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Abstract 

We introduce a new five-parameter model related to Weibull distribution, the so called. 

exponentiated Weibull Weibull (EWW) distribution.   It  incluides some new and earlier 

distributions. Fundamental properties are deduced. We deal with maximum likelihood 

(ML) method to obtain parameter estimators. The interest of the recommended 

distribution is confirmed through real data sets.  
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1. INTRODUCTION 

 

One of  the widespread distribution for modeling lifetime data is the Weibull (W) distribution where it has 

monotone  hazard rate function (hrf). In statistical literature,  different generalizations and extensions of 

the W distribution were done to deal with bathtub shaped hrf. [1] and [2] pioneered and discussed the EW 

distribution for analyzing bathtub failure data. The modified W extension with a bathtub shaped hrf can be 

found in [3].  The generalized modified W distribution has been suggested in [4]. 

 

In the recent time, new generated families have attracted many of statisticians to perform new models. We 

list some of the generated families among many of others as: the beta-G [5, 6], gamma-G [7], 

Kumaraswamy-G [8], McDonald-G [9], gamma-G (Type 2) [10],  transformed-transformer-G [11], W-G 

[12], Kumaraswamy odd log-logistic-G [13], Garhy-G [14], exponentiated Weibull-G (EW-G) [15]  

Kumaraswamy W-G [16], additive W-G [17], exponentiated extended-G [18], generalized additive W-G 

[19], Type II half logistic-G [20], odd Frechet-G [21] and power Lindley-G [22] among others. 

 

The cumulative distribution function (cdf ) of EW-G family (see [1]) is given by  
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where a and  (greater than zero) are the shape parameters and  (greater than zero) is the scale parameter. 

The probability density function (pdf) regarding to (1) is given by 
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We come up with a new five-parameter model as an interesting extension for the W distribution depending 

on EW-G distribution. We are motivated to study the EWW distribution because (i) it involves a number 

of conventional sub-models as well as it contains some new sub-models; (ii) As provided in Section 2 the 

EWW distribution can be considered as a mixture of W distribution as introduced in [23]; and (iii) The 

EWW distribution surpasses some of the recent lifetime distributions in regard to two real data examples.  

 

The rest of the paper is outlined as follows. Section 2 defines the EWW distribution and provides its special 

models. Section 3 gives important representation for the EWW density and distribution functions. 

Furthermore, it contains basic properties of the EWW distribution. The ML method is employed to get the 

parameter estimators of the subject model in Section 4. The accuracy and performance of the ML estimates 

are checked through a simulation study in Section 5. An illustrative example is given in Section 6 to explain 

how a real data can be formed by EWW model. Finally, the paper is concluded in last section.  

 

2. THE EXPONNTIATED WEIBULL WEIBULL DISTRIBUTION  
 

We obtain the EWW distribution depending on the EW-G family.  Consider the random variable X has the 

W distribution with pdf given by 

 
1( ; , ) ; 0,xg x x e x

                                                                                           (3) 

 

where,  (greater than zero) is the scale parameter and   (greater than zero) is the shape parameter.  The 

cdf of W distribution is given by 
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                                                                                                                      (4)   

                                                                                                             

We get the cdf of EWW distribution by subsituting (3) and (4) into (1) as follows  

 

 ( 1)( ; ) 1 ;    , , , , 0    ,   0,
x
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           (5) 

 

where, ( , , , , ),a     is parameter set of distribution. A random variable X has (5) shall be denoted by  

EWW ( , , , , ).a       The pdf of  EWW is obtained by subsituting (3) and (4) into (2) as follows  
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The pdf (6) comprises some new distributions and at the same time it contains existing distributions ( see 

Table 1).  
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Table 1. Special models of the Exponentiated Weibull Weibull distribution 

 Distribution a

 



 



 



 



 

Distribution function Author 

1 EW exponential  - - - 1 -  ( ) 1 exp( ( 1) )  
a

xF x e     

 

[24] 

