Review
BibTex RIS Cite

GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ

Year 2019, Volume: 24 Issue: 2, 609 - 632, 30.08.2019
https://doi.org/10.17482/uumfd.479415

Abstract

Polimer esaslı (plastik) malzemelerin 1950’li yıllardan bu yana hayatın
her alanında gittikçe artan bir oranda kullanım alanı bulmaktadır. Polipropilen
(PP), poliolefin grubunda yer alan ve oldukça yaygın kullanılan termoplastik
polimerlerden birisidir. PP’den elde edilen ürünler paketleme ve ambalaj
sektöründe, otomotiv uygulamalarında, elektrik ve elektronik sektöründe ve inşaat
sektöründe çok geniş bir uygulama alanına sahiptir. PP’nin tekstil sektöründe
kullanımı da büyük önem arz etmektedir. PP düşük maliyet, hafiflik, yüksek mekanik
dayanıklılık, yüksek kimyasal direnç ve istenilen ısıl kararlılık gibi önemli
avantajları nedeniyle kullanım alanı sürekli artan bir malzemedir. Yanmaya
karşı direnç PP’nin kullanıldığı pek çok alanda önemlidir. PP yüksek yanıcılığa
sahip olduğundan çeşitli alev geciktirici katkı malzemeleri ile güç tutuşur
hale getirilerek bu alanlarda kullanılır. Bu çalışmada PP’ye güç tutuşurluk özelliği
(alev geciktiricilik) kazandırmak amacıyla kullanılan katkı malzemeleri
incelenmiş, bu alandaki güncel gelişmelere ve gelecekteki beklentilere
değinilmiştir. Güç tutuşurluk özelliği kazandıran malzemeler halojen içerenler,
şişen sistemler, fosfor esaslılar, metal hidroksitler, nano malzemeler ve
silikon içerenler olarak gruplandırılmıştır. Bu çalışmada “güç tutuşurluk” ve
“alev geciktiricilik” terimleri İngilizce “flame retardancy” terimi ile eş
anlamlı olarak kullanılmıştır.

