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Abstract

The aim of this paper is to study the invariant submanifolds of a (κ,µ)-paracontact metric space form. We characterize (κ,µ)-paracontact
metric space form satisfying the curvature conditions ∇σ=0, R ·σ = 0, R ·∇σ = 0 and C̃ ·σ = 0. Finally, we see that these conditions are
equivalent to σ = 0.
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1. Introduction

In the modern differential geometry, the geometry of submanifolds has became a subject of growing interest for its significant applications in
applied mathematics and physics. For instance, the notion of invariant submanifold is used to discuss properties of non-linear autonomous
system. On the other hand, the notion of geodesics plays an important role in the theory of relativity. For totally geodesic submanifolds, the
geodesics of the ambient manifolds remain geodesics in the submanifolds. Therefore, totally geodesic submanifolds are also very much
important in physical sciences rather than the simplest submanifolds.

The notion of paracontact geometry was initiated by Kaneyuki and Williams in [7]. A systematic investigation on paracontact metric
manifolds done by Zamkovoy in [9]. After then, Cappelletti-Montano et al [6] introduced a new type of paracontact geometry so-called
paracontact metric (κ,µ) space, where κ and µ are constants. It is well known [5] that in contact geometry case κ ≤ 1. But in paracontact
geometry case, there is no restriction for κ . This is an advantage for paracontact metric manifolds.

In [3], Authors introduced 2-semiparallel surfaces as surfaces satisfying the integrability condition of differential system.

In [8], Özgür et. al studied minimal anti-invariant semiparallel submanifolds of a generalized Sasakian space form and show that the
submanifolds are totally geodesics under certain conditions.

Also, in [4], we studied invariant semiparallel and 2-semiparallel submanifolds in a normal paracontact metric manifold. Necessary and
sufficient conditions are given for the submanifold to be totally geodesic.

Motivated by the above studies, in this paper, we investigate the geodesic cases of an invariant submanifold of a (κ,µ)-paracontact metric
manifold by means of the curvatures of the ambient manifold.
2. Paracontact Metric Manifolds

A (2n+1)-dimensional smooth manifold M̃ has an almost paracontact structure (ϕ,ξ ,η) if admits a tensor field ϕ of type (1,1), a vector
field ξ and a 1-form η satisfying the following conditions;

ϕ
2 = I−η⊗ξ , η(ξ ) = 1, ϕξ = 0 and η ◦ϕ = 0. (1.1)
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If an almost paracontact manifold M̃2n+1 with (ϕ,ξ ,η) structure admits a pseudo Riemannian metric g such that

g(ϕX ,ϕY ) =−g(X ,Y )+η(X)η(Y ), (1.2)

for all vector fields X , Y tangent to M̃2n+1, then we call M̃2n+1 has an almost paracontact metric structure.

If g(ϕX ,Y )+dη(X ,Y ) = 0, then η is a paracontact form and the almost paracontact metric manifold M̃ is said to be paracontact metric
manifold[9].

The concircular curvature tensor, projective curvature tensor, Conformal curvature tensor and quasi-conformal curvature tensor of a
Riemannian manifold (M2n+1,g) are, respectively, given by

Z̃(X ,Y )Z = R(X ,Y )Z− τ

2n(2n+1)
{g(Y,Z)X−g(X ,Z)Y} (1.3)

P(X ,Y )Z = R(X ,Y )Z− 1
2n
{S(Y,Z)X−S(X ,Z)Y}, (1.4)

C(X ,Y )Z = R(X ,Y )Z− 1
2n−1

{S(Y,Z)X−S(X ,Z)Y

+ g(Y,Z)QX−g(X ,Z)QY}

+
τ

2n(2n−1)
{g(Y,Z)X−g(X ,Z)Y}, (1.5)

for all X ,Y,Z ∈ Γ(T M), where R, Q and S denote, respectively, the Riemannian curvature tensor, Ricci operator and Ricci tensor of M and r
denotes the scalar curvature of M.

