and spillover effects in cryptocurrencies, it differs 
from similar studies regarding subject and method. First, the study differs from other studies 
in analyzing the interconnectedness and persistence of seven significant cryptocurrencies. 
Secondly, the study provides an essential guide, especially in shaping the markets and investor 
decisions, by revealing the spread of speculative price behaviours and causality effects among 
cryptocurrencies. Third, the fact that the selected period of the study covers the period between 
January 1, 2018, and December 2021 contributes to the observation of the possible effects of 
investors’ tendency to invest in different cryptocurrencies following the rapid increase in Bitcoin 
prices in the last quarter of 2017. Fourth, SADF and GSADF tests, which detect price bubbles, 
allow better inferences than the methods in the literature, thanks to their dynamic structure, 
unlike indirect methods. The frequency domain causality test, another technique used, makes a 
significant difference in determining whether there is a connection between cryptocurrencies in 
the short, medium, and long term, as it allows investigation of the causality dynamics at different 
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frequencies. Therefore, the study may provide more compelling evidence than similar studies in 
the literature.

This paper is organized as follows. After this introductory section, Section 2 presents an overview 
of previous research on the issue. Section 3 presents this study’s model, dataset, and method. 
Section 4 introduces the empirical results of the analysis. Finally, Section 5 concludes the research 
undertaken in this study.

2. Literature

According to the scope of the study, the literature, bubble formation, spillover effects, and causality 
are examined. If the bubble concept is evaluated from an economic perspective, it is characterized 
as a deviation from the fundamental value of the current asset. However, it isn’t straightforward 
to determine this fundamental value, especially in the cryptocurrency market. For this reason, 
bubbles in cryptocurrencies are defined as price breakouts and provide an opportunity to do 
more reliable valuations (Enoksen et al., 2020).

The various dynamics behind the price increase in the cryptocurrency market can be grouped 
under two headings in general; i) the price increase experienced as a result of the introduction 
of various macroeconomic dynamics that will affect the returns of traditional investment 
instruments, as market participants turn to digital investment instruments to compensate for 
their potential losses ii) price increase through speculative effects. In the literature, it is seen 
that the studies on the values of crypto assets primarily focus on speculative effects. It is widely 
believed that difficulties in determining the fundamental importance of digital currencies set 
the stage for speculative behaviour. Market price formation is shaped around these relationships 
(Kristoufek, 2013; Shahzad et al., 2022). This view is supported by the assumption that the factors 
that play a role in price formation in cryptocurrency markets are not based on the same dynamics 
as the determinants of traditional asset markets. The difference between crypto money markets 
from traditional financial markets is that their supply is fixed, and the investor expectations on 
the demand side have a critical role. Therefore, the active part of the participants in the price 
formations in the crypto market makes the market dynamics open to speculative behaviours. 
Evlimoğlu and Güder’s (2021) studies support this view. The main points, how and where the 
determinants of potential bubbles that may occur in crypto markets and the economic bubbles 
experienced in the past differ, were stated in their studies. These factors are listed as the fact 
that the fundamental value has not been determined in the crypto markets, the supply is 
limited, and blockchain technology is still developing. Therefore, it is argued that the decision-
making processes of market actors are determined not on a rational basis, that is, on complete 
information, but on asymmetric information and irrational expectations (Yanık and Aytürk, 
2011). The fact that the value of crypto assets is shaped in line with the perception of market 
actors triggers unstable price formation, preparing the ground for speculative bubbles. Due to 
the price movements in cryptocurrency markets in recent years, studies focusing on bubbles in 
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this area have come to the forefront Yermarck (2015) argues that Bitcoin, which has the most 
significant value in the cryptocurrency market, is a speculative asset, while Cheah and Fry (2015) 
argue that Bitcoin has speculative bubbles. In another study that comes to similar conclusions, 
cryptocurrency markets are found to be highly volatile and subject to speculative effects (Fry 
and Cheah, 2016). In this context, the supremum-augmented Dickey-Fuller tests (SADF) of 
Phillips et al. (2011) and the generalized supremum-augmented Dickey-Fuller tests (GSADF) 
of Philips et al. (2015) are widely used. Several studies using the method have found evidence of 
cryptocurrency bubble formation (Cheung et al., 2015; Su et al., 2018; Bouri et al., 2019; Waters 
and Bui, 2021). The empirical studies by Souza et al. (2017) using RADF, SADF, and GSADF 
tests prove that speculative bubbles are common in cryptocurrency. On the other hand, the study 
by Buğan (2021), which investigated the formation of bubbles in cryptocurrencies, found that 
the bubbles detected in Litecoin and Cardano were not statistically significant as a result of the 
GSADF test, while the existence of bubbles was accepted for Bitcoin, Ethereum, Ripple, and 
Chainlink. In Şahin (2020) study, the bubbles in cryptocurrencies Bitcoin, IOTA, and Ripple were 
tested by the GSADF test, and the bubble formation in cryptocurrencies was confirmed again. In 
addition, the study drew attention to the impact of news manipulation on explaining the periods 
when bubbles were formed.