2 EW Rayleigh  - - - 2 -  
2

( ) 1 exp( ( 1) )  
a

xF x e     

 

 

3 
Exponentaited 

Exponential  Weibull 
- - 1 - -  ( ) 1 exp( ( 1))  

a
xF x e
   

 

 

4 
Exponentaited 

Exponential  exponential  
- - 1 1 -  ( ) 1 exp( ( 1))  

a
xF x e    

 

 

5 
Exponentaited 

Exponential  Rayleigh  
- - 1 2 -  

2

( ) 1 exp( ( 1))  
a

xF x e    

 

 

6 
Exponentaited Rayleigh 

Weibull  
- - 2 - -  2( ) 1 exp( ( 1) )  

a
xF x e
   

 

 

7 
Exponentaited Rayleigh 

Exponential   
- - 2 1 -  2( ) 1 exp( ( 1) )  

a
xF x e    

 

 

8 
Exponentaited Rayleigh 

Rayleigh  
- - 2 2 -  

2 2( ) 1 exp( ( 1) )  
a

xF x e    

 

 

9 Weibull Weibull  1 - - - - ( ) 1 exp( ( 1) )xF x e
    

 

[25]  

10 Weibull Exponential   1 - - 1 - ( ) 1 exp( ( 1) )xF x e     

 

[26] 

11 Weibull Rayleigh  1 - - 2 - 
2

( ) 1 exp( ( 1) )xF x e     

 

[27] 

12 Exponential  Weibull  1 - 1 - - ( ) 1 exp( ( 1) )xF x e
    

 

 

13 Exponential  

Exponential   

1 - 1 1 - ( ) 1 exp( ( 1))xF x e    

 

 

14 Exponential  Rayleigh  1 - 1 2 - 
2

( ) 1 exp( ( 1))xF x e    

 

 

15 Rayleigh Weibull  1 - 2 - - 
2( ) 1 exp( ( 1) )xF x e

   

 

 

16 Rayleigh Exponential  1 - 2 1 - 
2( ) 1 exp( ( 1) )xF x e    

 

 

17 Rayleigh Rayleigh  1 - 2 2 - 
2 2( ) 1 exp( ( 1) )xF x e    

 

 

 

The survival function, hrf, reversed-hrf and cumulative hrf of EWW  distribution are respectively given by  
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and, 
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Figures 1, 2, and 3 gives pdf, hrf and reversed hrf  plots of the EWW distribution for certain values. 

 

 
Figure 1.  The pdf  plots of EWW distribution for specific parameter values  

 

 
Figure 2. The hrf  plots of EWW distribution for specific parameter values 
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Figure 3.  The reversed hrf  plots of EWW distribution for specific parameter values 

 

3. PRINCIPAL  PROPERTIES  

 

This section displays elementary properties of the EWW  distribution. 

  

3.1.  Expansions  

 

Important mixture expressions for the pdf and cdf of the EWW distribution are displayed. So, we rewrite 

the pdf (6) as follows 
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Since, the generalized binomial expansion  
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where  c ( greater than zero)  is real and  1,m    then by using (7), the EWW pdf reduces to 
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By using the following relation 
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Inserting the expansion (9) in (8) we have 
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Using (7), then we write 
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Then, (10) reduces to 
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Again, using the binomial theorem another time, then the pdf is written as  infinite linear combination of 

W distribution, that is 
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where, 
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Furtheremore, an expansion for the cdf; [ ( ; )]hF x   is derived. Using binomial expansion for cdf (5) 
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where h  is an integer and a ( greater than zero), gets : 
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Applying exponential expansion for the cdf in the previous Equation, we get 
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Using the relation (9) in the preceding  Equation, we have 

 

 

, , 0

1 ( ) e
[ ( ; )] 1 e .