References

  • Acton, Q.A. (2013) Heavy Metals-Advances in Research and Application: 2013 Edition, Scholarly Editions, Atlanta, Georgia.
  • Aizenshtein, E. M. (2008) Polypropylene fibres and yarns in the current state of development, Fibre Chemistry, 40(5), 399-405. doi: 10.1007/s10692-009-9087-0
  • Allen, N. S. (1983) Degradation and stabilisation of polyolefins, Applied Science, Canada.
  • Arao, Y. (2015), Flame retardancy of polymer nanocomposite, Flame Retardants, 15-44. doi: 10.1007/978-3-319-03467-6_2
  • Avci, H., Kotek, R. and Toliver, B. (2015) Controlling of threadline dynamics via a novel method to develop ultra‐high performance polypropylene filaments, Polymer Engineering & Science, 55(2), 327-339. doi:10.1002/pen.23908
  • Babushok, V. and Tsang, W. (2000) Inhibitor Rankings for Alkane Combustion, Combustion and Flame, 123, 488-506. doi:10.1016/S0010-2180(00)00168-1
  • Baker, I. (2018) Polyester. In Fifty Materials That Make the World (pp. 157-161). Cham: Springer International Publishing.
  • Ceresana, (2017). http://www.ceresana.com/en/market-studies/plastics/, 24.06.2018, Konu: Polypropylene.
  • Chen, X. L., Jiao, C. M. and Wang, Y. (2009) Synergistic effects of iron powder on intumescent flame retardant polypropylene system. Express Polymer Letters, 3(6), 359-365. doi: 10.3144/expresspolymlett.2009.45
  • Chen, X., Yu, J. and Guo, S. (2006) Structure and properties of polypropylene composites filled with magnesium hydroxide. Journal of Applied Polymer Science, 102(5), 4943-4951. doi: 10.1002/app.24938
  • Demir, H., Balköse, D. and Ülkü, S. (2006) Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene-composites. Polymer Degradation and Stability, 91, 1079-1085. doi: 10.1016/j.polymdegradstab.2005.07.012
  • Deng, C. L., Du, S. L., Zhao, J., Shen, Z. Q., Deng, C. and Wang, Y. Z. (2014) An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polymer Degradation and Stability, 108, 97-107. doi: 10.1016/j.polymdegradstab.2014.06.008
  • Doğan, M. and Bayramlı, E. (2013) Effect of boron phosphate on the mechanical, thermal and fire retardant properties of polypropylene and polyamide-6 fibers, Fibers and Polymers, 14(10), 1595-1601. doi: 10.1007/s12221-013-1595-0
  • DuPont, (2012). http://www.dupont.com/products-and-services/personal-protective-equipment/thermal-protective.html, Erişim tarihi: 05.11.2018, Konu: Inherent versus treated flame resistant fabrics.
  • Feng, C. M., Zhang, Y., Lang, D., Liu, S. W., Chi, Z. G. and Xu, J. R. (2013) Flame retardant mechanism of a novel intumescent flame retardant polypropylene. Procedia engineering, 52, 97-104. doi: 10.1016/j.proeng.2013.02.112
  • Flameretardants-Online.https://www.flameretardants-online.com/flame-retardants/intumescence, Erişim tarihi: 05.11.2018, Konu: Intumescent flame retardant systems.
  • Fontaine, G.; Bourbigot, S.; Duquesne, S. (2008) Neutralized flame retardant phosphorus agent: Facile synthesis, reaction to fire in pp and synergy with zinc borate. Polymer Degradation and Stability, 93, 68-76. doi: 10.1016/j.polymdegradstab.2007.10.019
  • Hamdani, S., Longuet, C., Perrin, D., Lopez-cuesta, J. M. and Ganachaud, F. (2009) Flame retardancy of silicone-based materials. Polymer Degradation and Stability, 94(4), 465-495. doi:10.1016/j.polymdegradstab.2008.11.019
  • HEM. https://www.hubermaterials.com, Erişim tarihi: 05.11.2018, Konu: Aluminum hydroxide and magnesium hydroxides for the plastic industry.
