Research Article
BibTex RIS Cite

Süperelastik NiTi Şekil Hafızalı Alaşımların Mekanik Özelliklerine Yüksek Sıcaklık ve Yaşlandırma Isıl İşleminin Etkisi

Year 2022, Volume: 13 Issue: 1, 27 - 34, 30.03.2022
https://doi.org/10.24012/dumf.1038109

Abstract

Bu deneysel çalışmada; yüzeyi elektro polisaj ile parlatılmış ve yaşlandırma ısıl işlemi uygulanmış süperelastik Nikel-Titanyum (NiTi) Şekil Hafızalı Alaşım (ŞHA) tel numunelerin yüksek sıcaklık (130 °C) altında çekme testleri sonrası mekanik özellikleri ve gerilme kaynaklı meydana gelen deformasyon yapıları araştırılmıştır. Deneysel çalışmalarda NiTi ŞHA tel numuneleri çekme testleri ile tek eksende ve sabit bir hızda koparılıncaya kadar çekmeye maruz bırakılmıştır. Süperelastik NiTi ŞHA tel numunelerin çekme testleri sonrası kırılma yüzeylerinde gerçekleştirilen deformasyon analizlerinde; çatlak oluşumları, kimyasal bileşimdeki değişimler ve mekanik özellikler incelenmiştir. Taramalı elektron mikroskobu (SEM) ve enerji dağılımlı x-ışını spektroskopisi (EDX) cihazları kullanılarak deformasyon analizi yapılmıştır. Ayrıca, numunelerin deformasyon yüzeylerinde aktif faz yapılarının analizi ve sertlik değerlerinin ölçümü gerçekleştirilmiştir. Faz analizlerinde, Ni4Ti3 ve Ti2Ni intermetalik faz yapıları gözlemlenmiştir. Mikro-Vickers sertlik deneylerinde numunelerin deformasyon yüzeylerinde sertlik değeri açısından belirgin bir fark gözlemlenmemiştir. En yüksek akma gerilmesi (361 MPa) ve çekme gerilmesi (948 MPa) değerleri; yaşlandırma işlemi uygulanmamış numunede elde edilmiştir. En düşük akma gerilmesi (232 MPa) ve çekme gerilmesi (737 MPa) değerleri ise ısıl işlem uygulanan deney numunesine ait çekme testi sonucunda tespit edilmiştir. Çekme deneyleri öncesinde çok düşük oranda mevcudiyetine rastlanılan Karbon (C) elementinin çekme deneyleri sonrasında önemli artışlar gösterdiği tespit edilmiştir. Yaşlandırma ısıl işlemi uygulanan numunelerde faz dönüşüm sıcaklıklarının, mekanik özelliklerin ve süperelastik etkinin kimyasal bileşimdeki değişimler nedeniyle olumsuz olarak etkilendiği belirlenmiştir.

Supporting Institution

Karabük Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

FYL-2020-2163

Thanks

Bu çalışmayı FYL-2020-2163 numaralı proje kapsamında finansal olarak destekleyen Karabük Üniversitesi Rektörlüğü'ne ve Bilimsel Araştırma Projeleri (BAP) Yönetim Koordinatörlüğü çalışanlarına çok teşekkür ederim.