!

q t t x
t m

h x

q t m

ah t mq
F x

q mt












  




   
     

  
  

 

Using the relation (7) in the preceding Equation, we get 
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where,  
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3.2. Quantile and Median 

 

For X has EWW distribution, its quantile function, say 
1( ) ( )Q u F u  is  yielded by inverting (5) as follows   
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                                                                                           (13) 

 

where, u is a uniform random variable on (0,1). For  u = 0.5 the median of distribution is as follows   
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3.3.  Moments 

 

The rth moment of EWW distribution is obtained as follows 
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Substituting (11) into (14) yields: 
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Let 1( 1)y x  then, r becomes 
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Generally, the moment generating function of the EWW distribution is obtained as 
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3.4. Incomplete and Conditional Moments  

 

The sth incomplete moment, say ( ),s t  is defined by 
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Using (11), then ( )s t  will be as follows 
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where   1

0

,

t

s xs t x e dx     is the lower incomplete gamma function. Further, the sth conditional moment, 

say ( ),s t  is defined by 

 

( ) ( ) .s
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t
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Hence, by using pdf (11), we get 
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where   1, s x

t

s t x e dx



     is the upper incomplete gamma function. Additionally, the mean deviation 

can be calculated by using 
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where, ( )J q  is the first incomplete moment and is obtained from (15), so 
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3.5. Residual Life Function 

 

The nth moment of the residual life function (RLF) of X is given by 
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The nth moment of the reversed RLF of X is given by 
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Again, employing the binomial expansion for  
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x t , we have 
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3.6. Inequality Measures 

 

Lorenz, Bonferroni and Zenga curves are inequality measures which are extensively used in income and 

wealth distributions (see [31]).  They are obtained, respectively, as below 
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3.7. Rényi and q-entropies 

 

The Rényi entropy of EWW is formally given by 

 

1( ) (1 ) log ( ) , 0 and   1.I X f x dx

   






     

 

We rewrite the pdf ( ; )f x  by using the binomial expansion (7) in (6) as follows   
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Hence, ( )I X of the EWW  distribution is specified by 
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Furthermore, the q-entropy takes the form 
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Therefore, the q-entropy of the EWW distribution takes the form 
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3.8. The Probability Weighted Moments 

 

In general, the probability weighted moments (PWM) method is employed for estimating the parameters 

of distributions in which they inverse form are not in explicit form (see [32]). It is specified by    
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By substituting (11) and (12) into (17), replacing h  with s, leads to: 
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Hence, the PWM of the EWW distribution will be 
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3.9. Order Statistics 

 

Given X1:n < X2:n<...,<Xn:n be the order statistics  of a random sample of size n has the EWW distribution, 

then,the pdf of the kth order statistics can be written as follows 
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where, B(.,.)
 
is the beta function. By substituting (11) and (12) in (18), changing h with  +k-1,gives 
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Moments of order statistics is given by: 
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4. MAXIMUM LIKLIHOOD ESTIMATION 

 

The ML estimators of the population parameters for the EWW distribution are derived in case of  complete 

samples. Let x1 ,..., xn  be the observed values from the EWW distribution with set of parameters 

( , , , , ) .Ta      The total log-likelihood function of   is    
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The elements of the score function  ( ) ( , , , , )aU U U U U U       are given by 
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Equations [20-24] are setted by zeros, then we get the ML estimators of the parameters. It is very hard to 

solve these Equations, so Newton-Raphson’s iteration method is employed. 

 

5. SIMULATION ILLUSTRATION 

 

A comprehnsive numerical inspection is  achieved to evaluate the behaviour of ML estimates (MLEs) for 

the EWW model.  The biases, mean square errors (MSEs) and variance are calculated, for different sample 

sizes, to evalute performance of ML estimates.  The simulation procedure is done via Mathematica (9) and  

described as follows: 

 

 We generate 10000 random samples of sizes n = 20, 30, 50 and 100 from the EWW distribution.  

 Select parameter values of  , , , ,a      as Set1 (1.2, 2, 0.5, 1.5, 1), Set2 (1.5, 2, 0.5, 1.5, 1), 

Set3 (1.8, 2, 0.5, 1.5, 1), and Set4 (2, 2,0.5, 1.5, 1). 