Let (M̃,ϕ,ξ ,η ,g) be a paracontact metric manifold and we define a (1,1)-type tensor field by h = 1
2 `ξ ϕ , where `ξ denote the Lie derivative

operator along ξ . Then h is symmetric and satisfies the conditions

hξ = 0,hϕ =−ϕh, Trh = Trϕh = 0. (1.6)

We denote the Levi-Civita connection on M̃ by ∇̃, then we have the following relation

∇̃X ξ =−ϕX +ϕhX , (1.7)

for all X ∈ Γ(T M̃).

A paracontact metric manifold (M̃,ϕ,ξ ,η ,g) is said to be a (κ,µ)-space form if its Riemannian curvature tensor R satisfies

R(X ,Y )ξ = κ{η(Y )X−η(X)Y}+µ{η(Y )hX−η(X)hY}, (1.8)

for all tangent to vector fields X ,Y on M̃, where κ and µ are arbitrary constants.

The geometric behavior of the (κ,µ)-paracontact metric manifold is different according as κ <−1, κ =−1 and κ >−1. In particular, for
the case κ <−1 and κ >−1, (κ,µ)-nullity condition (1.8) determines the whole curvature tensor field completely.

For a (κ,µ)-paracontact metric manifold (M̃,ϕ,ξ ,η ,g), we have the following case;

h2 = (1+κ)ϕ2, (1.9)

(∇̃X ϕ)Y = −g(X−hX ,Y )ξ +η(Y )(X−hX), (1.10)

S(X ,Y ) = {2(1−n)+nµ}g(X ,Y )+{2(n−1)+µ}g(hX ,Y )

+ {2(n−1)+n(2κ−µ)}η(X)η(Y ), (1.11)

S(X ,ξ ) = 2nκη(X), Qξ = 2nκξ , (1.12)

Qϕ − ϕQ = 2{2(n−1)+µ}hϕ, (1.13)

for all X ,Y ∈ Γ(T M̃), where Q and S denote the Ricci operator and Ricci tensor of M̃, respectively.

2. Invariant Submanifolds of a (κ,µ)-Paracontact Metric Manifold

Now, let M be an immersed submanifold of a (κ,µ)-paracontact metric manifold M̃ and we denote the induced connections on Γ(T M) and
Γ(T⊥M) by ∇ and ∇⊥, respectively. Then the Gauss and Weingarten formulae are, respectively, given by

∇̃XY = ∇XY +σ(X ,Y ), (2.1)

and

∇̃XV =−AV X +∇
⊥
X V, (2.2)

for all X ,Y ∈ Γ(T M) and V ∈ Γ(T⊥M), where σ and AV are said to be second fundamental form and the shape operator of M, respectively.
They are related by

g(σ(X ,Y ),V ) = g(AV X ,Y ).
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If ∇̃X σ = 0, then the submanifold is said to be parallel of second fundamental form. The covariant derivatives of σ and AV are defined by,
respectively,

(∇̃X σ)(Y,Z) = ∇
⊥
X σ(Y,Z)−σ(∇XY,Z)−σ(Y,∇X Z), (2.3)

and

(∇̃X A)VY = ∇X AVY −A
∇⊥X VY −AV ∇XY. (2.4)

For an immersed submanifold M of a paracontact metric manifold (M̃,ϕ,ξ ,η ,g), if ϕ(T M)⊆ T M, M is said to be an invariant submanifold.
We note that an invariant submanifold inherits all properties of the ambient manifold. In the rest of our paper, we will assume that M is an
invariant submanifold of (κ,µ)-paracontact metric manifold M̃. By means of (1.6), we have hϕX =−ϕhX for any X ∈ Γ(T M), This tells us
that M is also invariant with respect to h. Thus, we have.

Lemma 2.1. Let M be an invariant submanifold of a (κ,µ)-paracontact metric space form M̃. Then

∇X ξ = −ϕX +ϕhX and σ(X ,ξ ) = 0.

Theorem 2.2. Let M be an invariant submanifold of a (κ,µ)-paracontact metric space form M̃. The second fundamental form σ of M is
parallel if and only if M is a totally geodesic submanifold.

