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In this study, we analyze dynamical behavior of the conformable fractional order Richards growth model. Before 
examining the analysis of the dynamical behavior of the fractional continuous time model, the model is reduced 
to the system of difference equations via utilizing piecewise constant functions. An algebraic condition that 
ensures the stability of the positive fixed point of the system is obtained. With the center manifold theory, the 
existence of a Neimark-Sacker bifurcation at the fixed point of the discrete-time system is proven and the 
direction of this bifurcation is determined. In addition, the discrete dynamical system is also studied on the star 
network with N = 20 nodes. Analysis  complex dynamics of Richards growth model into coupled dynamical 
network shows that the complex star network with N = 20  nodes also exhibits Neimark-Sacker bifurcation 
about the fixed point concerning with parameter c. Numerical simulations are performed to demonstrate the 
stability, bifurcations and dynamic transition of the coupled network. 
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Introduction 

In order to describe physical or biological processes 
many different types of mathematical models such us 
Malthus, Logistic, Von Bertalanffy, Richards, Gompertz, 
Blumberg and Turner are used. The most commonly used 
of these are the logistic and Richards models. Compared 
with the logistic equation, Richards equations define for 
more flexible curves of the S shape where the growth 
curve is asymmetrical and it can define changes in the 
initial growth stage, rapid growth stage, and stable growth 
stage of populations. In the literature, there are many 
successful applications of the Richards growth model in 
fields such as forest modelers [1], geology [2], COVİD 19 
[3,4], Ebola [5], fruit weight [6], microbial growth [7], 
interaction two-species population [8], traffic [9] and tree 
growth model [10]. 

The Richards differential equation has the following 
form: 

dN(t)

dt
= rN(t) (1 − (

N(t)

K
)
β

).                                         (1)  

The more general form of the Richards model, called 
the generalized Richards growth model, is given as 
follows. 

dN(t)

dt
= rNp(t) (1 − (

N(t)

K
)
β

),                                    (2)  

where r is the maximum intrinsic rate of increase of N, K  
is the upper asymptote of N and β is an additional 
parameter in the Richards equation introduced as a power 
law so that it can define asymmetric curves and 𝑝 is known  

 
 

as the deceleration of growth parameter which captures 
different early stages of the epidemic. 

In recent years, the increasing popularity of fractional 
order derivatives has led to the increase of using fractional 
order dynamical systems in literature. Many biological and 
physical processes are successfully modeled in fields such 
as biology [11], physics [12], chemistry [13] and complex 
network [14]. The most important advantage of fractional 
order differential equations over ordinary differential 
equations is that they can reflect the long memory and 
hereditary properties of the systems. There are several 
kinds of definitions for fractional derivatives such as 
Caputo-Riemann-Liouville and conformable fractional 
derivatives. Conformal fractional order derivative has 
many advantages over other fractional order definitions in 
practice because it reflects many of the properties which 
already exist in ordinary differential equations. 

For all t > 0,  α ∈ (0,1), conformable fractional 
derivative of f: [0,∞) → R is defined by  

(Tαf)(t) = lim
ε→0

f(t+εt1−α)−f(t)

ε
                                       (3)  

which has the following properties: 

(Tα
af)(t) = (t − a)1−αf ′(t), . . , ( Tα

b f)(t) = −(b − t)1−αf ′(t),     (4)  

where (Tα
af)(t) and ( Tα

b f)(t) are the left and right 

conformable fractional derivative respectively [15-16]. 
Busenberg and Cooke [17] introduced a new type of 

differential equations that is called differential equation 
with piecewise constant arguments in the early 1980s. 
Since these equations contain both differential equations 
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and difference equations, they have some advantages in 
applications. In particular, the ability to easily transition 
from these equations to difference equations is extremely 
important for population dynamics. In this way, many 
mathematical models for population dynamics that can 
describe rich dynamic behaviors such as chaos have been 
created in the literature [18-21]. 

Complex network is a type of mathematical graph and 
examines relationships between objects using 
connectivity. The objects and connectivity are 
represented nodes and edges respectively and each node 
is demonstrated by a nonlinear dynamical system in a 
complex network. Networks are named according to the 
shape of the connections such as globally coupled 
network, star network, Erdos-Renyi network and are used 
to understand the origin and complexity of the dynamical 
system. Studying on dynamical analysis of different types 
of complex networks can be found in the studies [22-27]. 