The literature also contains studies that examine the formation of bubbles in different types 
of markets. Maouchi et al. (2022), using the real-time bubble detection method proposed by 
Phillips and Shi (2020), investigated the existence of digital financial bubbles and detected bubble 
formation in 3 NFT, 9 DeFi tokens, Bitcoin and Ethereum. The study’s findings covering the 
Covid-19 period are that the bubbles in DeFi and NFTs are more giant than those in Bitcoin 
and Ethereum but occur less frequently. Using the PSY test (GSADF), Gharib et al. (2021) 
point to boom periods in the crude oil and gold markets between 2010 and 2020. In particular, 
the Covid-19 period has shown the contagion effect in the bubbles in the two markets. When 
crypto asset prices are volatile, markets give signals of uncertainty and instability. The seizure of 
these factors in the markets raises financial concerns for crypto assets. Therefore, it is essential 
to measure the interdependence and volatility spreads of cryptocurrencies in shaping the 
risk management mechanism within the scope of the decision processes of investors. For this 
reason, in addition to detecting bubbles, evaluating the contagion effect of bubbles is essential 
in deepening the discussion of cryptocurrencies. Uncovering the spillover and causality effects 
between cryptocurrencies is crucial, especially in shaping markets and investors’ decisions.

Various studies have been conducted in the literature on whether there are causality and volatility 
spillovers between cryptocurrencies. The logistic regression results in the study by Bouri et 
al. (2019) show that the probability of an explosion period in cryptocurrencies is shaped by 
the presence of explosions in other cryptocurrencies. Huynh (2019) investigates the spillover 
effects between five cryptocurrencies (bitcoin, Ethereum, XRP, Litecoin, Stellar) through VAR 
– SVAR Granger causality and the Copulas method. The research results show that Ethereum 
is independently compared to other cryptocurrencies, while the validity of the spillover effect 
between the different cryptocurrencies is questioned. On the other hand, the Student’s t-Copulas 
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test suggests a contamination risk when cryptocurrencies contain extreme values. When 
examining the competition between cryptocurrencies, one study’s empirical results indicate a 
spread from Ripple to Bitcoin (Fry and Cheah, 2016). In another study, they pointed out the 
presence of structural breaks in the cryptocurrency market. They concluded that systematic price 
fluctuations spread from currencies with low market values to those with high market values 
(Canh et al., 2019). Yi et al. (2018), according to the results of their studies, the existence of a 
spillover effect is assumed in cryptocurrencies. Global finance, uncertainty effects, and trading 
volume are the variables that trigger the spillover effect. Ji et al. (2019) studied the return and 
volatility spreads of six cryptocurrencies and found that Bitcoin and Litecoin are at the centre of 
returns. In addition, positive returns were shown to be weaker than negative returns.

In their study, Enoksen et al. (2020) investigated the dynamics associated with the presence of 
bubbles. They used the PSY (GSADF) method to detect bubbles in cryptocurrency markets, and 
it was found that the variables that predict bubble formation are trading volume, transactions, 
and volatility. Cryptocurrency bubbles show a positive relationship with EPU (economic policy 
uncertainty index) and a negative relationship with VIX (fear index).

Canh et al. (2019) used data from seven cryptocurrencies (Bitcoin, Litecoin, Ripple, Stellar, 
Monero, Dash, and Bytecoin); the Granger causality test, the LM test for ARCH, and the DCC-
MGARCH method were preferred. The results of the study show that there are structural breaks 
and volatility spillovers in the cryptocurrency market. It is found that the spillover effect is 
from more minor market cap currencies to more significant coins. Empirical evidence shows 
that cryptocurrencies exhibit strong and positively correlated volatility spillovers. Kirikkaleli et 
al. (2020) present empirical evidence of bubbles in Bitcoin and Ethereum, Litecoin, and Ripple 
between 2016 and 2019 and accept a positive relationship between Bitcoin and three other 
cryptocurrencies in the short run. In their studies using the quantile Granger non-causality test, 
Kim et al. (2021) conclude that coins with a high market value do not exhibit a strong bidirectional 
relationship with other currencies. While XRP has bidirectional causality with other coins, EOS 
has the weakest causal relationship with all coins. On the other hand, BNC has bidirectional 
causality with all coins except EOS. Katsiampa et al. (2019) studied the relationship between 
Bitcoin-Ethereum, bitcoin-litecoin, and etherium-litecoin between August 7, 2015, and July 10, 
2018, using the BEKK model. The results show that cryptocurrency price volatility relates to prior 
volatility and currency shocks. While there is a bidirectional spread between Bitcoin and the 
other two cryptocurrencies, the spread between Ethereum and Litecoin is one-way. In addition, 
studies examining the relationship and spillover effect between cryptocurrencies and other 
financial assets are also prominent. Using the VAR GARCH model, Bouri et al. (2018) found that 
bitcoin returns are associated with traditional assets such as stocks, commodities, currencies, 
and bonds. The study also found that Bitcoin is a receiver rather than a transmitter of volatility. 
The volatility spillover index was created using the TVP-VAR model of Cao and Xie (2022). 
It was found that there is an asymmetric and time-varying volatility spillover effect between 
cryptocurrency and the Chinese financial market. At the same time, it has been determined that 
the risk spread of the financial market has a feeble impact on cryptocurrency. In contrast, the 
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risk spread of cryptocurrency on the financial market is substantial. In the study by Elsayed et al. 
(2020), which investigated the spillover effects between three cryptocurrencies and nine foreign 
currencies using the Diebold-Yılmaz method, the return spillover effect for Bitcoin and Litecoin 
in the first three quarters of 2017 was determined. As a result of the Bayesian chart structure 
model VAR (BGSVAR), it was found that the level of bitcoin to the Chinese yuan, the bitcoin and 
litecoin values of Ripple, and the level of litecoin are dependent on Ripple and the Chinese yuan. 
The result of the study is causality between cryptocurrencies; among foreign currencies, only the 
Chinese yuan influences cryptocurrencies.

