Cumbhuriyet Universitesi Fen Fakiiltesi
Fen Bilimleri Dergisi (CFD), Cilt 37, No. 1 (2016)
ISSN: 1300-1949

Cumhuriyet University Faculty of Science
Science Journal (CSJ), Vol. 37, No. 1 (2016)
ISSN: 1300-1949

http://dx.doi.org/10.17776/csj.84703
Timelike Surfaces With Constant Angle in de -Sitter Space Sf

Tugba MERT?", Baki KARLIGA?

1Cumhuriyet University, Science Faculty, Sivas, Turkey
2Gazi University, Science Faculty, Ankara, Turkey

Received: 21.01.2016; Accepted: 08.03.2016

Abstract. In this paper, we study a special class of timelike surface which is called constant timelike angle surfaces in de
Sitter space Sf . In Sf , conditions being a constant angle timelike surface have been determined and invariants of these

surface have been investigated. In here, we use the angle between unit normal vector field of surfaces and a fixed spacelike
axis in ambient space.
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De-Sitter Uzayinda Sabit A¢ili Zamansal Yiizeyler

Ozet. Bu caligmada, yiizeyin birim normal vektor alan1 ve R14 de sabit bir uzaysal eksen arasimdaki agiyr kullanarak, de-

Sitter uzayinda sabit zamansal ac¢ili yiizeyler olarak adlandirilan zamansal yiizeylerin 6zel bir sinifi gelistirilmistir.

Anahtar Kelimeler: Sabit acili yiizeyler, de-Sitter uzayi, Helis, zamansal yiizeyler

1. INTRODUCTION

In three dimensioan Euclidean space E*, a constant angle surfaces are a surfaces whose tangents
make constant angle with a fixed direction in ambient space. A surface whose tangent planes makes a
constant angle with a fixed vector field is called constant angle surface in ambient space. M.I.
Munteanu and A.l. Nistor studied constant angle surface and obtained all class of constant angle

surface in E* [6]. Constant angle surface have been studied by A.J. Scale and G.R. Hernandez in n-

dimension Euclidean space E" [13,14]. The Constant angle surface were applied to liquid layers and
liquid crystals by P. Germelli and A.J. Scala [12]. Constant angle surface have been studied recently in

product spaces S°xR [15] , H*xR [16] or different ambient spaces Nil,[17]. In [1], Lopez and
Munteanu studied constant hyperbolic angle surfaces whose unit normal timelike vector field makes a
constant hyperbolic angle with a fixed timelike axis in Minkowski space Rf . In the literature constant

timelike and spacelike angle surface have not been investigated both in hyperbolic space H*® and de
sitter space Sf. A constant timelike and a spacelike angle surface in Hyperbolic space H® and

constant angle spacelike surface in de sitter space Sf are developed in our paper [19] , [20] and [21].
Constant timelike angle surface is a surface whose tangent planes makes a constant angle with a fixed
vector field of Sf . De Sitter space is a good model for a physical phenomenon. This kind of surfaces

in de Sitter space Sf involved with our daily life such as architecture and geometrical design.
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Probably, architectural structures and geometrical designs that use de Sitter curves enter into our life in
the future. In this paper we introduce constant timelike angle timelike surfaces in de Sitter space Sf .

2. PRELIMINIARIES

Let Rf be 4-dimensional vector space equipped with the scalar product () which is defined by

<X, Y> =X Y XY, XY+ XY,
Rf is 4-dimensional vector space equipped with the scalar product () , than Rf is called Lorentzian
4- space or 4-dimensional Minkowski space. The Lorentzian norm (length) of X is defined to be

ME

If (xgxl'x'zx;) is the coordinate of X, with respect to canonical basis {e,e,,e,,&,} of R, then the

lorentzian cross product X, x X, x X, is defined by the symbolic determinant
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On can easly see that
(X X X, X Xg, X, ) = det(X;, Xy, X5, X, ) -
In [2],[3]and [5] lzimuya at all introduced and investigated differantial geometry of curves and

surfaces in Hyperbolic 3-space. In the rest of this section, we give background of context in [22].
Given a vector vV € Rf and a real number ¢, the hyperplane with pseudo normal v is defined by

HP(v,c) Z{XE R, (x,V) :c}.