In study [28], ElRaheem and Salman consider the 
Caputo fractional-order Logistic differential equation with 
piecewise constant arguments given by 

DαN(t) = ρx (⟦
t

h
⟧ h) (1 − x (⟦

t−h

h
⟧ h)) ,    x(0) = x0 . (5)  

Discretization process gives the system of difference 
equations as follows: 

{
x(n + 1) = x(n) + ρx(n)(1 − y(n))

hα

Γ(α+1)

y(n + 1) = x(n).
          (6)  

The conformable fractional-order delay Richards 
growth model can be defined as follows: 

TαN(t) = rNp(t) (1 − (
N(t−τ)

K
)
β

).                             (7)  

If the piecewise constant arguments are used in the 

place of the term t − τ(t) as ⟦
t−h

h
⟧ we obtain 

TαN(t) = rNp (⟦
t−h

h
⟧ h) (1 − (

N(⟦
t−h

h
⟧h)

K
)

β

),        (8)  

with the initial condition N(0) = N0 where N(t) is a value 
of a measure of size or density of an organism or 
population, β is additional shape parameter, 𝑝 is 
deceleration of growth parameter, K is the carrying 
capacity, ⟦t⟧ denotes the integer part of t ∈ [0,∞) and h 
is discretization parameter. 

The purpose of this study is to examine stability and 
bifurcation analysis of the conformable fractional order 
generalized Richards growth model (8). 

 

Local Stability Analysis 

We will first apply a discretization procedure to obtain 
a system of difference equations from the model (8). Let 
t ∈ [0,∞), n = 0,1,2, … . From property (4) one can obtain 

(t − nh)1−α
dN(t)

dt
= rNp(nh − h) (1 − (

N(nh−h)

K
)
β

)    (9)  

 
that gives 

dN(t) = rNp(nh − h) (1 − (
N(nh−h)

K
)
β

) (t − nh)α−1dt. (10)  

By integrating equation (10) with respect to t on 
[nh, t), one can hold 

N(t) − N(nh) = rNp(nh − h) (1 − (
N(nh−h)

K
)
β

)
(t−nh)α

α
.       (11) 

Let t → (n + 1)h  in equation (11) and obtain 

N((n + 1)h) − N(nh) =  

rNp((n − 1)h) (1 − (
N((n−1)h)

K
)
β

)
hα

α
 .                          (12) 

To use a suitable notation for the representation of 
difference equations, we replacing N(nh) by N(n). 

N(n + 1) = N(n) + rNp(n − 1) (1 − (
N(n−1)

K
)
β

)
hα

α
      (13)  

If we introduce x(n)= N(n) and y(n)= N(n − 1), then 
we have 

{
x(n + 1) = x(n) + r(y(n))p (1 − (

y(n)

K
)
β

)
hα

α

y(n + 1) = x(n).
      (14)  

Now, we can deal with the stability of the fixed points 
of model (14). We note that the positive fixed point of the 
model (14) is (x∗, y∗) = (K, K). Necessary and sufficient 
algebraic conditions that ensuring the local asymptotic 
stability of the positive fixed point of the model (14) will 
be given in the following theorem. 

Theorem 1. The fixed point (x∗, y∗) = (K, K) of system 
(14) is local asymptotically stable if and only if 

0 < r <
α

hαK−1+pβ
 .                                                        (15)  

Proof 1. The Jacobian matrix calculated at positive 
fixed point (x∗, y∗) = (K, K) of system (14) is 

J = (1 −
hαK−1+prβ

α
1 0

) 

and the corresponding characteristic equation is 

λ2 + p1λ + p2 = 0                                                      (16)  

where 

p1 = −1                                                                        (17)  

and 

 p2 =
hαK−1+prβ

α
  .                                                      (18) 

The following conditions that are called Schur-Cohn 
criterions can be used for the determining asymptotic 
stability conditions of the fixed point (x∗, y∗) of the system 
(14). 
i)1 + p1 + p2 > 0  
ii)1 − p1 + p2 > 0  
iii)1 − p2 > 0  

From i) and ii), we have  

1 + p1 + p2 =
hαK−1+prβ

α
> 0  

and 

1 − p1 + p2 = 2 +
hαK−1+prβ

α
> 0, 
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respectively. Under the condition r <
α

hαK−1+pβ
 , we hold 

1 − p2 = 1 −
hαK−1+prβ

α
> 0  

This completes our proof. 
Now we give the topological classification of the fixed 

point of the model (14). 