When considered as a whole, external dynamics, such as the fact that the cryptocurrency market 
is an unregulated market and the technological infrastructure development process, have not 
yet been completed. The increase in economic and geopolitical uncertainty leads to a rise in 
the vulnerability of cryptocurrencies to speculative behaviours in the market and triggers the 
formation of a bubble. By encouraging the spread of interdependence and volatility among 
cryptocurrencies, these developments pave the way for market efficiency deterioration.

3. Data Set and Method

3.1. Dataset

The study empirically investigates the existence of asset price bubbles in cryptocurrency markets, 
asset interdependence, and the spillover effect. In this regard, the variables used in the study 
were ADA, BNB, BTC, DOGE, ETH, XLM, and XRP, depending on the availability of data and 
the volume of transactions in the cryptocurrency market. The descriptive test statistics for the 
above variables are shown in Table 1. Accordingly, daily data was used for the selected variables 
between January 1, 2018, and December 2021, obtained from the Yahoo Finance database. On 
December 31, 2021, the cryptocurrency market cap was approximately 92 billion USD. On the 
same date, the share of cryptocurrencies selected as the study’s sample in the market volume 
was approximately 65% (https://www.coinecko.com/en/global-charts, Access Date: 15.01.2023). 
Another factor affecting the period selection in the study is that, following the rapid increase in 
Bitcoin prices in the last quarter of 2017, investors tended to invest in different cryptocurrencies.

According to the results of the descriptive statistics given in Table 1, it is seen that the 
cryptocurrencies with the highest standard deviation are BTC and BNB. The lowest standard 
deviation is seen in DOGE. On the other hand, all variables used in the study are skewed to the 
right. Jarque-Bera test results, which indicate whether the variables show a normal distribution 
or not, suggest that the variables do not comply with the normal distribution.
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Table 1: Descriptive Statistics

              Mean      Median Max. Min.   Std.            
Dev.    Skewness Kurtosis  J-B Obs.

ADA 0.46 0.10 2.96 0.02 0.68 1.689 4.737 878.75(0.00)*** 1461
BNB 107.67 19.69 675.68 4.52 177.68 1.723 4.491 858.83(0.00)*** 1461
BTC 18375 9475 67566 3236 17760 1.303 3.153 415.30(0.00)*** 1461
DOGE 0.053 0.003 0.684 0.001 0.107 2.256 7.934 2722(0.00)*** 1461
ETH 937.36 346.52 4812 84.308 1196 1.646 4.490 795(0.00)*** 1461
XLM 0.20 0.144 0.896 0.033 0.148 1.022 3.598 276(0.00)*** 1461
XRP 0.52 0.363 3.377 0.139 0.389 2.272 11.377 5529(0.00)*** 1461

Note: Values in parentheses are probability values. In addition, * indicates the significance levels of 0.10, **0.05, and *** 
0.01.

3.2. Research Methodology

In the study, first, whether there are speculative bubbles in the cryptocurrency market, Phillips 
et al. (2011) ekus ADF (SADF) and Phillips et al. (2015) generalized Dickey-Fuller (GSADF) 
test. The methods in question are recursive and right-justified unit root tests that have been 
widely used recently due to their excellent performance in detecting speculative bubbles and their 
occurrence.