We say that HP(v,c)is a spacelike hyperplane, timelike hyperplane or lightlike hyperplane if v is
timelike, spacelike or lightlike respectively. We have following three types of pseudo-spheres in Rf :

Hyperbolic-3 space : H®(-1)= {X e R, (X, x)=-1%, 21} ,
de Sitter 3- space : S = {x e R, (x,x) :1} ,
(open) lightcone : LC" ={x &Ry /{0},(x,x)=0,%, =1}.

We also define the lightcone 3-sphere

S? Z{XE R',(X,X)=0,x, :1}.
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A hypersurface given by the intersection of Sf with a spacelike (resp.timelike) hyperplane is called an
elliptic hyperquadric (resp. hyperbolic hyperquadric). If c¢#0 and HP(v,c) is lightlike , then
HP(v,c) " S; is a de Sitter horosphere.

Let U — IR? be open subset, and let x:U — Sf be an embedding. If the vector subspace U
which generated by {xul,xuz} is spacelike, then x is called spacelike surface, if U contain at least a
timelike vector field then X is called timelike surface in S .

In point of view Kasedou [22], we construct the extrinsic differantial geometry of curves in
S}. Since S}is a Riemannian manifold, the regular curve y:7 — S’ is given by arclength
parameter.

Theorem 1
i) ify:I— Sf is a spacelike curve with unit speed, then Frenet-Serre type formulae is obtained

y'(s)=t(s)

t'(s) = x4 (s)n(s) —y(s)

n'(s) = —x, ($)t(s) —z4(s)e(s)

e'(s) =—z4(s)n(s)

det(y(s).7'(s).7"(s).»"(s))
K5 (9) '

iiIfy:I— Sf is a timelike curve with unit speed, then Frenet-Serre type formulae is obtained

where i, (5) = () + 7(s) land 7,(s) =~

7'(s) =t(s)

t'(s) =, (s)n(s) + ¥ (s)
n'(s) = x4 (S)t(8) + 74 (S)e(s)
e'(s) = —z,(s)n(s)

det(r(),7°(s).7°(5).7"(5)

where x, (5) | '() ~(s) |and 7, (s) = T

It is easily see that x,(s)=0 if and only if there exists a lightlike vector ¢ such that
y(s)—c is a geodesic.
Now we give extrinsic differential geometry on surfaces in Sf due to Kasedou [22].

Let U < IR? is an open subset, and x:U — S is a regular surface M = x(u) . Since M is a

timelike surface, there is e(e(u) = X(u) A X, (U) A X, (U) such that (e, X) = <e, X, > =0,(e,e)=1.
[l x(u) A X (U) A X, (U) ] '

Thus there is de Sitter Gauss image of X which is defined by mapping

E:U c IR* —»S?,E(u) =e(u) . The lightcone Gauss image of X is defined by map L*:U — LC"

L (u)=x(u)xe(u).

The derivative dx(uo)can be identify by the mapping 1TpM on the tangent space T,M .
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Therefore, we have
dL* (up) =1,y £dE(up).

The linear transformations

§ =—dL* (u ):TpM —->T,M
and

=—dE(uy):T,M ->T M

is called the hyperbolic shape operator and de Sitter shape operator of M at p = X(uO )

Let K_ii(p) and K;(p),(i=1,2) be the eigenvalues of S, and A, . Since

+

Sy =LA,

Sj and A, have same eigenvectors and relations

Kii(p)=—liKi(p).
K.*(p) and Ki(p),(i:1,2) are called hyperbolic and de Sitter principal curvetures of M at
p=x(up).
Let »(s) be a unit speed curve on M, with p=y(u,(s),u,(s)). We consider the
hyperbolic curvature vector k(s): t'(s)— y/(s) and the de Sitter normal curvature

K, (So) = <k(So )9 r (”1 (So) u, (So ))> <t (So) L+(u1 (So )> U, (So ))> +1

of p=y(u,(s,).U,(S,)). The de Sitter normal curvature depends only on the point p and the unit
tangent vector of M at p. Hyperbolic normal curvature of y(s) is defined to be

and

H;(uo):%Tracesg = Kl(p); Kg(p)'

And also the extrinsic (de Sitter) Gauss curvature and mean curvature of M at p = x(u0 ) is given by
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K. (u,)=det Ap=K, (p)K,(p)

and

Kl(p)+K2(p).
2

Hy (up) = %TraceAp =

Let Xx:M — Rf be an immersion of a surface M into Rf.We say that x is timelike (resp.
spacelike, lightlike) if the induced metric on M via X is Lorentzian (resp. Riemannian,
degenerated). If (X, x)=1, then X is an immersion of S.’.