  • Horrocks, A.R. and Price, D. (2001) Fire Retardant Materials. Woodhead Publishing. Boca Raton, USA.
  • Horrocks, A. R. (2011) Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polymer Degradation and Stability 96(3): 377-392. doi: 10.1016/j.polymdegradstab.2010.03.036
  • Huang, G., Wang, S., Song, P. A., Wu, C., Chen, S. and Wang, X. (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Composites Part A: Applied Science and Manufacturing, 59, 18-25. doi: 10.1016/j.compositesa.2013.12.010
  • Kaynak, E., Ureyen, M. and Koparal, A. (2017) Thermal characterization and flammability of polypropylene containing sepiolite-APP combinations. e-Polymers, 17(4), pp. 341-348. doi: 10.1515/epoly-2016-0275
  • Lai, X., Zeng, X., Li, H. and Zhang, H. (2014) Effect of polyborosiloxane on the flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Journal of Macromolecular Science, Part B, 53(4), 721-734. doi: 10.1080/00222348.2013.839319
  • Lai, X., Yin, C., Li, H. and Zeng, X. (2015) Synergistic effect between silicone‐containing macromolecular charring agent and ammonium polyphosphate in flame retardant polypropylene. Journal of Applied Polymer Science, 132(10). doi: 10.1002/app.41580
  • Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.M. and Dubois, P. (2009) New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports 63(3): 100-125. doi: 10.1016/j.mser.2008.09.002
  • Lewin, M. (1999) Synergistic and catalytic effects in flame retardancy of polymeric materials-an overview. Journal of Fire Sciences, 17(1), 3-19. doi: 10.1177/073490419901700101
  • Lyons, J. W., (1970) Chemistry and uses of fire retardants. Erişim adresi: http://agris.fao.org/ (Erişim tarihi: 25.06.2018).
  • Mandal, Jasımuddın, (2012). Polypropylene fiber and ıts manufacturing process, properties, advantages, disadvantages and applications of polypropylene fiber. Erişim adresi: http://textilelearner.blogspot.com/2013/01/polypropylene-fiber-and-its.html (Erişim tarihi: 05.11.2018).
  • Morgan, A. B. ve Gilman, J. W. (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire and Materials, 37(4), 259-279. doi: 10.1002/fam.2128
  • Pandey, P., Mohanty, S. ve Nayak, S. K. (2014) Improved flame retardancy and thermal stability of polymer/clay nanocomposites, with the incorporation of multiwalled carbon nanotube as secondary filler: evaluation of hybrid effect of nanofillers. High Performance Polymers, 26(7), 826-836. doi: 10.1177/0954008314531802
  • Pawelec, W. (2014) New families of highly efficient, halogen-free flame retardants for polypropylene (PP). Doktora Tezi, Åbo Akademi University, Turku.
  • Pinfa, (2018). https://www.pinfa.eu, Erişim tarihi: 25.06.2018, Konu: Inorganic and Nitrogen Flame Retardants.
  • Polymer Science Learning Center, (2016). http://www.pslc.ws/macrog/pp.htm, Erişim tarihi: 24.06.2018, Konu: Polypropylene.
  • Ramazani, S. A., Rahimi, A., Frounchi, M. and Radman, S. (2008) Investigation of flame retardancy and physical–mechanical properties of zinc borate and aluminum hydroxide propylene composites. Materials & Design, 29(5), 1051-1056.
  • Rault, F., Giraud, S., Salaün, F. and Almeras, X. (2015) Development of a halogen free flame retardant masterbatch for polypropylene fibers. Polymers, 7(2), 220-234.
  • RTP Company, (2018). How flame retardant systems work in plastics. Erişim adresi: https://www.rtpcompany.com/products/flame-retardant/ (Erişim tarihi: 25.06.2018).
  • Santillo, D., and Johnston, J. (2003) Playing with fire: the global threat presented by brominated flame retardants justifies urgent substitution. Environment International, 29(6), 725-734. doi: 10.1016/S0160-4120(03)00115-6