The Exus-ADF test (SADF), one of the most commonly used right-tailed unit root tests among 
these methods, was developed by Phillips et al. (2011), and the extended standard Dickey-Fuller 
test (ADF) was developed to detect speculative bubbles and when they occur. As Homm and 
Breitung (2012) found, this test performs as well as other tests using similar procedures. The 
SADF test is essentially based on an iterative estimation of the standard ADF test. The SADF test 
is obtained as the lower value corresponding to the statistical ADF sequence and is obtained by 
estimating the values given in Equation 1 using least squares (Philips et al., 2015).
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Subsequently, Breitung and Candelon (2006) developed a computational method 
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Phillips et al. (2015) developed the generalized GSADF unit root test to address the shortcomings 
of the SADF test in this direction. Although the GSADF test has similar features to the SADF test, 
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traditional causality methods perform a linear causality analysis between the 
variables included in the study. Geweke (1982) and Hosoya (1991) proposed a 
causality analysis method based on spectral density decomposition at a specific 
frequency to address this shortcoming of traditional causality analysis. 
Subsequently, Breitung and Candelon (2006) developed a computational method 
that simplifies the complex structure of frequency-based causality analysis. This 
calculation method has created a procedure based on the autoregressive parameters 
based on the VAR model (Başarır, 2018). Due to its structure, the method also has 
the advantage of performing a nonlinear causality analysis between the variables 
included in the study. In this context, the causality analysis can be performed for 
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equation #5, according to which if 𝑀𝑀𝑀𝑀→𝑥𝑥(𝑖𝑖)=0. |𝛹𝛹12(𝑒𝑒−𝑖𝑖𝑖𝑖)|=0 then , 
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In equation 6, 𝑔𝑔22 represents the common diagonal elements of the 𝐺𝐺−1 

matrix, |𝛩𝛩(𝐿𝐿)| represents the determinant of 𝛩𝛩(𝐿𝐿). In this case, causality in the 
frequency domain can be tested with the following equation. (Bodart and 
Candelon, 2009: 143).  

                  (7)                   

Since 𝛩𝛩12, indicates the element of 𝛩𝛩𝑘𝑘 and 𝛩𝛩𝑘𝑘 in equation 7, the 
expression |𝛩𝛩12(𝑒𝑒−𝑖𝑖𝑖𝑖)|=0 can be expressed such that "𝑀𝑀" is not the cause of "𝑥𝑥" at 
"𝑖𝑖" (Tarı et al., 2012: 10) Breitung and Candelon (2006) model the method as a 
function of linear constraints, as shown in equation 8. In this case, the equation 
VAR can be formed with 9 for 𝑥𝑥𝑡𝑡.
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Thus, H0: (𝑖𝑖)𝛽𝛽=0 (𝛽𝛽=[𝛽𝛽1,…,𝛽𝛽𝛽𝛽]′) 𝑅𝑅(𝑖𝑖) is calculated using the following 
equation. On the other hand, it is possible to separate the causal dynamics between 
the variables studied in the frequency domain causality analysis temporarily and 
permanently. Accordingly, a short-term (temporary) causality analysis is 
performed when the 𝑖𝑖-frequency value is calculated for a high frequency (𝑖𝑖=2.5). 
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4. Empirical Results

In this part of the study, the hypothesis formulated as H1 is first tested using the prices of 7 
financial assets in the cryptocurrency market. The hypothesis states that increasing financial 
interconnectedness with globalization will cause a shock in the financial system to spread quickly 
to the rest of the world. In the case of a spillover effect, bubbles can occur when investors continue 
to hold assets because they believe they can sell them at a higher price than other investors, even 
though the financial asset’s price exceeds its fundamental value. This situation, which also applies 
to the cryptocurrency market, leads to the unstable pricing of cryptocurrency market assets. In 
other words, bubbles can occur in the prices of crypto assets.

H1: External factors affecting the cryptocurrency market make for unstable pricing.

The SADF and GSADF tests were used to determine the presence of bubbles by testing the 
hypothesis expressed as H1 and to determine when bubbles occur. In applying the above tests, 
2000 replicate Monte Carlo simulations were used for each observation. The results of the 
estimations are reported in Table 1.

Table 2: The SADF and GSADF Test Statistics

SADF Test 
Statistic

GSADF Test 
Statistic

ADA 3.00*** 12.52***
BNB 19.72*** 19.81***
BTC 5.86*** 8.04***

DOGE 15.99*** 16.01***
ETH 5.79*** 6.68***
XLM -1.00 6.139***
XRP -1.72 6.128***

Note: Critical values for SADF statistics are 0.43, 0.69, and 1.15 for 10%, 5%, and 1% significance levels, respectively. 
Critical values for GSADF statistics are 1.28, 1.46, and 1.91 for 10%, 5%, and 1% significance levels, respectively. In 
addition, the significance levels * 0.10, ** 0.05, and *** 0.01 are given. These critical values were obtained by Monte Carlo 
simulation with 2,000 replicates.