References

  • [1] F. Calkins, J. Mabe, R. Ruggeri, “Overview of Boeing’s Shape Memory Alloy based Morphing Aerostructures,” in Smart Materials, Adaptive Structures and Intelligent Systems, vol. 43314, pp. 885-895, Jan. 2008.
  • [2] W. G. Drossel, H. Kunze, A. Bucht, L. Weisheit, K. Pagel, “Smart3–Smart Materials for Smart Applications,” in Procedia CIRP, vol. 36, pp. 211-216, 2015.
  • [3] W. G. Drossel, F. Meinel, A. Bucht, H. Kunze, “Smart Materials for Smart Production–A Cross-Disciplinary İnnovation Network in the Field of Smart Materials,” in Procedia Manufacturing, vol. 21, pp. 197-204, Jan. 2018.
  • [4] C. Naresh, P. Bose, C. Rao, “Shape Memory Alloys: A State of Art Review,” in IOP Conference Series: Materials Science and Engineering, vol. 149, pp. 1-13, 2016.
  • [5] C. Yang, S. Abanteriba, A. Becker, “A Review of Shape Memory Alloy based Filtration Devices,” in AIP Advances, vol. 10, no. 6, pp. 1-12, Jun. 2020.
  • [6] C. Wen, X. Yu, W. Zeng, S. Zhao, L. Wang, G. Wan, S. Huang, H. Grover, Z. Chen, “Mechanical behaviors and biomedical applications of shape memory materials: A review,” in AIMS Materials Science, vol. 5, no. 4, pp. 559-590, Jun. 2018.
  • [7] A. Bellini, M. Colli, E. Dragoni, “Mechatronic Design of a Shape Memory Alloy Actuator for Automotive Tumble Flaps: A Case Study,” in IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2644-2656, Apr. 2009.
  • [8] D. J. Hartl, D. C. Lagoudas, “Aerospace Applications of Shape Memory Alloys,” in Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 221, no. 4, pp. 535-552, Apr. 2007.
  • [9] K. Dai, C. Q. Ning, “Shape Memory Alloys and Their Medical Applications,” in Biomechanics and Biomaterials in Orthopedics, 2nd ed., D. G. Poitout, Ed., London, England, 2016, pp. 179-184.
  • [10] C. Menna, F. Auricchio, D. Asprone, “Applications of Shape Memory Alloys in Structural Engineering,” in Shape Memory Alloy Engineering For Aerospace, Structural and Biomedical Application, 1st ed., L. Lecce, A. Concilio, Ed., 2015, pp. 369-403.
  • [11] B. Yuan, M. Zhu, C. Y. Chung, “Biomedical Porous Shape Memory Alloys For Hard-Tissue Replacement Materials,” in Materials, vol. 11, no. 9, pp. 1-53, Sep. 2018.
  • [12] G. M. Simsek, Y. K. Sayinbas, M. Uysal, G. G. Yapici, “Effect of Heat Treatment on the Corrosion-Fatigue of NiTi Shape Memory Alloy,” in AIP conference proceedings, vol. 2146, no. 1, pp. 1-6, Aug. 2019.
  • [13] M. Kaya, O. Cakmak, T. Y. Saygili, K. C. Atli, “Şekil Hafızalı Alaşımlarda Martensitik Faz Dönüşümü ve Şekil Hafıza Mekanizması,” in Journal of Selcuk-Technic, vol. 15, no. 3, pp. 157-172, Dec. 2016.
  • [14] N. Babacan, I. Gunel, I. B. Ozsoy, “Martensitic Phase Transformations in CuAlNi Shape Memory Alloys,” in Advanced Materials Research, vol. 445, pp. 1076-1081, Jan. 2012.
  • [15] S. Dilibal, “Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi,” in Journal of Polytechnic, vol. 20, no. 3, pp. 623-627, Sep. 2017.
  • [16] C. Velmurugan, V. Senthilkumar, S. Dinesh, D. Arulkirubakaran, “Machining of NiTi-Shape Memory Alloys-A Review,” in Machining Science and Technology, vol. 22, no. 3, pp. 355-401, 2018.
  • [17] Z. Zhu, D. Guo, J. Xu, J. Lin, J. Lei, B. Xu, X. Wu, X. Wang, “Processing Characteristics of Micro Electrical Discharge Machining for Surface Modification of TiNi Shape Memory Alloys Using a TiC Powder Dielectric,” in Micromachines, vol. 11, no. 11, pp. 1-15, Nov. 2020.
  • [18] T. Nakahata, “Industrial Processing of Titanium–Nickel (Ti–Ni) Shape Memory Alloys (SMAs) to Achieve Key Properties,” in Shape Memory and Superelastic Alloys, K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki, Ed., Woodhead Publishing, 2011, pp. 53-62.