Let x:M —> Sf be a spacelike immersion, and let & be a unit normal vector fieldto M . If

there exists spacelike direction W such that timelike angle 6’(§,U) is constant on M , then M s

called constant timelike angle surfaces with spacelike axis.
Let x:M — S’ be a spacelike immersion and let & be a unit normal vector field toM . If

there exists spacelike direction W such that spacelike angle 9(§,U) is constant on M , then M is
called constant spacelike angle surfaces with spacelike axis.
From now on, the constant angle surface is proposed in de Sitter space Sf :

3. TIMELIKE SURFACE WITH CONSTANT TIMELIKE ANGLE

Let call y(M) is tangent vector fields space over M . Let write 3,5 and D are Levi-Civita

connections of R’,S’and M respectively. Forany X,Y € y(M), we have
D,Y = (DxY)" D,Y = (DxY)", V(X,Y) = (DxY)*
here V is second fundamental form of M over R; and
DxY =DxY —(X,Y)x,DxY = D,Y +V (X,Y) 3.1)

where the superscript 7 and L are the tangent and normal component of DxY. Equations in (3.1)
are called the Gauss formula of M on S}. If & is a normal vector field of M over S?, then A.(X)

and B_(.X) Weingarten Endomorphism are defined by the tangent components of —5x§ and -
—Bx X . So the Weingarten equations of the vector field & and X will be as follows

A§(X)=—BX§—<BXx’§>X (3.2)

B, (X) :—Bxx+<3xx,§>§

It is clear that 4.(X) and B (X) operators for each peM are both linear and self adjoint
operators. That is
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(A.(X),Y)=(X,A.(Y)) and (B,(X),Y)=(X,B,(Y)).

Let called eigenvalues K, (P)of (Aé)pover S} and eigenvalues K, (P) of (BX)p over R’ are

principal curvetures and also, forany X,Y € y (M) we have
(4:00,7)=(F(X,1),&), (BX),Y)=(V(X,¥),x).
Since V(X,Y) is second fundamental form of M over IR/, so we can write V(X ,Y) as follows
V(X,Y)=(4,(X),Y )& +(B.(X).Y)x.
Let call {v,,Vv,} is abase of TpM tangent plane and let us denote

a, =(V (v,v).E) =(4,0,).v,) (3.3)

< v,,v)x> B(v)v> (3.9)

So BxY =D,Y +\7(X ,Y). On the other hand for {v,,Vv,} base , we get

ol

wv, =D, v, — <A§(vl.),vj>§ <vl,vj >x (3.5)
If {v,,V,} is orthonormal base, then we have from (3.1) and (3.2)

Duv,=D,v, - a, (36)
and also we get

Bvi E=—q,V, —a;,V, (3.7)

Bvi X=Db,v, —=b,V, (3.8)

3.1 Constant Timelike Angle Surfaces With Spacelike Axis

Definition 1 Let U — IR® be open set and let x:U — Sf be an embedding where M =x(U). Let

X:M —> 813 and & is spacelike unit normal vector field on M, if there exist a constant spacelike

vector W which has a constant timelike angle with & , then M is called constant timelike angle
surface with spacelike axis.
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Since our surface is timelike, the orthogonal base of tangent space TpM has a timelike tangent vector.
Let M be constant timelike angle surface with spacelike axis, and let & and W be unit normal and
fixed axis of M . If @ is an timelike angle between spacelike vectors & and W then

<§,W> =—coshéd.

If =0, then £ =W . From now on the rest of the paper, without loss of generality we assume that

0.1f W' is the projection of W on the tangent plane of M , then we decompose W as
wW=w"+w"
So that we write
W =WT+2E+ X,
If we take inner product of both sides of this equality first with &, then with x
A =—cosh 6,4, =(W,X).

On the other hand since W and X are spacelike vector fields, then we can use define of spacelike and
timelike angle between these vectors.