Examination of the SADF and GSADF test statistics in Table 2 shows that the estimated test 
statistics for the cryptocurrencies ADA, BNB, BTC, DOGE, and ETH are more significant than 
the critical values. Therefore, a speculative bubble in these currencies was established for the 
analyzed periods. On the other hand, when examining the SADF and GSADF test statistics 
obtained for the XLM and XRP currencies from the selected assets in the cryptocurrency market, 
it can be seen that the estimated SADF test statistics are smaller than the critical values. In other 
words, the H0 hypothesis is accepted. However, the estimated GSADF test statistics are shown 
to be larger than the critical values, so the H0 hypothesis is rejected. Phillips et al. (2015) found 
that the GSADF test is more consistent and gives better results than the SADF and standard ADF 
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tests. Based on this view, it can be said that a speculative bubble occurred for the XLM and XRP 
currencies during the analyzed periods.

In summary, the test results show that although the prices of all currencies exceed the fundamental 
value of the prices of the analyzed period, they continue to hold assets because they believe they 
can sell them at a higher price than other investors. In other words, it can be said that bubbles 
were created in the cryptocurrency market during the studied period. Thus, the obtained results 
confirm the hypothesis that external factors affecting the cryptocurrency market make the 
pricing unstable and lead to the formation of bubbles.

Having established the presence of bubbles in the selected cryptocurrencies, the second phase 
began to identify the periods in which bubbles occurred. In this way, it is possible to determine 
which factors cause instability in price formation and lead to the formation of bubbles.

Figure 1: ADA Cryptocurrency Test Results Charts
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From the SADF and GSADF test charts shown in Figure 1, it can be seen 
that a bubble formed during the period from late January 2021 to early June 2021. 
During the period in question, the technological upgrade of the cryptocurrency 
ADA led to excessive demand for the cryptocurrency ADA by many investors, 
creating a bubble. 

Figure 2: BNB Cryptocurrency Test Results Charts 

From the SADF and GSADF test charts shown in Figure 1, it can be seen that a bubble formed 
during the period from late January 2021 to early June 2021. During the period in question, the 
technological upgrade of the cryptocurrency ADA led to excessive demand for the cryptocurrency 
ADA by many investors, creating a bubble.

Figure 2: BNB Cryptocurrency Test Results Charts
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Based on the SADF and GSADF test charts of the cryptocurrency BNB shown in Figure 2, it 
was determined that a bubble formed from the beginning of 2021 to the end of May 2021. In 
the studied period, it can be said that the interventions of the cryptocurrency exchange Binance 
to reduce the total supply of BNB cryptocurrency and the excessive demand for BNB due to the 
increase in transaction costs in Ethereum drive up prices and cause the formation of a bubble.

Figure 3: BTC Cryptocurrency Test Results Charts

According to the SADF and GSADF charts for bitcoin in Figure 3, a bubble in the bitcoin price 
was observed in the last quarter of 2018, the middle of 2019, and between the last quarter of 2020 
and the second quarter of 2021. During the earlier periods, the improvements in the system’s 
functioning with the blockchain system’s updates have increased the demand for bitcoin and 
pushed the prices. This has led to a bubble in BTC prices. On the other hand, it can be said that 
the big rally in BTC price was effective in the bubble formation observed between the last quarter 
of 2020 and the second quarter of 2021.

Figure 4: DOGE Cryptocurrency Test Results Charts

The SADF and GSADF test charts of the cryptocurrency DOGE, shown in Figure 4, indicate 
that there have been several bubble formations between the last quarter of 2020 and mid-2021. 
In the mentioned period, it can be observed that external factors are particularly effective in 
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bubble formation in DOGE cryptocurrency prices. In particular, social media posts for the 
cryptocurrency DOGE created excessive demand by directing investors to this cryptocurrency 
during the period in question. The high demand for the stocks in question led to a large price 
rally. As a result, the sharp rise in prices led to a bubble.

Figure 5: ETH Cryptocurrency Test Results Charts

According to the SADF and GSADF charts for Ethereum in Figure 5, a price bubble can be observed 
from early 2021 to mid-2021. The reason for the bubble formation in the mentioned period is the 
announcement by the financial institutions that the Ethereum Trust will be reopened for public 
trading in the mentioned period. Also, in the mentioned period, the tendency of retail investors 
to engage in decentralized trading of virtual currencies increased the demand for Ethereum, one 
of the currencies with the largest market volume in the cryptocurrency markets. It contributed to 
the formation of speculative price bubbles.

Figure 6: XLM Cryptocurrency Test Results Charts

The SADF chart for Stellar (XLM) in Figure 6 shows no speculative price bubble during the 
period in question. However, the graphs of the GSADF test, which gives more accurate results 
than the SADF test, indicate the existence of several different bubbles during the period in 
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question. The main reason for this difference is that while the SADF test is a powerful method for 
detecting bubbles, it can be weak, especially in more than one price bubble. As confirmed by the 
GSADF graphs, price bubbles occurred in three different periods during the relevant period: the 
last quarter of 2020, the first quarter of 2021, and the second quarter. It can be said that regulatory 
decisions made in developed countries regarding the blockchain system and cryptocurrencies 
were effective in forming these bubbles. In the same period, developments such as the partnership 
of major banks with Stellar in Europe led to an increase in demand. They became one of the 
factors contributing to the inflation of the Stellar price.