 The biases, MSE, mean and variances of MLEs at each sample size are calculated.  Outcomes of 

simulation are sorted in Tables 2 to 5.  

 

Table 2.  Biases, Mean, MSEs, and Variances of MLEs for EWW distribution of Set1= (1.2,2,0.5,1.5,1) 

n MLE Mean Bias MSE Variance 

 â  1.2732 0.0732 0.0809 0.0756 

20 ̂  2.1281 0.1281 0.3411 0.3247 

 ̂  0.5477 0.0477 0.0283 0.0260 

 ̂  1.5499 0.0499 0.0775 0.0750 

 ̂  1.1095 0.1095 0.1352 0.1232 

 â  1.2677 0.0677 0.0575 0.0529 

30 ̂  2.0523 0.0523 0.1866 0.1838 

 ̂  0.5482 0.0482 0.0211 0.0188 

 ̂  1.5249 0.0249 0.0412 0.0405 

 ̂  1.1077 0.1077 0.1085 0.0969 

50 

â  1.2270 0.0270 0.0403 0.0396 

̂  2.0844 0.0844 0.1322 0.1251 

̂  0.5223 0.0223 0.0128 0.0123 

̂  1.5327 0.0327 0.0317 0.0307 

̂  1.0436 0.0436 0.0599 0.0580 

100 

â  1.2118 0.0118 0.0172 0.0170 

̂  2.0486 0.0486 0.0697 0.0673 

̂  0.5080 0.0080 0.0058 0.0057 

̂  1.5150 0.0150 0.0186 0.0184 

̂  1.0159 0.0159 0.0240 0.0237 
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Table 3. Biases, Mean, MSEs, and Variances of MLEs for EWW distribution of Set2 =(1.5,2,0.5,1.5,1) 

n MLE Mean Bias MSE Variance 

 â  1.5780 0.0780 0.1450 0.1389 

20 ̂  2.1658 0.1658 0.5358 0.5083 

 ̂  0.5509 0.0509 0.0398 0.0372 

 ̂  1.5583 0.0583 0.0946 0.0912 

 ̂  1.1145 0.1145 0.2012 0.1881 

 â  

 

1.5478 0.0478 0.0861 0.0838 

30 ̂  2.1025 0.1025 0.2535 0.2430 

 ̂  0.5308 0.0308 0.0209 0.0200 

 ̂  1.5405 0.0405 0.0609 0.0592 

 ̂  1.0668 0.0668 0.0949 0.0904 

 â  1.5333 0.0333 0.0498 0.0487 

50 ̂  2.0550 0.0550 0.1378 0.1348 

 ̂  0.5195 0.0195 0.0113 0.0110 

 ̂  1.5217 0.0217 0.0378 0.0373 

 ̂  1.0425 0.0425 0.0493 0.0475 

 â  1.5175 0.0175 0.0238 0.0235 

100 ̂  2.0235 0.0235 0.0617 0.0611 

 ̂  0.5092 0.0092 0.0050 0.0049 

 ̂  1.5090 0.0090 0.0191 0.0190 

 ̂  1.0208 0.0208 0.0216 0.0212 

 

 

Table 4. Biases, Mean, MSEs, and Variances of MLEs for EWW distribution of Set3= (1.8,2,0.5,1.5,1)  

n MLE Mean Bias MSE Variance 

 â  1.8909 0.0909 0.2028 0.1945 

20 ̂  2.2181 0.2181 0.7847 0.7371 

 ̂  0.5535 0.0535 0.0399 0.0371 

 ̂  1.5780 0.0780 0.1190 0.1129 

 ̂  1.1156 0.1156 0.2008 0.1875 

 â  1.8624 0.0624 0.1283 0.1244 

30 ̂  2.1299 0.1299 0.3671 0.3503 

 ̂  0.5339 0.0339 0.0216 0.0205 

 ̂  1.5511 0.0511 0.0786 0.0760 

 ̂  1.0749 0.0748 0.1043 0.0987 

 â  

 