  • [19] D. Kapoor, “Nitinol for Medical Applications: A Brief İntroduction to the Properties and Processing of Nickel Titanium Shape Memory Alloys and their Use in Stents,” in Johnson Matthey Technology Review, vol. 61, no. 1, pp. 66-76, Jan. 2017.
  • [20] L. Machado, M. Savi, “Medical Applications of Shape Memory Alloys,” in Brazilian Journal of Medical and Biological Research, vol. 36, no. 6, pp. 683-691, Jun. 2003.
  • [21] T. Segreto, A. Caggiano, R. Teti, “Neuro-Fuzzy System İmplementation in Multiple Sensor Monitoring for Ni-Ti Alloy Machinability Evaluation,” in Procedia CIRP, vol. 37, pp. 193-198, Dec. 2015.
  • [22] I. Kaya, E. Karaca, M. Nagasako, R. Kainuma, “Effects of Aging Temperature and Aging Time on the Mechanism of Martensitic Transformation in Nickel-Rich NiTi Shape Memory Alloys,” in Materials Characterization, vol. 159, pp 1-8, Jan. 2020.
  • [23] A. Shamimi, B. Amin-Ahmadi, A. Stebner, T. Duerig, “The Effect of Low Temperature Aging and the Evolution of R-Phase in Ni-Rich NiTi,” in Shape Memory and Superelasticity, vol. 4, no. 4, pp. 417-427, Sep. 2018.
  • [24] Xıan Ocean Material Technology Co. “Nitinol Products”, Available: https://xaocean.en.alibaba.com/ (26.12.2021).
  • [25] M. C. Tanzi, S. Fare, G. Candiani, “Mechanical Properties of Materials,” in Foundations of Biomaterials Engineering, 1st ed. Academic Press, 2019, pp. 105-136.
  • [26] M. Ghassemieh, M. Mostafazadeh, M. Saberdel, “Seismic Control of Concrete Shear Wall using Shape Memory Alloys,” in Journal of Intelligent Material Systems and Structures, vol. 23, no. 5, pp. 535-543, Mar. 2012.
  • [27] B. N. K. Reddy, “Aging Time Correlation for Near-Equiatomic Niti Thin Films Deposited through Direct Current Magnetron Sputtering,” in Results in Physics, vol. 17, pp. 1-13, Mar. 2020.
  • [28] J. C. Chekotu, R. Groarke, K. O’Toole, D. Brabazon, “Advances in Selective Laser Melting of Nitinol Shape Memory Alloy Part Production,” in Materials, vol. 12, no. 5, pp. 1-20, Mar. 2019.
  • [29] A. Akdogan, M. Nurveren, “Şekil Hafızalı Alaşımlar,” in Engineer and Machinery, vol. 521, no. 44, pp. 35-45, 2010.
  • [30] J. Luo, J. He, X. Wan, T. Dong, Y. Cui, X. Xiong, “Fracture Properties of Polycrystalline NiTi Shape Memory Alloy,” in Materials Science and Engineering: A, vol. 653, pp. 122-128, 2016.
  • [31] B. C. d. Almeida, C. N. Elias, “Influence of Heat Treatment on Color and Flexibility of Nickel-Titanium Endodontic Instruments,” in Revista Gaucha de Odontologia, vol. 68, 2020.
  • [32] P. Salvetr, J. Dlouhy, A. Skolakova, F. Prusa, P. Novak, M. Karlik, P. Hausild, “Influence of Heat Treatment on Microstructure and Properties of NiTi46 Alloy Consolidated by Spark Plasma Sintering,” in Materials, vol. 12, no. 24, pp. 1-17, Dec. 2019.
  • [33] A. Ziolkowski, “Pseudoelasticity of Shape Memory Alloys,” 1st ed. Butterworth-Heinemann, 2015.
  • [34] J. Frenzel, Z. Zhang, C. Somsen, K. Neuking, G. Eggeler, “Influence of Carbon on Martensitic Phase Transformations in NiTi Shape Memory Alloys,” in Acta Materialia, vol. 55, no. 4, pp. 1331-1341, Feb. 2007.
  • [35] M. Kılıc, I. Kırık, B. Kurt, N. Orhan, “Ön Isıtma Sıcaklığının Ni3Al/NiAl/NiTi Bileşiklerinden Oluşan Fonksiyonel Derecelendirilmiş Malzemenin Yapısına Etkisinin İncelenmesi,” in Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 21, no. 8, pp. 358-364, May. 2015.
  • [36] J. Bhagyaraj, K. V. Ramaiah, C. N. Saikrishna, S. K. Bhaumik, Gouthama. “Behavior and Effect of Ti2Ni Phase During Processing of NiTi Shape Memory Alloy Wire from Cast Ingot,” in Journal of Alloys and Compounds, vol. 581, pp. 344-351, Dec. 2013.
Year 2022, Volume: 13 Issue: 1, 27 - 34, 30.03.2022
https://doi.org/10.24012/dumf.1038109