Figure 7: XRP Cryptocurrency Test Results Charts

The SADF chart of Ripple (XRP) in Figure 7 shows no speculative price bubble during the 
period. However, the charts from the GSADF test, which provides more accurate results than 
the SADF test, provide empirical evidence of the existence of several different bubbles during the 
relevant period. As shown in the GSADF charts, price bubbles are observed in the third quarter 
of 2018, the first and fourth quarters of 2020, and the first and third quarters of 2021. In the 
formation of price bubbles, banks in Japan and South Korea announced their intention to test 
Ripple’s blockchain technology in 2018. In late 2019, Japan and South Korea will begin testing 
blockchain technology to reduce the time and costs of international money transfers between 
the two countries. In 2021, price increases in other cryptocurrencies drove up Ripple’s prices and 
contributed to the formation of a bubble.

In this part of the study, the hypothesis formulated as H2 is tested using the prices of 7 financial 
assets in the cryptocurrency market.

H2: Assets in the cryptocurrency market have the power to affect each other directly

The said hypothesis, Frequency Domain Causality Test, was used to determine whether the assets 
in the cryptocurrency market have the power to influence each other.

The Frequency Domain Causality Test used to test the hypothesis formulated as H2, can distinguish 
between temporary or permanent causal dynamics between crypto assets. For this purpose, test 
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statistics with high (ω=2.5) frequency were used when examining short-term causality, while test 
statistics with medium frequency (ω=1.5) were utilized for medium-term causality. Test statistics 
with low (ω=0.5) frequency were used to study long-term permanent causality. The test results 
are presented in Table 2, Table 3, and Table 4.

Table 2: Short-term (ω=2.5) Frequency Domain Causality Test Results

Causality Direction ADA BNB BTC DOGE ETH XLM XRP
ADA ➟ - 6.00** 2.83 6.53** 9.81*** 10.81*** 6.15**
BNB ➟ 17.68*** - 31.82*** 51.25*** 6.92** 23.20*** 18.65***
BTC ➟ 5.02* 10.00*** - 19.50*** 17.23*** 3.48 4.97*
DOGE ➟ 24.88*** 18.13*** 2.33 - 3.64 21.18*** 10.99***
ETH ➟ 11.83*** 1.51 20.48*** 27.79*** - 16.40*** 15.73***
XLM ➟ 1.27 1.56 11.59*** 7.21** 0.008 - 1.29
XRP ➟ 0.54 1.33 7.39** 13.86*** 2.02 1.68 -

Note: the significance levels * 0.10, ** 0.05, and *** 0.01 are given.

According to the results of the short-term frequency domain causality test in Table 2, a bidirectional 
causality relationship was found between ADA cryptocurrency and BNB, DOGE, and ETH. A 
bidirectional causality relationship was found between BNB cryptocurrency and ADA, BTC, and 
DOGE cryptocurrencies. A short-term and bidirectional causality relationship was found between 
the cryptocurrency BTC and the cryptocurrencies BNB, ETH, and XRP. A statistically significant 
and bidirectional causality relationship was found between the cryptocurrency DOGE and the 
cryptocurrencies ADA, BNB, XLM, and XRP. It is found that there is a transitory and bidirectional 
causality relationship between the cryptocurrency ETH and the cryptocurrency values ADA and 
BTC. Finally, a bidirectional causality relationship existed between XRP and BTC, DOGE.

On the other hand, a one-way causality relationship was found from cryptocurrency ADA to 
cryptocurrencies XLM and XRP. A one-way causality relationship was found between BNB and ETH. 
Similarly, a one-way causality relationship was found to exist from BTC to ADA. A unidirectional 
and statistically significant causality relationship exists between ETH to DOGE, XLM, and XRP. A 
unidirectional causality relationship was found to exist between XLM cryptocurrency and BTC.

Table 3: Mid-term (ω=1.5) Frequency Domain Causality Test Results
Causality Direction ADA BNB BTC DOGE ETH XLM XRP
ADA ➟ - 5.80* 2.63 7.19** 9.53*** 10.99*** 7.02**
BNB ➟ 18.74*** - 28.93*** 56.03*** 7.59** 23.79*** 20.22***
BTC ➟ 5.22* 8.62** - 20.34*** 15.99*** 3.63 5.59*
DOGE ➟ 26.57*** 20.33*** 1.65 - 3.60 21.55*** 12.18***
ETH ➟ 12.47*** 1.36 19.46*** 29.18*** - 16.91*** 16.95***
XLM ➟ 1.24 1.53 10.40*** 7.98** 0.01 - 0.79
XRP ➟ 0.40 1.29 6.37** 15.33*** 2.04 1.11 -