1.8367 0.0367 0.0712 0.0698 

50 ̂  2.0746 0.0746 0.1752 0.1696 

 ̂  0.5198 0.0198 0.0112 0.0108 

 ̂  1.5318 0.0317 0.0470 0.0460 

 ̂  1.0415 0.0414 0.0490 0.0473 

 â  1.8188 0.0188 0.0341 0.0337 

100 ̂  2.0320 0.0320 0.0749 0.0738 

 ̂  0.5089 0.0089 0.0049 0.0048 

 ̂  1.5138 0.0138 0.0228 0.0226 

 ̂  1.0202 0.0202 0.0217 0.0213 
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Table 5. Biases, Mean, MSEs, and Variances of MLEs for EWW distribution of Set4 = (2,2,0.5,1.5,1) 

n MLE Mean Bias MSE Variance 

 â  2.1077 0.1077 0.2602 0.2486 

20 ̂  2.2382 0.2382 1.0230 0.9662 

 ̂  0.5533 0.0533 0.0391 0.0362 

 ̂  1.5835 0.0835 0.1346 0.1276 

 ̂  1.1232 0.1231 0.2794 0.2642 

 â  2.0762 0.0762 0.1607 0.1549 

30 ̂  2.1315 0.1314 0.3773 0.3600 

 ̂  0.5350 0.0350 0.0220 0.0208 

 ̂  1.5519 0.0519 0.0870 0.0843 

 ̂  1.0787 0.0787 0.1059 0.0997 

 â  2.0432 0.0432 0.0899 0.0881 

50 ̂  2.0838 0.0838 0.2053 0.1982 

 ̂  0.5202 0.0202 0.0113 0.0109 

 ̂  

 

1.5350 0.0350 0.0546 0.0534 

 ̂  1.0432 0.0432 0.0511 0.0492 

 â  2.0212 0.0212 0.0415 0.0411 

100 ̂  2.0371 0.0371 0.0814 0.0801 

 ̂  0.5101 0.0101 0.0051 0.0050 

 ̂  1.5171 0.0171 0.0255 0.0252 

 ̂  1.0213 0.0213 0.0221 0.0217 

 

 

Generally, it can be seen from above tables that the MSEs of parameter estimates of
 ,a  , , and  

decrease as n increases.   

 

6. DATA ANALYSIS 

 

Here, two real data are utilized to explain the advantage of  the EWW distribution compared with some 

sub-models; namely, WW, exponential exponential (EE), Rayleigh W (RW), exponential W (EW) and 

Rayleigh Rayleigh (RR) dsitributions.  

 

MLEs of parameters and their related standard errors (S.E.) are computed. Citeria like;  minus of log-

likelihood function (-2 ln L), Kolmogorov-Smirnov (K-S) statistic, Akaike information criterion (AIC), 

correct AIC (CAIC), Hannan-Quinn IC (HQIC) and Bayesian IC (BIC) are considered to compare the 

distribution models. For each data set, we plot the histogram and the estimated pdf of the EWW,WW, EE, 

RW, EW and RR models.  

 

Example 6.1. The data represent 30 successive values of March precipitation (in inches) in Minneapolis/St 

Paul ( see [33] ). MLEs of models parameter and their S.E in parenthesis are placed in Table 6. The results 

of the
 
mentioned measures are placed in Table 7.  
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Table 6.  The MLEs of model parameters and S.Es for first data  

Model 
  MLEs     

â ̂ ̂ ̂ ̂ 

EWW 
78.61 

(0.14836) 

79.35 

(0.561) 

20.486 

(0.131) 

0.624 

(0.024) 

0.014 

(0.148) 

WW - 
39.853 

(0.414) 

3.154 

(0.518) 

0.196 

(0.102) 

0.5 

(0.072) 