Theorem 2. Assume that K > 0. For the fixed point (x∗, 
y∗) = (K, K), the following topological classification 
holds: 

i) The fixed point is sink if r <
α

hαK−1+pβ
. 

ii) The fixed point is source if r >
α

hαK−1+pβ
. 

iii) The fixed point is  a non-hyperbolic if r =
α

hαK−1+pβ
. 

Neimark Sacker Bifurcation Analysis 

In this section, we examine the existence and direction of Neimark-Sacker bifurcation about the positive fixed point 
for the discrete system (14) in line with the studies [29-31].  

Theorem 3: System (14) undergoes Neimark-Sacker bifurcation at the fixed point (x∗, y∗) = (K, K). Moreover, if k < 
0 then an attracting invariant cycle will appear for r > r∗ , if k > 0 then a repelling invariant cycle will appear for 0 < r <
r∗. 

Proof 2. From the characteristic equation of the linearized system at the positive fixed point, the eigenvalues can be 
calculated as follows. 

𝜆1,2 =
1

2
± i

√Kα(4hαKprβ−Kα)

2Kα
.                                                                                                                                              (19)  

From the solution of equation 1 − p2 = 0 in accordance with parameter r gives the Neimark-Sacker bifurcation 
point as follows: 

r = r∗ =
α

hαK−1+pβ
 .                                                                                                                                                                (20)  

For r = r∗, these eigenvalues leads to 

|λ1,2| = |
1

2
±
i√3

2
| = |a ± ib| = 1. 

The transversality condition  

d|λ1,2(r)|

dr
|r=r∗ =

hαK−1+pβ

2α
≠ 0                                                                                                                                                   (21)  

is always satisfied for all parameter values. In addition, non-resonance conditions is always satisfied for  p1 ≠ 0,1.  
Let u = x − x∗ and v = y − y∗ ,  then the system (14) is transformed into 

(
u
v
) → (

1 −1
1 0

) (
u
v
) + (

f1(u, v)
f2(u, v)

)                                                                                                                                         (22)  

where 

f1(u, v) = m13u
2 +m14uv +m15v

2 +m16u
3 +m17u

2v +m18uv
2 +m19v

3 + O((|u| + |v|)4)    
f2(u, v) = m23u

2 +m24uv + m25v
2 +m26u

3 +m27u
2v + m28uv

2 +m29v
3 + O((|u| + |v|)4)      

and 

m13 = m14 = m16 = m17 = m18 = m23 = m24 = m25 = m26 = m27 = m28 = m29 = 0  

m15 = −
−1+2p+β

2K
  

m19 = −
2+3(−2+p)p−3β+3pβ+β2

6K2
.  

By using transformation (
u
v
) = T (

X
Y
), then the map (22) rewritten as the following form 

(
X
Y
) → (

a −b
b a

) (
X
Y
) + (

F1(X, Y)
F2(X, Y)

)                                                                                                                                          (23)  

where 

T = (
√3

2

1

2

0 1
)        

F1(X, Y) = −
Y2(−1+2p+β)

√3K
−
Y3(2−6p+3p2−3β+3pβ+β2)

3√3K2
+ O((|u| + |v|)4)     

F2(X, Y) = 0.  
The constant k, which will determine the direction of the Neimark-Sacker bifurcation, can be calculated using the 

following equation. 
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k = −Re [
(1−2λ)λ̅2

1−λ
ξ11ξ20] −

1

2
|ξ11|

2 − |ξ02|
2 + Re[λ̅ξ21] =

2p−5p2+β−5pβ−β2

16K2
                                                              (24)  

where 

ξ20 =
1

8
((F1XX − F1YY + 2F2XY) + i(F2XX − F2YY − 2F1XY)) =

−1+2p+β

4√3K
     

ξ11 =
1

4
((F1XX + F1YY) + i(F2XX + F2YY)) = −

−1+2p+β

2√3K
      

ξ02 =
1

8
((F1XX − F1YY − 2F2XY) + i(F2XX − F2YY + 2F1XY)) =

−1+2p+β

4√3K
       

ξ21 =
1

16
((F1XXX + F1XYY + F2XXY + F2YYY) + i(F2XXX + F2XYY − F1XXY − F1YYY))    

       =
ⅈ(2+3p2+3p(−2+β)−3β+β2)

8√3K2
.  