Note: the significance levels * 0.10, ** 0.05, and *** 0.01 are given.
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According to the medium-term frequency domain causality test results listed in Table 3, a 
bidirectional causality relationship was found between ADA cryptocurrency and BNB, DOGE, 
and ETH. A bidirectional causality relationship was found between BNB cryptocurrency 
and ADA, BTC, and DOGE cryptocurrencies. A medium-term and bidirectional causality 
relationship was found between the cryptocurrency BTC and the cryptocurrencies BNB, ETH, 
and XRP. A statistically significant and bidirectional causality relationship was found between 
the cryptocurrency DOGE and the cryptocurrencies ADA, BNB, XLM, and XRP. A bidirectional 
causality relationship existed between the cryptocurrency ETH and the cryptocurrency assets 
ADA and BTC. Finally, a bidirectional causality relationship existed between XRP and BTC, 
DOGE.

It was found that there is a one-way causality relationship between the cryptocurrency XLM and 
BTC. On the other hand, a one-way causality relationship existed between the cryptocurrency 
ADA and the cryptocurrencies XLM and XRP. It was found that there is a one-way causality from 
BNB to ETH, XLM and XRP. Similarly, it was found that there is a one-way causality relationship 
between BTC to ADA and DOGE. A unidirectional and statistically significant causality 
relationship exists between ETH to DOGE, XLM, and XRP.

Table 4: Long-term (ω=0.5) Frequency Domain Causality Test Results
Causality Direction ADA BNB BTC DOGE ETH XLM XRP
ADA ➟ - 3.22 1.30 12.27*** 5.71* 12.96*** 21.42***
BNB ➟ 22.03*** - 2.33 88.73*** 10.14*** 29.38*** 41.89***
BTC ➟ 10.21*** 1.15 - 31.54*** 3.19 7.40** 16.05***
DOGE ➟ 26.43*** 28.70*** 4.91* - 1.29 22.12*** 25.77***
ETH ➟ 14.36*** 0.28 8.25** 36.93*** - 22.12*** 34.05***
XLM ➟ 0.93 1.21 0.32 12.98*** 0.13 - 4.59
XRP ➟ 1.62 0.94 0.40 22.74*** 1.66 3.14 -

Note: the significance levels * 0.10, ** 0.05, and *** 0.01 are given.

According to the long-term frequency domain causality test results in Table 4, a bidirectional 
causality relationship was found between ADA cryptocurrency and DOGE and ETH. A 
bidirectional causality relationship was found between BNB cryptocurrencies and DOGE 
cryptocurrencies. A bidirectional causality relationship was found between BTC and DOGE. 
A statistically significant and bidirectional causality relationship was found between DOGE 
cryptocurrency and ADA, BNB, BTC, XLM, and XRP cryptocurrencies. It was found that 
there is an ongoing and bidirectional causality relationship between the cryptocurrency ETH, 
the cryptocurrency assets ADA, and BTC. It was found that there is a bidirectional causality 
relationship between XLM and DOGE cryptocurrencies. Finally, a bidirectional causality 
relationship existed between XRP and DOGE.

On the other hand, a one-way causality relationship existed between ADA cryptocurrency 
and XLM and XRP cryptocurrencies. It was found that there is a one-way causality from BNB 
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cryptocurrencies to the cryptocurrencies ADA, ETH, XLM, and XRP. Similarly, it was found that 
there is a one-way causality relationship between BTC to ADA, XLM, and XRP. A unilateral and 
persistent causality relationship exists between ETH to BTC, DOGE, XLM, and XRP.

When the results of the frequency domain causality test in Table 2, Table 3, and Table 4 are 
evaluated together, it can be concluded that there are spillover and contagion effects between 
cryptocurrency markets. It can be observed that the cryptocurrency with the strongest contagion 
and spillover effect in the short and medium term is Binance Coin (BNB). Also, a contagion and 
spreading effect can be seen in Binance Coin and other cryptocurrency assets in the long term. 
Moreover, another conclusion is that the said effect is permanent. On the other hand, although 
Stellar (XLM) and Ripple (XRP) cryptocurrencies have a contagion and spread effect from other 
cryptocurrencies in the short, medium, and long term, the contagion and spread impact of these 
cryptocurrencies to other cryptocurrencies is weak. Therefore, it can be observed that the risk of 
Stellar (XLM) and Ripple (XRP) spreading to other cryptocurrencies is low. Another result of the 
frequency domain causality test is that the cryptocurrency DOGE has the highest contagion and 
propagation effects among other cryptocurrencies. In other words, the cryptocurrency DOGE 
has a very high degree of dependence on other cryptocurrencies and has the highest risk of 
propagation. Finally, Bitcoin (BTC) and Ethereum (ETH) have a contagion and spillover effect 
that causes the prices of other cryptocurrencies to change.

