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Abstract 

Entropy has a very important role in Statistics. In recent studies it can be seen that entropy started to take place nearly in 

every brunch of science. In information theory, entropy is a measure of the uncertainty in a random variable. While there 

are different kinds of methods in entropy, the most common maximum entropy (MaxEnt) method maximizes the Shannon’s 

entropy according to the restrictions which are obtained from the random variables. MaxEnt distribution is the distribution 

which is obtained by this method. The purpose of this study is to calculate the MaxEnt distribution of Turkey’s Annual 

temperatures for last 43 years under combinations of the restrictions 1, x, x2, lnx, (lnx)2, ln(1+x2) and to compare this 

distribution with the real probability distribution by the help of Kolmogorov-Smirnov goodness of fit test. According to the 

results, goodness of fit statistics accept the null hypothesis that all the entropy distributions fit with the probability 

distribution. The results are given in related tables and figures. 
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SHANNON'UN MAKSİMUM ENTROPİ DAĞILIMININ 

BAZI KISITLAR ALTINDAKİ PERFORMANSI: 

TÜRKİYE'NİN YILLIK HAVA SICAKLIKLARI ÜZERİNE 

BİR UYGULAMA 

Özet 

İstatistik biliminde entropi oldukça önemli bir yere sahiptir. Son yıllardaki çalışmalarda entropinin neredeyse 

bilimin her dalında yer aldığı görülebilir. İnformasyon teorisinde, Entropi, rassal bir değişkenin belirsizliğinin 

bir ölçüsüdür. Entropi içerisinde farklı birçok metot olmasına rağmen, en yaygın olan Maximum Entropy 

(MaxEnt) metodu, rassal değişkenlerden elde edilen kısıtlara bağlı olarak Shannon’un entropisini maksimize 

eder. MaxEnt dağılımı ise bu metot aracılığı ile elde edilen dağılımdır. 

 

Bu çalışmanın amacı, Türkiye’nin son 43 yıllık sıcaklık değerleri için 1, x, x2, lnx, (lnx)2, ln(1+x2) kısıtlarının 

kombinasyonları ile MaxEnt dağılımını hesaplamak ve bu dağılımı gerçek olasılık dağılımı ile Kolmogorov-

Smirnov uyum iyiliği testi yardımı ile karşılaştırmaktır. Elde edilen sonuçlara göre tüm entropi dağılımlarının 

gerçek olasılık dağılımı ile uyum gösterdiği şeklindeki sıfır hipotezi kabul edilmektedir. Elde edilen sonuçlar 

ilgili tablo ve grafiklerde verilmektedir. 

Anahtar Kelimeler: Shannon’un Maksimum Entropi Dağılımı, Lagrange Çarpanları, Kesikli Dağılımlar.   

Jel Kodu:  C02, C46, C63. 

 

1. Introduction 

Historically, many notations of entropy have 

been proposed. The etymology of the word entropy 

dates back to Clausius (Clausius 1865), in 1865, 

who dubbed this term from the greek tropos, 

meaning transformation, and a prefix en- to recall 

the indissociable (in his work) relation to the notion 

of energy (Jaynes 1980). A statistical concept of 

entropy was introduced by Shannon in the theory 

of communication and transmission of information 

(Lesne, 2011).  

A Maximum Entropy (MaxEnt) density can be 

obtained by maximizing Shannon’s information 

entropy measure subject to known moment 

constraints. According to Jaynes (1957), the 

maximum entropy distribution is “uniquely 

determined as the one which is maximally 

noncommittal with regard to missing information, 

and that it agrees with what is known, but expresses 

maximum uncertainty with respect to all other 

matters.” The MaxEnt approach is a flexible and 

powerful tool for density approximation, which 

nests a whole family of generalized exponential 

distributions, including the exponential, Pareto, 

normal, lognormal, gamma, beta distribution as 

special cases (Wu, 2003). 

There are many subjects in statistics, examined 

via Maximum entropy or minimum cross entropy 

application (MinxEnt) (Kullback, 1959, Kapur and 

Kesevan 1992; Shamilov ve Kantar Mert 2005, 

Usta, 2006). 