Abstract

Project Number

FYL-2020-2163

References

  • [1] F. Calkins, J. Mabe, R. Ruggeri, “Overview of Boeing’s Shape Memory Alloy based Morphing Aerostructures,” in Smart Materials, Adaptive Structures and Intelligent Systems, vol. 43314, pp. 885-895, Jan. 2008.
  • [2] W. G. Drossel, H. Kunze, A. Bucht, L. Weisheit, K. Pagel, “Smart3–Smart Materials for Smart Applications,” in Procedia CIRP, vol. 36, pp. 211-216, 2015.
  • [3] W. G. Drossel, F. Meinel, A. Bucht, H. Kunze, “Smart Materials for Smart Production–A Cross-Disciplinary İnnovation Network in the Field of Smart Materials,” in Procedia Manufacturing, vol. 21, pp. 197-204, Jan. 2018.
  • [4] C. Naresh, P. Bose, C. Rao, “Shape Memory Alloys: A State of Art Review,” in IOP Conference Series: Materials Science and Engineering, vol. 149, pp. 1-13, 2016.
  • [5] C. Yang, S. Abanteriba, A. Becker, “A Review of Shape Memory Alloy based Filtration Devices,” in AIP Advances, vol. 10, no. 6, pp. 1-12, Jun. 2020.
  • [6] C. Wen, X. Yu, W. Zeng, S. Zhao, L. Wang, G. Wan, S. Huang, H. Grover, Z. Chen, “Mechanical behaviors and biomedical applications of shape memory materials: A review,” in AIMS Materials Science, vol. 5, no. 4, pp. 559-590, Jun. 2018.
  • [7] A. Bellini, M. Colli, E. Dragoni, “Mechatronic Design of a Shape Memory Alloy Actuator for Automotive Tumble Flaps: A Case Study,” in IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2644-2656, Apr. 2009.
  • [8] D. J. Hartl, D. C. Lagoudas, “Aerospace Applications of Shape Memory Alloys,” in Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 221, no. 4, pp. 535-552, Apr. 2007.
  • [9] K. Dai, C. Q. Ning, “Shape Memory Alloys and Their Medical Applications,” in Biomechanics and Biomaterials in Orthopedics, 2nd ed., D. G. Poitout, Ed., London, England, 2016, pp. 179-184.
  • [10] C. Menna, F. Auricchio, D. Asprone, “Applications of Shape Memory Alloys in Structural Engineering,” in Shape Memory Alloy Engineering For Aerospace, Structural and Biomedical Application, 1st ed., L. Lecce, A. Concilio, Ed., 2015, pp. 369-403.
  • [11] B. Yuan, M. Zhu, C. Y. Chung, “Biomedical Porous Shape Memory Alloys For Hard-Tissue Replacement Materials,” in Materials, vol. 11, no. 9, pp. 1-53, Sep. 2018.
  • [12] G. M. Simsek, Y. K. Sayinbas, M. Uysal, G. G. Yapici, “Effect of Heat Treatment on the Corrosion-Fatigue of NiTi Shape Memory Alloy,” in AIP conference proceedings, vol. 2146, no. 1, pp. 1-6, Aug. 2019.
  • [13] M. Kaya, O. Cakmak, T. Y. Saygili, K. C. Atli, “Şekil Hafızalı Alaşımlarda Martensitik Faz Dönüşümü ve Şekil Hafıza Mekanizması,” in Journal of Selcuk-Technic, vol. 15, no. 3, pp. 157-172, Dec. 2016.