Proof. Let us assume that the second fundamental form σ is parallel. Then, from (2.3) we have

∇
⊥
X σ(Y,Z)−σ(∇XY,Z)−σ(Y,∇X Z) = 0, (2.5)

for all X ,Y,Z ∈ Γ(T M). On the other hand, by using Gauss formula, taking into account of Lemma 2.1 and taking Y = ξ in (2.5), we get
σ(∇X ξ ,Z) = 0. Thus, we reach

σ(−ϕX +ϕhX ,Z) = 0, that is, σ(ϕX ,Z) = σ(ϕhX ,Z). (2.6)

Substituting X by hX in (2.6), we get

σ(ϕhX ,Z) = σ(ϕh2X ,Z) = (1+κ)σ(ϕ3X ,Z)

= (1+κ)σ(ϕX ,Z)

that is, κσ(ϕX ,Z) = 0 for κ 6= 0. This proves our assertion. The converse is trivial.

A submanifold is called semi-parallel if R(X ,Y )σ = 0, for all X ,Y ∈ Γ(T M), R denotes the Riemannian curvarure tensor of M̃ and it is
defined by

(R(X ,Y )σ)(Z,U) = R⊥(X ,Y )σ(Z,U)−σ(R(X ,Y )Z,U)

− σ(Z,R(X ,Y )U), (2.7)

for all X ,Y,Z,U ∈ Γ(T M).

Theorem 2.3. Let M be an invariant submanifold of a (κ,µ)-paracontact metric space form M̃. Then M is semi-parallel submanifold if and
only if it is a totally geodesic submanifold, provided µ2(1+κ)−κ2 6= 0.

Proof. We suppose that M is semiparallel. Then (2.7) leads to

R⊥(X ,Y )σ(Z,U)−σ(R(X ,Y )Z,U)−σ(Z,R(X ,Y )U) = 0, (2.8)

for all X ,Y,Z,U ∈ Γ(T M). Choosing U = ξ in (2.8) and we taking into account that Lemma 2.1, we have

σ(Z,R(X ,Y )ξ ) = σ(Z,κ(η(Y )X−η(X)Y )+µ(η(Y )hX−η(X)hY ))

= η(Y ){κσ(Z,X)+µσ(Z,hX)}
− η(X){µσ(Z,hY )+κσ(Z,Y )}= 0.

Also, substituting Y by ξ , we have

κσ(X ,Z)+µσ(Z,hX) = 0. (2.9)

Substituting X by hX in (2.9), we obtain

κσ(hX ,Z)+µσ(Z,h2X) = κσ(hX ,Z)+µσ(Z,(1+κ)(X−η(X)ξ ))

= κσ(hX ,X)+µ(1+κ)σ(Z,X) = 0. (2.10)

From (2.9) and (2.10), we reach at

(κ2− (1+κ)µ2)σ(Z,X) = 0.

The converse follows from the definition and hence, the theorem is proved completely.
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A submanifold M is called 2-semiparallel if R · ∇̃σ = 0 and it is defined by

(R(X ,Y )∇σ)(Z,U,V ) = R⊥(X ,Y )(∇Zσ)(U,V )− (∇R(X ,Y )Zσ)(U,V )

− (∇Zσ)(R(X ,Y )U,V )− (∇Zσ)(U,R(X ,Y )V,

for all X ,Y,U,V,Z ∈ Γ(T M)[4].

Theorem 2.4. Let M be an invariant submanifold of a (κ,µ)-paracontact metric space form M̃. Then M is 2-semi-parallel submanifold if
and only if M is totally geodesic submanifold provided that µ2(1+κ)−κ2 6= 0.

Proof. Let us assume that M be 2-semi-parallel submanifold. Then we have

(R(X ,Y )∇σ)(Z,U,V ) = R⊥(X ,Y )(∇Zσ)(U,V )− (∇R(X ,Y )Zσ)(U,V )

− (∇Zσ)(R(X ,Y )U,V )− (∇Zσ)(U,R(X ,Y )V )

= 0,

for all X ,Y,Z,U,V ∈ Γ(T M). This statement is also true for X =U = ξ , that is,

R⊥(ξ ,Y )(∇Zσ)(ξ ,V ) − (∇R(ξ ,Y )Zσ)(ξ ,V )− (∇Zσ)(R(ξ ,Y )ξ ,V )

− (∇Zσ)(ξ ,R(ξ ,Y )V ) = 0. (2.11)

Now, let’s calculate each of these expressions.