There are potentially more appropriate 

measures of information than the variance, 

however, such as that developed by Shannon 

(1948), Shannon and Weaver (1949), Renyi (1961) 

and Khinchine (1957). This information theoretic 

approach was rigorously related to the general 

body of statistics by Kullback and Leibler (1951) 

and Kullback (1959). These authors and other 

current analysts such as Parzen (1990a, b) and 
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Brockett (1992) have continued to conduct 

research to show how the information theoretic 

approach can lead to a view of statistics which both 

unifies and extends the various parts of the body of 

statistical methods and theories (Brocket et al 

1995). 

2. Material and Method 

As Losee (1990) mentioned; the amount of self-

information that is contained in or associated with 

a message being transmitted, when the probability 

of its transmission is p, the logarithm of the inverse 

of the probability is as in [1]. 

 
1

log logh or h p
p

     (1) 

 

For a random variable X with values in a finite 

set R, Shannon’s entropy H(x) can be defined as in 

[2]. 

      
x R

H x p x logp x  


    (2) 

 

The choice of a logarithmic base corresponds to 

the choice of a unit for measuring information. If 

the base 2 is used the resulting units may be called 

binary digits, or more briefly bits, a word suggested 

by J. W. Tukey (Shannon and Weaver, 1949). 

 

Recent studies show that, when deciding the 

restrictions, Entropy distributions of the 

characterizing moments and some combinations of 

these moments of a known statistical distribution 

gives better results to model the data set. For 

example Wu and Stengos (2005) used x , x2 , ln(1+ 

x2 ) and sin x functions as the restrictions, Wu and 

Perloff (2007) used x , x2 , ln(1+ x2 ) and arctan x 

and Shamilov et al (2008) used x , x2 , x3 , ln x , (ln 

x)2 and  ln(1+ x2 ) as the restrictions for the entropy 

distribution (Usta, 2009). 

 

In our study like these recent studies we used 1, 

x, x2, lnx, (lnx)2, and ln(1+x2) as the restrictions to 

calculate the entropy distributions. 

 

When there are more than one restriction, we 

need to use Lagrange multipliers to solve the 

restricted equations at the same time. If we consider 

an entropy distribution with three restrictions, to 

find the MaxEnt distribution of a random x 

variable, with probabilities 𝑝1 , 𝑝2, … , 𝑝𝑛  the H(x) 

must be solved under the restrictions given below. 

 

1
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For three restrictions like this, the Lagrange 

function can be obtained as in [6]. Here 𝜇𝑖 are the 

ith  moments of the related data.  
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If we set equation [6] to zero after derivation 

according to 𝑝𝑖s, then 

0 1 1 2 21     1,2, ,i i ilnp g g i           (7) 
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As a result we can obtain the MaxEnt 
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probabilities as in [11] (Değirmenci, 2011). 

 

 

1 1 2 2

1 1 2 2
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exp
 

exp

i i

i n
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i
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 
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 

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  (11) 

As an illustrative example lets think that we 

have observations as 3, 7, 10 and 12. and lets take 

the restrictions as (1, x and x2) now  we may write 

the equations like in [13] (Çiçek, 2013). 

1 2 3 4 1p p p p      

1 2 3 43 7 10 12 8p p p p      

9𝑝1 + 49𝑝2 + 100𝑝3 + 144𝑝4 = 75.5        [13] 

When we adapt the given equations we can 

obtain the equations given [14]. 

𝑝1 = 𝑒
−𝜆0−𝜆1𝑥 = 𝑒−𝜆0−3𝜆1−9𝜆2   

 𝑝2 = 𝑒−𝜆0−𝜆1𝑥 = 𝑒−𝜆0−7𝜆1−49𝜆2  

  𝑝3 = 𝑒−𝜆0−𝜆1𝑥 = 𝑒−𝜆0−10𝜆1−100𝜆2

   𝑝4 = 𝑒
−𝜆0−𝜆1𝑥 = 𝑒−𝜆0−12𝜆1−144𝜆2  }

 
 

 
 

          [14] 

When we solve these equations we can obtain 

the Lagrange multipliers as; 

𝜆0 = 0.5618,  𝜆1 =-7,80E-18 and 𝜆2 = 0.0141  

As a result, by the help of these multipliers we 

may obtain the MaxEnt distribution as in Table 1. 