  • Şen, F., Palancıoğlu, H. ve Aldaş, K. (2010) Polimerik nanokompozitler ve kullanım alanları. Makine Teknolojileri Elektronik Dergisi, 7(1), 111-118.
  • Smart, G., Kandola, B. K., Horrocks, A. R., Nazaré, S. and Marney, D. (2008) Polypropylene fibers containing dispersed clays having improved fire performance. Part II: characterization of fibers and fabrics from PP–nanoclay blends. Polymers for Advanced Technologies, 19(6), 658-670. doi: 10.1002/pat.1137
  • Wang, B., Sheng, H., Shi, Y., Hu, W., Hong, N., Zeng, W., Ge, H., Yu, X., Song, L. and Hu, Y. (2015) Recent advances for microencapsulation of flame retardant. Polymer Degradation and Stability, 113, 96-109. doi: 10.1016/j.polymdegradstab.2015.01.008
  • Wang, J., Wang, L. and Xiao, A. (2009) Recent research progress on the flame-retardant mechanism of halogen-free flame retardant polypropylene. Polymer-Plastics Technology and Engineering, 48(3), 297-302. doi: 10.1080/03602550802675645
  • Wang, Q. (2013) Polymer nanocomposite: a promising flame retardant. J Mater Sci Nanotechnol, 1(2), e202. doi: 10.15744/2348-9812.1.e202
  • WCI, (2014). http://www.wirecable.in/2014/10/mineral-flame-retardants-for-wire-and-cable-application/, Erişim tarihi: 25.06.2015, Konu: Mineral flame retardants for wire and cable application.
  • Weil, E. D. and Levchik, S. V. (2008) Flame retardants in commercial use or development for textiles. Journal of Fire Sciences, 26(3), 243-281. doi: 10.1177/0734904108089485
  • Wikipedia. Synthetic fiber. Erişim adresi: https://en.wikipedia.org/wiki/Synthetic_fiber (Erişim tarihi: 24.06.2018).
  • Wu, Q. and Qu, B. J. (2002) A new synergist for intumescent flame retardant polypropylene. Chinese Journal of Polymer Science (English Edition), 20(4), 377-380.
  • Ye, L., Zhang, Y., Wang, S., Gao, G., Liu, J., Zhou, Y. and Liu, H. (2014) Synergistic effects and mechanism of ZnCl2 on intumescent flame-retardant polypropylene. Journal of Thermal Analysis and Calorimetry, 115(2), 1065-1071. doi: 10.1007/s10973-013-3381-z
  • Yi, D. and Yang, R. (2010) Ammonium polyphosphate/montmorillonite nanocompounds in polypropylene. Journal of Applied Polymer Science, 118(2), 834-840. doi: 10.1002/app.32362
  • Zhang, S. and Horrocks, A. R. (2003) A review of flame retardant polypropylene fibres. Progress in Polymer Science, 28(11), 1517-1538. doi: 10.1016/j.progpolymsci.2003.09.001
  • Zhang, S., Horrocks, A. R., Hull, R. and Kandola, B. K. (2006) Flammability, degradation and structural characterization of fibre-forming polypropylene containing nanoclay–flame retardant combinations. Polymer Degradation and Stability, 91(4), 719-725. doi: 10.1016/j.polymdegradstab.2005.05.023
  • Zhong, H., Wei, P., Jiang, P., Wu, D. and Wang, G. (2007) Synthesis and characteristics of a novel silicon‐containing flame retardant and its application in poly [2, 2‐propane‐(bisphenol) carbonate]/acrylonitrile butadiene styrene. Journal of Polymer Science Part B: Polymer Physics, 45(13), 1542-1551. doi: 10.1002/polb.21151
  • Zhou, K., Jiang, S., Wang, B., Shi, Y., Liu, J., Hong, N., Hu, Y. and Gui, Z. (2014) Combined effect of transition metal phosphide (MxPy, M= Ni, Co, and Cu) and intumescent flame retardant system on polypropylene. Polymers for Advanced Technologies, 25(7), 701-710. doi: 10.1002/pat.3273
Year 2019, Volume: 24 Issue: 2, 609 - 632, 30.08.2019
https://doi.org/10.17482/uumfd.479415