R⊥(ξ ,Y ){∇⊥Z σ(ξ ,V ) − σ(∇Zξ ,V )−σ(ξ ,∇ZV )}
= R⊥(ξ ,Y ){−σ(−ϕZ +ϕhZ,V )}
= R⊥(ξ ,Y ){σ(ϕZ,V )−σ(ϕhZ,V )}, (2.12)

(∇R(ξ ,Y )Zσ)(ξ ,V ) = ∇
⊥
R(ξ ,Y )Zσ(ξ ,V )−σ(∇R(ξ ,Y )Zξ ,V )

− σ(∇R(ξ ,Y )ZV,ξ )

= −σ(∇R(ξ ,Y )Zξ ,V )

= −σ(−ϕR(ξ ,Y )Z +ϕhR(ξ ,Y )Z,V ).

From (1.8), we know that

R(ξ ,Y )Z = κ{g(Y,Z)ξ −η(Z)Y}+µ{g(hZ,Y )ξ

− η(Z)hY}. (2.13)

Also taking into account that (2.13), we obtain

(∇R(ξ ,Y )Zσ)(ξ ,V ) = σ(ϕR(ξ ,Y )Z,V )−σ(ϕhR(ξ ,Y )Z,V )

= −κη(Z)σ(ϕZ,V )+µ(1+κ)η(Z)g(ϕZ,V )

= η(Z)σ(ϕY,V )(µ(1+κ)

− κ)+η(Z)(κ−µ)(ϕhY,V ). (2.14)

(∇Zσ)(R(ξ ,Y )ξ ,V ) = (∇Zσ)(κ(η(Y )ξ −Y )−µhY ),V )

= κ(∇Zσ)(η(Y )ξ ,V )−κ(∇Zσ)(Y,V )

− µ(∇Zσ)(hY,V )

= κ{∇⊥Z σ(η(Y )ξ ,V )−σ(∇Zη(Y )ξ ,V )

− σ(∇ZV,η(Y )ξ )}
− κ(∇Zσ)(Y,V )−µ(∇Zσ)(hY,V )

= −κσ(Zη(Y )ξ +η(Y )∇Zξ ,V )−κ(∇Zσ)(Y,V )

− µ(∇Zσ)(hY,V )

= −κσ(∇Zξ ,V )η(Y )−κ(∇Zσ)(Y,V )

− µ(∇Zσ)(hY,V )

= −κη(Y )σ(ϕZ +ϕhZ,V )−κ(∇Zσ)(Y,V )

− µ(∇Zσ)(hY,V )

= κη(Y )σ(ϕZ,V )−κη(Y )σ(ϕhZ,V )

− κ(∇Zσ)(Y,V )−µ(∇Zσ)(hY,V ). (2.15)
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and finally,

(∇Zσ)(R(ξ ,Y )V,ξ ) = ∇
⊥
Z σ(R(ξ ,Y )V,ξ )−σ(∇ZR(ξ ,Y )V,ξ )

− σ(R(ξ ,Y )V,∇Zξ )

= −σ(−ϕZ +ϕhZ,κ(g(Y,V )ξ −η(V )Y )

+ µ(g(hV,Y )ξ −η(V )hY ))

= κη(V ){σ(ϕhZ,Y )−σ(ϕZ,Y )}
+ µη(Y ){σ(ϕhZ,hY )−σ(ϕZ,hY )}. (2.16)

Thus (2.12), (2.14), (2.15) and (2.16) statements put in (2.11), we have

R⊥(ξ ,Y )σ(ϕZ − ϕhZ,V )−η(Z)σ(ϕY,V )(µ(1+κ)−κ)

− η(Z)(κ−µ)σ(ϕhY,V )+κ(∇Zσ)(Y,V )

+ µ(∇Zσ)(hY,V )−κη(Y )σ(ϕZ,V )+κη(Y )σ(ϕhZ,V )

− κη(V ){σ(ϕhZ,Y )−σ(ϕZ,Y )}
− µη(V ){σ(ϕhZ,hY )−σ(ϕZ,hY )}= 0,

from which for V = ξ ,

κ{σ(ϕhZ,Y )−σ(ϕZ,Y )} + µ{σ(ϕhZ,hY )