Table 1.  MaxEnt distribution of the sample for 

three restrictions. 

𝑝1 0.5020 

𝑝2 0.2851 

𝑝3 0.1386 

𝑝4 0.0744 

3. Application 

In this section of the study, MaxEnt 

distributions for temperature values in Turkey 

during the last 43 years are calculated. The data set 

is obtained from Turkish State Meteorological 

Service. To calculate MaxEnt distribution of the 

related data set under restrictions with the help of 

the Lagrange multipliers we used MATLAB 

software and developed a program to calculate any 

discrete data set under some restrictions. The 

frequency distribution for this data set can be seen 

in Table 3 and its histogram is given in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Histogram for the annual temperature 

values (in Celsius) of Turkey for last 43 years. 

Figure 1 shows that the average annual 

temperature of Turkey in last 43 years is about 11-

12 C. 

Entropy values are calculated under two, three, 

four, five and six restrictions for this data set. The 

best entropy values (Minimum uncertainty 

amount) for the related restrictions are shown in 

bold and given in Table 2. 

Table 2. Entropy values of the temperature 

distribution under given restrictions. 
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Table 2 shows that the minimum Entropy 

(Maximum information) is obtained as 1.6507 

under six restrictions. As a summary of the table; 

the minimum entropy value under restrictions (1, 

x2)  is 1.7268,  restrictions (1, x2, ln(1+x2)) is 

1.7273, restrictions (1,x, x2, ln(1+x2)) is 1.6865, 

restrictions (1, x, x2, (lnx)2, ln(1+x2)) is 1.6547, and 

restrictions (1, x, x2, lnx, (lnx)2, ln(1+x2)) is 1.6507. 

 

It can also be seen that by increasing the number 

of restrictions, the entropy values decrease. 

 

At the next step of the analysis, Kolmogorov-

Smirnov goodness of fit test is applied to test 

whether or not each of the entropy distributions 

under these restrictions fit to the real probability 

distribution. 

 

The two-sample Kolmogorov-Smirnov (K-S) 

goodness of fit test is one of the most useful and 

general nonparametric methods for comparing two 

samples, as it is sensitive to differences in both 

location and shape of the empirical cumulative 

distribution functions of the two samples. 

 

If Fo(x) is the population cumulative 

distribution, and SN(x) the observed cumulative 

step-function of a sample (i.e., SN(x) = k/N, where 

k is the number of observations less than or equal 

to x), then the sampling distribution of D= 

maximum |Fo(x) - SN(X)| is known, and is 

independent of Fo(x) if Fo(x) is continuous (Frank 

and Massey, 1951). 

 

Null and the alternative hypothesis for K-S test 

can be written as: 

H0 : F(x) = F0 (x) (The data follow a specified 

distribution) 

H1 : F(x) ≠ F0 (x) (The data do not follow the 

specified distribution) 

 

 

 

 

 

 

 

 

 

Restrictions Entropy H(x) 