EE - 
42.659 

(0.35762) 
- 

0.014 

(.00499) 
- 

RW - 
104.304 

(0.50776) 
- 

0.018 

(.0085) 

1.81 

(0.156) 

EW - 
3.918 

(0.03031) 
- 

.0002904 

(0.011) 

5.511 

(0.148) 

RR - 
100.351 

(0.21297) 
- 

0.014 

(.002292) 
- 

 

Table 7.  Values of -2LnL, AIC, BIC, CAIC, HQIC and K-S for first data  

Distribution -2LnL AIC CAIC BIC HQIC K-S 

EWW 129.022 139.022 141.522 136.407 141.263 0.113 

WW 138.194 146.194 147.794 145.623 149.819 0.07549 

EE 178.758 182.758 183.202 181.712 183.654 0.234 

RW 212.093 218.093 219.016 216.525 219.438 0.384 

EW 304.274 310.274 311.197 308.705 311.619 0.715 

RR 243.627 247.627 248.071 247.341 249.439 0.427 

 

From Table 7, it can be observed that the EWW distribution has the smallest values of proposed measures 

compared to other models. So, it suitable model for these data than their special sub-models. Figure 4 

provides plots of the fitted densities and the histogram. 

 

 
Figure 4. Estimated cdf and estimated pdf for the first data                                 

 

 

Example 6.2. The data are obtained from [34].  Data  represent the survival times (in  days) of 72 guinea 

pigs infected with virulent tubercle bacilli.  

 

Table 8 gives MLEs of the models parameter and their S.E. Results of considered measures are presented 

in Table 9. 

 



632 Amal HASSAN, Mohammed ELGARHY/ GU J Sci, 32(2): 616-635 (2019) 

 

 

Table 8. The MLEs of model parameters and S.Es for second data 

Model 
MLEs  

â  ̂  ̂  ̂  ̂  

EWW 
115.001 

(0.0787) 

125.918 

(0.361) 

19.125 

(0.085) 

0.61 

(0.015) 

0.013 

(0.093) 

WW - 
48.725 

 (0.27) 

2.947 

(0.324) 

0.162  

(0.063) 

0.546  

(0.047) 

EE - 
42.093 

(0.23097) 
- 

0.013 

(.0032) 
- 

RW - 
86.137 

(0.32826) 
- 

0.019 

(.0055) 

1.751 

(0.099) 

EW - 
3.816 

(0.01957) 
- 

.00029 

(.0073) 

5.149 

(0.096) 

RR - 
25.417 

(0.13753) 
- 

0.022 

(.001468) 
- 

 

Table 9. Values of -2LnL, AIC, BIC, CAIC, HQIC and K-S for second data 

Distribution -2LnL AIC CAIC BIC HQIC K-S 

EWW 302.076 312.076 312.972 311.363 316.608 0.134 

WW 337.304 345.304 345.901 344.734 348.93 0.10975 

EE 429.411 433.411 433.585 433.126 435.224 0.2939 

RW 502.013 508.013 508.366 507.585 510.732 0.413 

EW 732.507 738.507 738.86 738.079 741.226 0.729 

RR 552.88 556.88 557.054 556.595 558.693 0.507 

 

We  observe from Table 9 that  the EWW distribution has the smallest values of considered measures 

compared to other models. So, it suitable model for these data than their special sub-models. Figure 5 

provides plots of the fitted densities and the histogram 

 

     
Figure 5.  Estimated cdf  and estimated pdf for the second data set  

 

  

7. CONCLUSION 

 

We introduce a new five-parameter, the so called exponentiated Weibull Weibull distribution. The main 

properties  are provided. The EWW distribution contains some usuall distributions which obtained in [24-

27] besides, it contains some new distributions. The simulation study is conducted to evaluate the behaviour 

of the maximum likelihood estimates of EWW parameters.  The practical importance of the EWW 

distribution is demonstrated in two applications to show its superiority compared to other existing lifetime 

distributions. Application appeared that the EWW model can be employed  rather than other considred 

distributions.  
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