Abstract

References

  • Acton, Q.A. (2013) Heavy Metals-Advances in Research and Application: 2013 Edition, Scholarly Editions, Atlanta, Georgia.
  • Aizenshtein, E. M. (2008) Polypropylene fibres and yarns in the current state of development, Fibre Chemistry, 40(5), 399-405. doi: 10.1007/s10692-009-9087-0
  • Allen, N. S. (1983) Degradation and stabilisation of polyolefins, Applied Science, Canada.
  • Arao, Y. (2015), Flame retardancy of polymer nanocomposite, Flame Retardants, 15-44. doi: 10.1007/978-3-319-03467-6_2
  • Avci, H., Kotek, R. and Toliver, B. (2015) Controlling of threadline dynamics via a novel method to develop ultra‐high performance polypropylene filaments, Polymer Engineering & Science, 55(2), 327-339. doi:10.1002/pen.23908
  • Babushok, V. and Tsang, W. (2000) Inhibitor Rankings for Alkane Combustion, Combustion and Flame, 123, 488-506. doi:10.1016/S0010-2180(00)00168-1
  • Baker, I. (2018) Polyester. In Fifty Materials That Make the World (pp. 157-161). Cham: Springer International Publishing.
  • Ceresana, (2017). http://www.ceresana.com/en/market-studies/plastics/, 24.06.2018, Konu: Polypropylene.
  • Chen, X. L., Jiao, C. M. and Wang, Y. (2009) Synergistic effects of iron powder on intumescent flame retardant polypropylene system. Express Polymer Letters, 3(6), 359-365. doi: 10.3144/expresspolymlett.2009.45
  • Chen, X., Yu, J. and Guo, S. (2006) Structure and properties of polypropylene composites filled with magnesium hydroxide. Journal of Applied Polymer Science, 102(5), 4943-4951. doi: 10.1002/app.24938
  • Demir, H., Balköse, D. and Ülkü, S. (2006) Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene-composites. Polymer Degradation and Stability, 91, 1079-1085. doi: 10.1016/j.polymdegradstab.2005.07.012
  • Deng, C. L., Du, S. L., Zhao, J., Shen, Z. Q., Deng, C. and Wang, Y. Z. (2014) An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polymer Degradation and Stability, 108, 97-107. doi: 10.1016/j.polymdegradstab.2014.06.008
  • Doğan, M. and Bayramlı, E. (2013) Effect of boron phosphate on the mechanical, thermal and fire retardant properties of polypropylene and polyamide-6 fibers, Fibers and Polymers, 14(10), 1595-1601. doi: 10.1007/s12221-013-1595-0
  • DuPont, (2012). http://www.dupont.com/products-and-services/personal-protective-equipment/thermal-protective.html, Erişim tarihi: 05.11.2018, Konu: Inherent versus treated flame resistant fabrics.
  • Feng, C. M., Zhang, Y., Lang, D., Liu, S. W., Chi, Z. G. and Xu, J. R. (2013) Flame retardant mechanism of a novel intumescent flame retardant polypropylene. Procedia engineering, 52, 97-104. doi: 10.1016/j.proeng.2013.02.112
  • Flameretardants-Online.https://www.flameretardants-online.com/flame-retardants/intumescence, Erişim tarihi: 05.11.2018, Konu: Intumescent flame retardant systems.
  • Fontaine, G.; Bourbigot, S.; Duquesne, S. (2008) Neutralized flame retardant phosphorus agent: Facile synthesis, reaction to fire in pp and synergy with zinc borate. Polymer Degradation and Stability, 93, 68-76. doi: 10.1016/j.polymdegradstab.2007.10.019
  • Hamdani, S., Longuet, C., Perrin, D., Lopez-cuesta, J. M. and Ganachaud, F. (2009) Flame retardancy of silicone-based materials. Polymer Degradation and Stability, 94(4), 465-495. doi:10.1016/j.polymdegradstab.2008.11.019
  • HEM. https://www.hubermaterials.com, Erişim tarihi: 05.11.2018, Konu: Aluminum hydroxide and magnesium hydroxides for the plastic industry.
  • Horrocks, A.R. and Price, D. (2001) Fire Retardant Materials. Woodhead Publishing. Boca Raton, USA.
  • Horrocks, A. R. (2011) Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polymer Degradation and Stability 96(3): 377-392. doi: 10.1016/j.polymdegradstab.2010.03.036
  • Huang, G., Wang, S., Song, P. A., Wu, C., Chen, S. and Wang, X. (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Composites Part A: Applied Science and Manufacturing, 59, 18-25. doi: 10.1016/j.compositesa.2013.12.010
  • Kaynak, E., Ureyen, M. and Koparal, A. (2017) Thermal characterization and flammability of polypropylene containing sepiolite-APP combinations. e-Polymers, 17(4), pp. 341-348. doi: 10.1515/epoly-2016-0275
  • Lai, X., Zeng, X., Li, H. and Zhang, H. (2014) Effect of polyborosiloxane on the flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Journal of Macromolecular Science, Part B, 53(4), 721-734. doi: 10.1080/00222348.2013.839319
  • Lai, X., Yin, C., Li, H. and Zeng, X. (2015) Synergistic effect between silicone‐containing macromolecular charring agent and ammonium polyphosphate in flame retardant polypropylene. Journal of Applied Polymer Science, 132(10). doi: 10.1002/app.41580
  • Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.M. and Dubois, P. (2009) New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports 63(3): 100-125. doi: 10.1016/j.mser.2008.09.002
  • Lewin, M. (1999) Synergistic and catalytic effects in flame retardancy of polymeric materials-an overview. Journal of Fire Sciences, 17(1), 3-19. doi: 10.1177/073490419901700101
  • Lyons, J. W., (1970) Chemistry and uses of fire retardants. Erişim adresi: http://agris.fao.org/ (Erişim tarihi: 25.06.2018).