− σ(ϕZ,hY )}= 0. (2.17)

If hY is written instead of Y in (2.17) and by making use of (1.9), we obtain

κ{σ(ϕhZ,hY )−σ(ϕZ,hY )} + µ{σ(ϕhZ,h2Z)−σ(ϕZ,h2Y )}= 0

κ{σ(ϕhZ,hY )−σ(ϕZ,hY )} + µ(1+κ){σ(ϕhZ,ϕ2Y )

− σ(ϕZ,ϕ2Y )}= 0,

that is,

κ{σ(ϕhZ,hY )−σ(ϕZ,hY )} + µ(1+κ){σ(ϕhZ,ϕY )

− σ(ϕZ,ϕY )}= 0. (2.18)

From the common solutions of (2.17) and (2.18), we conclude that

(κ2−µ
2(1+κ))(σ(ϕhZ,Y )−σ(ϕZ,Y )) = 0.

Since κ2−µ2(1+κ) 6= 0, we have

σ(ϕhZ,Y )−σ(ϕZ,Y ) = 0. (2.19)

Here, if hZ is taken instead of Z in (2.19) and by using (1.9), we reach at

σ(ϕh2Z,Y )−σ(ϕhZ,Y ) = (1+κ)σ(ϕ3Z,Y )−σ(ϕhZ,Y ) = 0

(1+κ)σ(ϕZ,Y ) − σ(ϕhZ,Y ) = 0 (2.20)

(2.19) and (2.20) prove our assertion. The converse is obvious.

Now, we will consider the concircular curvature tensor Z̃ of (κ,µ)-paracontact space form for later use. From (1.3) and (1.8), we have

Z̃(X ,Y )ξ = R(X ,Y )ξ − τ

2n(2n+1)
{η(Y )X−η(X)Y}

= κ{η(Y )X−η(X)Y}+µ{η(Y )hX−η(X)hY}

− τ

2n(2n+1)
{η(Y )X−η(X)Y}

= (κ− τ

2n(2n+1)
){η(Y )X−η(X)Y}

+ µ{η(Y )hX−η(X)hY}, (2.21)

for all X ,Y ∈ Γ(T M).

For the submanifold M of a (κ,µ)-paracontact metric space form M2n+1, if Z̃(X ,Y )σ = 0, then M is said to be concircular semi-parallel
submanifold. Thus we have the following Theorem.

Theorem 2.5. Let M be an invariant of a (κ,µ)-paracontact metric space form M̃. Then M is a concircular semi-parallel if and only if M is
either totally geodesic submanifold or the scalar curvature satisfies τ = 2n(2n+1)(κ−µ2(1+κ)).
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Proof. Let M be concircular semi-parallel submanifold, that is,

Z̃(X ,Y )σ = 0, (2.22)

implies that

R⊥(X ,Y )σ(Z,U)−σ(Z̃(X ,Y )Z,U)−σ(Z, Z̃(X ,Y )U) = 0, (2.23)

for all X ,Y,Z,U ∈ Γ(T M). For U = ξ in (2.23), we have

σ(Z̃(X ,Y )ξ ,Z) = (κ− τ

2n(2n+1)
)σ(η(Y )X−η(X)Y,Z)

+ µσ(η(Y )hX−η(X)hY,Z) = 0.

This reduce for Y = ξ ,

(κ− τ

2n(2n+1)
)σ(X ,Z)+µσ(hX ,Z) = 0. (2.24)

Substituting X by hX in (2.24), we get

(κ− τ

2n(2n+1)
)σ(hX ,Z) + µσ(h2X ,Z) = (κ− τ

2n(2n+1)
)σ(hX ,Z)

+ µ(1+κ)σ(ϕ2X ,Z) = 0,

that is,

(κ− τ

2n(2n+1)
)σ(hX ,Z)+µ(1+κ)σ(X ,Z) = 0. (2.25)

From (2.24) and (2.25), we conclude that

(µ2(1+κ)−κ +
τ

2n(2n+1)
)σ(X ,U) = 0.

This leads to σ = 0 or τ = 2n(2n+1)(κ−µ2(1+κ)).
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