  • [14] N. Babacan, I. Gunel, I. B. Ozsoy, “Martensitic Phase Transformations in CuAlNi Shape Memory Alloys,” in Advanced Materials Research, vol. 445, pp. 1076-1081, Jan. 2012.
  • [15] S. Dilibal, “Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi,” in Journal of Polytechnic, vol. 20, no. 3, pp. 623-627, Sep. 2017.
  • [16] C. Velmurugan, V. Senthilkumar, S. Dinesh, D. Arulkirubakaran, “Machining of NiTi-Shape Memory Alloys-A Review,” in Machining Science and Technology, vol. 22, no. 3, pp. 355-401, 2018.
  • [17] Z. Zhu, D. Guo, J. Xu, J. Lin, J. Lei, B. Xu, X. Wu, X. Wang, “Processing Characteristics of Micro Electrical Discharge Machining for Surface Modification of TiNi Shape Memory Alloys Using a TiC Powder Dielectric,” in Micromachines, vol. 11, no. 11, pp. 1-15, Nov. 2020.
  • [18] T. Nakahata, “Industrial Processing of Titanium–Nickel (Ti–Ni) Shape Memory Alloys (SMAs) to Achieve Key Properties,” in Shape Memory and Superelastic Alloys, K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki, Ed., Woodhead Publishing, 2011, pp. 53-62.
  • [19] D. Kapoor, “Nitinol for Medical Applications: A Brief İntroduction to the Properties and Processing of Nickel Titanium Shape Memory Alloys and their Use in Stents,” in Johnson Matthey Technology Review, vol. 61, no. 1, pp. 66-76, Jan. 2017.
  • [20] L. Machado, M. Savi, “Medical Applications of Shape Memory Alloys,” in Brazilian Journal of Medical and Biological Research, vol. 36, no. 6, pp. 683-691, Jun. 2003.
  • [21] T. Segreto, A. Caggiano, R. Teti, “Neuro-Fuzzy System İmplementation in Multiple Sensor Monitoring for Ni-Ti Alloy Machinability Evaluation,” in Procedia CIRP, vol. 37, pp. 193-198, Dec. 2015.
  • [22] I. Kaya, E. Karaca, M. Nagasako, R. Kainuma, “Effects of Aging Temperature and Aging Time on the Mechanism of Martensitic Transformation in Nickel-Rich NiTi Shape Memory Alloys,” in Materials Characterization, vol. 159, pp 1-8, Jan. 2020.
  • [23] A. Shamimi, B. Amin-Ahmadi, A. Stebner, T. Duerig, “The Effect of Low Temperature Aging and the Evolution of R-Phase in Ni-Rich NiTi,” in Shape Memory and Superelasticity, vol. 4, no. 4, pp. 417-427, Sep. 2018.
  • [24] Xıan Ocean Material Technology Co. “Nitinol Products”, Available: https://xaocean.en.alibaba.com/ (26.12.2021).
  • [25] M. C. Tanzi, S. Fare, G. Candiani, “Mechanical Properties of Materials,” in Foundations of Biomaterials Engineering, 1st ed. Academic Press, 2019, pp. 105-136.
  • [26] M. Ghassemieh, M. Mostafazadeh, M. Saberdel, “Seismic Control of Concrete Shear Wall using Shape Memory Alloys,” in Journal of Intelligent Material Systems and Structures, vol. 23, no. 5, pp. 535-543, Mar. 2012.