(1, x)  1.77536033981 

(1, x2)  1.72687192330 

(1, lnx)  1.78918471283 

(1, (lnx)2)  1.78131812647 

(1, ln(1+x2)) 1.79175946922 

(1, x, x2) 1.77371720718 

(1, x, lnx) 1.77554313034 

(1, x, (lnx)2)  1.77549169046 

(1, x, ln(1+x2))  1.77554248388 

(1, x2, lnx)  1.72736338152 

(1, x2, ln(x)2)  1.72771821411 

(1, x2, ln(1+x2))  1.72735921453 

(1, lnx, (lnx)2)  1.78906743971 

(1, lnx, ln(1+x2))  1.78918513332 

(1, (lnx)2, ln(1+x2))  1.77923497943 

(1, x, x2, lnx)  1.68678640317 

(1, x, x2, (lnx)2)  1.71520751538 

(1,x, x2, ln(1+x2))  1.68653487964 

(1, x, lnx, ln(x)2)  1.77554313034 

(1, x, lnx, ln(1+x2))  1.77543835428 

(1, x, (lnx)2, ln(1+x2))  1.74012605933 

(1, x2, lnx, (lnx)2)  1.74973313274 

(1, x2, lnx, ln(1+x2))  1.72716039931 

(1, x2, (lnx)2, ln(1+x2))  1.70088754359 

(1, lnx, (lnx)2, ln(1+x2)) 1.78133520000 

(1, x, x2, lnx, (lnx)2)  1.73922899405 

(1, x, x2, lnx,ln(1+x2))  1.68628798649 

(1, x, x2, (lnx)2, ln(1+x2))  1.65478629163 

(1, x, lnx, ln(x)2, ln(1+x2))  1.75994429256 

(1, x2,lnx, (lnx)2, ln(1+x2))  1.70065491805 

(1, x, x2, lnx, (lnx)2, 

ln(1+x2)) 
1.65073612464 
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Maximum Differences between the probability 

distribution and entropy distributions (D) 

according to Cumulative Density Functions (CDF) 

and probabilities for these differences are given in 

Table 4 and the graph for Cumulative Density 

Function for all entropy distributions is given in 

Figure 2.  

 

Table 4. Goodness of fit statistics for entropy 

distributions and data set. 

pi-Hi(X) D p(D) 

𝐻2(𝑋) 0,1784 0,3180 

𝐻3(𝑋) 0,1785 0,3180 

𝐻4(𝑋) 0,1736 0,3180 

𝐻5(𝑋) 0,1762 0,8096 

𝐻6(𝑋) 0,1766 0,8096 

 

Table 4 shows that according to the 

probabilities (p(D)) of K-S test we accept the null 

hypothesis and we can say that the maximum 

entropy distributions under all restrictions                        

rrgrg 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      statistically fit to the related data set 95% 

confidently.  

 

While we obtain the maximum information 

from the entropy distribution under six restrictions, 

according to Figure 2. and the D values given in 

Table 4, the maximum difference is between the 

probability distribution (the red line in Figure 2) 

and the entropy distribution under three restrictions 

(the green line in Figure 2) according to  

Cumulative Density Function. 

 

 

Figure 2. CDF Graph of KS test 

Table 3. Temperatures, frequencies, probabilities and entropy distributions 

Temperature 𝒇𝒐 𝒑𝒊 
 
 

𝒇𝟐 𝒇𝟑 𝒇𝟒 𝒇𝟓 𝒇𝟔 

10.23-10.94 

10.94-11.65                            

11.65-12.36                            

12.36-13.07                             

13.07-13.78                                                          

   13.78-14.53 

6 

17 

15 

3 

1 

1 

0.1395 

0.3953 

0.3488 

0.0697 

0.0232 

0.0232 

 

 

 

 

 

 

0.2629 

0.2169 

0.1767 

0.1422 

0.1130 

0.0880 

0.2625 

0.2168 

0.1768 

0.1424 

0.1132 

0.0883 

 0.2941 

0.2288 

0.1752 

0.1322 

0.0983 

0.0714 

0.3164 

 0.2355 

0.1726 

0.1248 

0.0889 

0.0618 

0.3192 

0.2362 

0.1722 

0.1238 

0.0878 

0.0608 

𝒇𝒐: Observed frequencies 
𝒑𝒊: Probability distribution 
𝒇𝟐−𝟔: Entropy distributions under given restrictions 
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4. Results and Discussion 

In this study, the performances of Shannon’s 

maximum entropy distributions are examined 

under two, three, four, five and six restrictions for 

discrete variables and comparisons of restricted 

entropy distributions are concluded according to 

their entropy values which obtained minimum for 

the related restriction. 

 

One of the importance of this study can be 

defined as; if any data set doesn’t fit to a known 

statistical distribution, it can be explained via a 

entropy distribution. 

 

Results show that by an increasing number of 

restrictions, MaxEnt distribution explains the 

related data set much better. 

 

To explain the Turkey’s annual temperature 

values for the last 43 years, the best MaxEnt 

distribution has the restrictions set of (1, x, x2, lnx, 

(lnx)2, ln(1+x2)) with an entropy value of 1.6507. 
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