Theorem 2 If ¢ is spacelike angle between spacelike vectors W and X, then we can write from [11]

W = \/‘sinz @ —cosh’ H‘el — (cosh 8)& + (cos @) x

and de Sitter projection W, of W as follows

W, = \/‘sinz ¢ —cosh? H‘e1 —(cosh )& (3.9)
Remark 1 Let ¢ be timelike angle between spacelike vectors W and x, then we can write for [11]
<W,x> =—cosh¢
or
A, =—cosh¢.
Therefore W can be written as follows
W =W —(cosh#)&—(coshg)x.
On the other hand, since

”\NTH2 =—sinh*@—cosh’ ¢
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then there is not any timelike angle between W and x.

w' : :
e =—T“, and let assume e, be a unit vector field on M orthogonal to €, . Then

1
W
we have an ortonormal basis {e,,e,, &, x}in R/ for each point of M . Since ¥, is constant vector

field on S®, we have

DeW, =DV, =0

hence we have

\/‘sinz @ —cosh? H‘Bez e, — (cosh H)Be2§ =0 (3.10)

By (3.10) &, we obtain

—\/‘sin2 ¢ —cosh? ¢9‘a21 =0.

Since —\/‘sin2 ¢ —cosh? 9‘ # 0, we conclude a,, = a,, =0. Using (3.7) in (3.10), we find

De,, = _coshé a,,€, (3.11)
\/‘sinz ¢ —cosh’ 49‘

Similarly, since W, is a constant vector field on S;’, then we have

D.W, =0 and Belwd = \/‘sinz @ —cosh’ e‘x (3.12)
By (3.9), we see that

Belwd = \/‘sinz @ —cosh’ 9\5%e1 —(cosh Q)Belé (3.13)
By (3.12) and (3.13), we conclude that

\/‘sinz @ —cosh? H‘Belel —(cosh 6’)5%5 = \/‘sinz @ —cosh’ e‘x (3.14)

By (3.14), then we get

\/‘sinz ¢ —cosh? 9‘ <Belel, §> =0

or

—\/‘sin2 ¢ —cosh? Ja,, =0
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Since —\/‘sin2 @—cosh® 8| =0, we conclude a,, =0 . Using (3.7) in (3.12) , we obtain

Belel =X (3.15)
Hence, we have proved the following theorem.

Theorem 3 If D is Levi-Civita connection for a constant timelike angle surface M of S?, then

—coshé
D.e =0 D. & =— - — 8,
\/‘sm @ —cosh 0‘
—cosh @
D.e, =0

D.e, = — — 8,8,
\/‘sm @ —cosh 6"

Corollary 1 Let M be a timelike surface with a constant timelike angle in Sf’ . Then, there exist local
coordinates U,V such that the metric on M writes as (,):=—du’ + Bdv’, where = B(u,v) is a

smooth function on M , i.e. the coefficients of the first fundamental formare E=—-1F =0,G = §°.

Let we find the x=x(u,v) parametrization of the surface M with respect to the metric

(,):=—du’ + ’dv* on M . By Theorem-1, one can obtain the following corollary.

Corollary 2 There exist an equation system for a timelike surface with a constant timelike angle in S’

which is
X, = X
Xy = &Xv (3.16)
B
_ ﬂv 2 2
Xw _ﬂﬂuxu +Exv _ﬂ a22§_ﬂ X

Corollary 3 Let & be unit normal vector of the a timelike surface with a constant timelike angle M .
Then the equation below hold

—D.E=0
{é‘ — . (3.17)
¢, =Dx. & =—-ayx,
Since £, =&, we have Bx“ (-=ayx,)=0. Using a,, =0, BxuxV :vaxu and Theorem 1, we
obtain
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(Bac). = \/‘sinzi(o)s_hc‘(g)shz 6" (32)" =0 (319
or

@)+ (@) =0 319
Hence, we have

(Bay), =0 (3.20)

By (3.20),we see that there exist a smooth functiony = (v) depending on Vv such that

Bay, =y (V) (3.21)

Prposition 1 Let x = x(u,v) be parametrization of a timelike surface with a constant timelike angle in

S?.If a,, =00n M, then the x describes an flat plane of de Sitter space S, .

From now on, we are assume that a,, # 0. By solving equation (3.16), we obtain a
function @ = a(v) such that

_ —{sin?p—cosh? 6
%2 ucosh@+a(v)

(V) = /sin? p—cosh? Oa(v) .
Therefore by (3.21) ,we obtain

B(u,v) = Jsinz"”(‘élshz —(ucosh-+a(v)).
o

If we choose (V) = —v\/sin2 @—cosh® @ and a(v) = Inv, then we have the following theorem.

Theorem 4 If M s satisfy (3.22), then there exist local coordinates u,von M with having the
parametrization

_dl'(v) .
X (U,v) = ' +d.,.(v),i=12,3,4 3.23
() 2cosh &(u cosh 6+ Inv)? a (V) (3.23)

Proof From (3.22), the proof is clear.

10
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