In contrast, the degree of influence of other cryptocurrencies is low. Bitcoin (BTC) and Ethereum 
(ETH) are independent cryptocurrencies with spillover effects but low impact. In conclusion, 
the obtained results confirm the correctness of the H2 hypothesis, which states that assets in the 
cryptocurrency market can directly influence each other.

5. Conclusion

The globalization process that has taken place in the financial markets in recent years has put 
on the agenda the need for alternative currency systems and new financial instruments. This 
situation has led to the emergence of cryptocurrencies, especially following the 2008 crisis. 
Cryptocurrencies have started to attract attention in the financial system with their advantages, 
such as the alternative monetary system they offer and the potential to generate high returns. 
Moreover, the existing regulations in the cryptocurrency market are still in their infancy, 
which makes the financial assets in the cryptocurrency market vulnerable to high volatility 
and speculative developments. In this context, the speculative behaviours observed in the 
cryptocurrency market may lead to price bubbles. Moreover, the correlation and high volatility 
caused by the interdependence of financial assets in the cryptocurrency market can lead to 
spreading risks. Therefore, determining the interdependence of speculative behaviour and crypto 
assets is necessary for risk management and stable pricing in the cryptocurrency market.

In the study, Phillips et al. (2011) (SADF) and Phillips et al. (2015) generalized the Dickey-
Fuller test (GSADF) used to determine whether the external factors affecting the cryptocurrency 
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market cause instability in price formation. In other words, it aims to determine whether the 
speculative behaviour of the assets in the cryptocurrency market creates a price bubble and to 
measure the interdependence and spillover effect of the assets in the cryptocurrency market using 
the frequency domain causality test. Therefore, the study estimates the speculative behaviour 
and spread risk in the cryptocurrency market in two dimensions. The study results show that it 
is statistically significant for cryptocurrencies ADA, BNB, BTC, DOGE, ETH, XLM, and XRP. 
Therefore, there is empirical evidence of the formation of speculative bubbles between January 1, 
2018, and December 2021, which is discussed in the study. On the other hand, when examining 
the SADF and GSADF test statistics obtained for the XLM and XRP currencies from the selected 
assets in the cryptocurrency market, it was found that the SADF test is not, while the GSADF test 
is statistically significant. Based on the view that the GSADF test is more consistent and provides 
better results than the SADF test, it can be said that empirically a speculative bubble occurred 
within the XLM and XRP currencies for the analyzed periods.

On the other hand, the results of the frequency domain causality test in the study provide 
empirical evidence that there is a spillover and contagion effect between financial assets in 
the cryptocurrency market. In other words, price changes between selected currencies in the 
cryptocurrency market cause increased correlation and volatility. In particular, the degree of 
pegging the cryptocurrency DOGE to other cryptocurrencies was relatively high. Stellar (XLM) 
and Ripple (XRP) cryptocurrencies also have a high degree of pegging to other cryptocurrencies 
in the short, medium, and long term. However, the price changes observed in Stellar (XLM) and 
Ripple (XRP) cryptocurrencies do not affect other crypto assets. In other words, when a market 
event occurs in the Stellar (XLM) and Ripple (XRP) cryptocurrencies, it has little potential to 
cause an upward or downward trend in the prices of other cryptocurrencies. Therefore, sudden 
changes in other cryptocurrencies can be expected to simultaneously affect DOGE, Stellar (XLM), 
and Ripple (XRP) and increase the risk of a spread. Another important finding of the study is that 
Bitcoin (BTC) and Ethereum (ETH) have a contagion and spillover effect that causes the prices of 
other cryptocurrencies to change. In contrast, the degree of influence by other cryptocurrencies 
is low. Bitcoin (BTC) and Ethereum (ETH) are cryptocurrencies in their own right that pose 
spillover risks but are only affected by spillover and volatility risks to a small extent.

In the context of the results obtained in the study, assets in the cryptocurrency market have a 
spillover effect in the form of overvaluation with the impact of internal and external factors. 
In other words, the high interdependence of crypto assets in the crypto money market is a 
significant obstacle to stable price formation when supported by speculative pricing behaviour. 
Therefore, the study results provide a better understanding of the interconnectedness of assets 
in the cryptocurrency market and the transmission of contagion effects. In addition, the study’s 
findings indicate that investors should pay attention to the moving signals in the markets. This 
means that any current and past change in one cryptocurrency could have a negative impact on 
the movement of other cryptocurrencies. Therefore, the study’s findings to establish a dynamic 
early warning mechanism for risk management and stable pricing in the cryptocurrency market 
will be an essential guide.
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Future studies may expand the scope of work with other currencies in the cryptocurrency 
market. In addition, the studies on this topic can use quantitative methods to investigate the 
macroeconomic and socioeconomic factors determining the cryptocurrency market’s spread risk.
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