  • [27] B. N. K. Reddy, “Aging Time Correlation for Near-Equiatomic Niti Thin Films Deposited through Direct Current Magnetron Sputtering,” in Results in Physics, vol. 17, pp. 1-13, Mar. 2020.
  • [28] J. C. Chekotu, R. Groarke, K. O’Toole, D. Brabazon, “Advances in Selective Laser Melting of Nitinol Shape Memory Alloy Part Production,” in Materials, vol. 12, no. 5, pp. 1-20, Mar. 2019.
  • [29] A. Akdogan, M. Nurveren, “Şekil Hafızalı Alaşımlar,” in Engineer and Machinery, vol. 521, no. 44, pp. 35-45, 2010.
  • [30] J. Luo, J. He, X. Wan, T. Dong, Y. Cui, X. Xiong, “Fracture Properties of Polycrystalline NiTi Shape Memory Alloy,” in Materials Science and Engineering: A, vol. 653, pp. 122-128, 2016.
  • [31] B. C. d. Almeida, C. N. Elias, “Influence of Heat Treatment on Color and Flexibility of Nickel-Titanium Endodontic Instruments,” in Revista Gaucha de Odontologia, vol. 68, 2020.
  • [32] P. Salvetr, J. Dlouhy, A. Skolakova, F. Prusa, P. Novak, M. Karlik, P. Hausild, “Influence of Heat Treatment on Microstructure and Properties of NiTi46 Alloy Consolidated by Spark Plasma Sintering,” in Materials, vol. 12, no. 24, pp. 1-17, Dec. 2019.
  • [33] A. Ziolkowski, “Pseudoelasticity of Shape Memory Alloys,” 1st ed. Butterworth-Heinemann, 2015.
  • [34] J. Frenzel, Z. Zhang, C. Somsen, K. Neuking, G. Eggeler, “Influence of Carbon on Martensitic Phase Transformations in NiTi Shape Memory Alloys,” in Acta Materialia, vol. 55, no. 4, pp. 1331-1341, Feb. 2007.
  • [35] M. Kılıc, I. Kırık, B. Kurt, N. Orhan, “Ön Isıtma Sıcaklığının Ni3Al/NiAl/NiTi Bileşiklerinden Oluşan Fonksiyonel Derecelendirilmiş Malzemenin Yapısına Etkisinin İncelenmesi,” in Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 21, no. 8, pp. 358-364, May. 2015.
  • [36] J. Bhagyaraj, K. V. Ramaiah, C. N. Saikrishna, S. K. Bhaumik, Gouthama. “Behavior and Effect of Ti2Ni Phase During Processing of NiTi Shape Memory Alloy Wire from Cast Ingot,” in Journal of Alloys and Compounds, vol. 581, pp. 344-351, Dec. 2013.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Sedat Güven 0000-0001-8891-5421

Meltem Altın Karataş 0000-0002-1628-1316

Hasan Gökkaya 0000-0002-7103-0616

Yuksel Akınay 0000-0002-6171-6307

Project Number FYL-2020-2163
Publication Date March 30, 2022
Submission Date December 29, 2021
Published in Issue Year 2022 Volume: 13 Issue: 1

Cite

IEEE S. Güven, M. Altın Karataş, H. Gökkaya, and Y. Akınay, “Süperelastik NiTi Şekil Hafızalı Alaşımların Mekanik Özelliklerine Yüksek Sıcaklık ve Yaşlandırma Isıl İşleminin Etkisi”, DUJE, vol. 13, no. 1, pp. 27–34, 2022, doi: 10.24012/dumf.1038109.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456