  • Mandal, Jasımuddın, (2012). Polypropylene fiber and ıts manufacturing process, properties, advantages, disadvantages and applications of polypropylene fiber. Erişim adresi: http://textilelearner.blogspot.com/2013/01/polypropylene-fiber-and-its.html (Erişim tarihi: 05.11.2018).
  • Morgan, A. B. ve Gilman, J. W. (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire and Materials, 37(4), 259-279. doi: 10.1002/fam.2128
  • Pandey, P., Mohanty, S. ve Nayak, S. K. (2014) Improved flame retardancy and thermal stability of polymer/clay nanocomposites, with the incorporation of multiwalled carbon nanotube as secondary filler: evaluation of hybrid effect of nanofillers. High Performance Polymers, 26(7), 826-836. doi: 10.1177/0954008314531802
  • Pawelec, W. (2014) New families of highly efficient, halogen-free flame retardants for polypropylene (PP). Doktora Tezi, Åbo Akademi University, Turku.
  • Pinfa, (2018). https://www.pinfa.eu, Erişim tarihi: 25.06.2018, Konu: Inorganic and Nitrogen Flame Retardants.
  • Polymer Science Learning Center, (2016). http://www.pslc.ws/macrog/pp.htm, Erişim tarihi: 24.06.2018, Konu: Polypropylene.
  • Ramazani, S. A., Rahimi, A., Frounchi, M. and Radman, S. (2008) Investigation of flame retardancy and physical–mechanical properties of zinc borate and aluminum hydroxide propylene composites. Materials & Design, 29(5), 1051-1056.
  • Rault, F., Giraud, S., Salaün, F. and Almeras, X. (2015) Development of a halogen free flame retardant masterbatch for polypropylene fibers. Polymers, 7(2), 220-234.
  • RTP Company, (2018). How flame retardant systems work in plastics. Erişim adresi: https://www.rtpcompany.com/products/flame-retardant/ (Erişim tarihi: 25.06.2018).
  • Santillo, D., and Johnston, J. (2003) Playing with fire: the global threat presented by brominated flame retardants justifies urgent substitution. Environment International, 29(6), 725-734. doi: 10.1016/S0160-4120(03)00115-6
  • Şen, F., Palancıoğlu, H. ve Aldaş, K. (2010) Polimerik nanokompozitler ve kullanım alanları. Makine Teknolojileri Elektronik Dergisi, 7(1), 111-118.
  • Smart, G., Kandola, B. K., Horrocks, A. R., Nazaré, S. and Marney, D. (2008) Polypropylene fibers containing dispersed clays having improved fire performance. Part II: characterization of fibers and fabrics from PP–nanoclay blends. Polymers for Advanced Technologies, 19(6), 658-670. doi: 10.1002/pat.1137
  • Wang, B., Sheng, H., Shi, Y., Hu, W., Hong, N., Zeng, W., Ge, H., Yu, X., Song, L. and Hu, Y. (2015) Recent advances for microencapsulation of flame retardant. Polymer Degradation and Stability, 113, 96-109. doi: 10.1016/j.polymdegradstab.2015.01.008
  • Wang, J., Wang, L. and Xiao, A. (2009) Recent research progress on the flame-retardant mechanism of halogen-free flame retardant polypropylene. Polymer-Plastics Technology and Engineering, 48(3), 297-302. doi: 10.1080/03602550802675645
  • Wang, Q. (2013) Polymer nanocomposite: a promising flame retardant. J Mater Sci Nanotechnol, 1(2), e202. doi: 10.15744/2348-9812.1.e202
  • WCI, (2014). http://www.wirecable.in/2014/10/mineral-flame-retardants-for-wire-and-cable-application/, Erişim tarihi: 25.06.2015, Konu: Mineral flame retardants for wire and cable application.
  • Weil, E. D. and Levchik, S. V. (2008) Flame retardants in commercial use or development for textiles. Journal of Fire Sciences, 26(3), 243-281. doi: 10.1177/0734904108089485
  • Wikipedia. Synthetic fiber. Erişim adresi: https://en.wikipedia.org/wiki/Synthetic_fiber (Erişim tarihi: 24.06.2018).
  • Wu, Q. and Qu, B. J. (2002) A new synergist for intumescent flame retardant polypropylene. Chinese Journal of Polymer Science (English Edition), 20(4), 377-380.
  • Ye, L., Zhang, Y., Wang, S., Gao, G., Liu, J., Zhou, Y. and Liu, H. (2014) Synergistic effects and mechanism of ZnCl2 on intumescent flame-retardant polypropylene. Journal of Thermal Analysis and Calorimetry, 115(2), 1065-1071. doi: 10.1007/s10973-013-3381-z
  • Yi, D. and Yang, R. (2010) Ammonium polyphosphate/montmorillonite nanocompounds in polypropylene. Journal of Applied Polymer Science, 118(2), 834-840. doi: 10.1002/app.32362
  • Zhang, S. and Horrocks, A. R. (2003) A review of flame retardant polypropylene fibres. Progress in Polymer Science, 28(11), 1517-1538. doi: 10.1016/j.progpolymsci.2003.09.001
  • Zhang, S., Horrocks, A. R., Hull, R. and Kandola, B. K. (2006) Flammability, degradation and structural characterization of fibre-forming polypropylene containing nanoclay–flame retardant combinations. Polymer Degradation and Stability, 91(4), 719-725. doi: 10.1016/j.polymdegradstab.2005.05.023
  • Zhong, H., Wei, P., Jiang, P., Wu, D. and Wang, G. (2007) Synthesis and characteristics of a novel silicon‐containing flame retardant and its application in poly [2, 2‐propane‐(bisphenol) carbonate]/acrylonitrile butadiene styrene. Journal of Polymer Science Part B: Polymer Physics, 45(13), 1542-1551. doi: 10.1002/polb.21151
  • Zhou, K., Jiang, S., Wang, B., Shi, Y., Liu, J., Hong, N., Hu, Y. and Gui, Z. (2014) Combined effect of transition metal phosphide (MxPy, M= Ni, Co, and Cu) and intumescent flame retardant system on polypropylene. Polymers for Advanced Technologies, 25(7), 701-710. doi: 10.1002/pat.3273
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Survey Articles
Authors

Hüseyin Avcı 0000-0002-2475-1963

Mustafa Erdem Üreyen

Ali Kılıç This is me

Adem Erdal Sağlam

Ali Demir

Publication Date August 30, 2019
Submission Date November 7, 2018
Acceptance Date June 17, 2019
Published in Issue Year 2019 Volume: 24 Issue: 2

Cite

APA Avcı, H., Üreyen, M. E., Kılıç, A., Sağlam, A. E., et al. (2019). GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 609-632. https://doi.org/10.17482/uumfd.479415
AMA Avcı H, Üreyen ME, Kılıç A, Sağlam AE, Demir A. GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ. UUJFE. August 2019;24(2):609-632. doi:10.17482/uumfd.479415
Chicago Avcı, Hüseyin, Mustafa Erdem Üreyen, Ali Kılıç, Adem Erdal Sağlam, and Ali Demir. “GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 2 (August 2019): 609-32. https://doi.org/10.17482/uumfd.479415.
EndNote Avcı H, Üreyen ME, Kılıç A, Sağlam AE, Demir A (August 1, 2019) GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 609–632.
IEEE H. Avcı, M. E. Üreyen, A. Kılıç, A. E. Sağlam, and A. Demir, “GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ”, UUJFE, vol. 24, no. 2, pp. 609–632, 2019, doi: 10.17482/uumfd.479415.
ISNAD Avcı, Hüseyin et al. “GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (August 2019), 609-632. https://doi.org/10.17482/uumfd.479415.
JAMA Avcı H, Üreyen ME, Kılıç A, Sağlam AE, Demir A. GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ. UUJFE. 2019;24:609–632.
MLA Avcı, Hüseyin et al. “GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 2, 2019, pp. 609-32, doi:10.17482/uumfd.479415.
Vancouver Avcı H, Üreyen ME, Kılıç A, Sağlam AE, Demir A. GÜÇ TUTUŞUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİŞMELER VE GELECEK BEKLENTİLERİ. UUJFE. 2019;24(2):609-32.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.