 

Figure 1. Phase portraits of the discrete model (14) with respect to parameter r for r = 1 (a), 
r = 1.5 (b), r = 2.08295 (c), r = 2.3 (d) r = 2.6 (e), r = 3 (f) where α=0.95, β=0.7, K=10, 
h=0.5, p=1.1, x(1)=y(1)=7.  
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Figure 2. Bifurcation diagram of the discrete system (14) in accordance with parameter r, where 
α = 0.95, β = 0.7, K = 10, h = 0.5, p = 1.1, x(1) = y(1) = 7. 
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Figure 3. Bifurcation diagram of the discrete system (14) in accordance with parameter p, where 
α = 0.95, β = 0.7, K = 10, h = 0.5, r = 1.1, x(1) = y(1) = 7.   

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dynamical Analysis of the model on Star Network 
 
Taking into account a dynamical network consisting of N linearly and diffusively coupled nodes, with each node 

describe a two-dimensional dynamical system defined by discrete system (14). Let’s consider the equation (14) as the 
following form: 

{
x(k + 1) = x(k) + r(y(k))p (1 − (

y(k)

K
)
β

)
hα

α
= f(x(k), y(k))

y(k + 1) = x(k) = g(x(k), y(k)).
                                                                                       (25)  

This dynamical network is defined by 
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Figure 4. Bifurcation diagram of the discrete system (14) in accordance with parameter β, where 

α = 0.95, p = 1.1, K = 10, h = 0.5, r = 1.1, x(1) = y(1) = 7.   
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{
xⅈ(k + 1) = f(xⅈ(k), yⅈ(k)) − c∑ aⅈjf (xj(k), yj(k))

N
j=1

yⅈ(k + 1) = g(xⅈ(k), yⅈ(k)) − c∑ aⅈjg (xj(k), yj(k)) ,
N
j=1

                                                                                                  (26)  

where i and j are the sequence number of the nodes and c describes the coupling strength of the network. The 
coupling matrix A ∈ RNxN can be expressed by 

A =

(

 
 

d11 a12 a13 ⋯ a1N
a12 d22 a23 ⋯ a2N
a13 a23 d33 ⋯ a3N
⋮ ⋮ ⋮ ⋱ …
a1N a2N a3N ⋯ dNN)

 
 
                                                                                                                                         (27)  

If there is a connection between node i and j, then 𝑎𝑖𝑗 = 1; otherwise, 𝑎𝑖𝑗 = 0 (𝑖 ≠ 𝑗). Let 𝑎𝑖𝑖 = 𝑑𝑖 , i = 1,2, …N, 

where 𝑑𝑖  is the degree of node i and can be defined as 

dⅈⅈ = −∑ aⅈj
N
j=1,j≠ⅈ = −∑ ajⅈ

N
j=1,j≠ⅈ   

The system (26) can be written in matrix form as follows: 

{
Xk+1 = (I − cA)f(X(k), Y(k))

Yk+1 = (I − cA)g(X(k), Y(k))
                                                                                                                                                   (28)  

where Xk = (x1(k), x2(k), … . xN(k)),  Yk = (y1(k), y2(k), … . yN(k))  and I ∈ RNXN  identity matrix. 

 
Figure 5. Star network with N = 20 nodes. 

 

 

Figure 6. Neimark-Sacker bifurcation in the star network in accordance with 
parameter c, where α = 0.95, β = 0.7, p = 1.1, K = 10, h = 0.5, r = 2.07 
and N = 20. 
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Result and Discussion 

In this study, we consider the conformable fractional 
order Richards growth model with piecewise constant 
arguments. Adding piecewise constant arguments to the 
model (7) make it possible to transition to the system of 
difference equation (14). The positive fixed point of the 
system (14) is obtained as (x∗, y∗) = (K, K) and its 
stability condition is given in equation (15). To test this 
algebraic condition based on changing the growth rate 
parameter r of the population, we select the parameter 
values as α = 0.95, β = 0.7, K = 10, h = 0.5, p =
1.1  and x(1) = y(1) = 7.  The stability region according 
to the change of the parameter r is obtained as r <
2.08295.  It can be easily seen in the Figure 1a and 1b that, 
the fixed point (10,10) of the system (14) is local 
asymptotically stable.  

        In bifurcation analysis, we deal with the existence 
and direction of the Neimark-Sacker bifurcation about the 
positive fixed point of the system (14). From the solutions 
of the equation 1 − p0 = 0  with respect tom parameter 
r, the eigenvalue assignment condition can be obtained as  

r∗ =
α

hαK−1+pβ
. In addition From the equation (21) and the 

conditions p1 ≠ 0,1, transversality and non-resonance 
conditions are always satisfied for all of the positive 
parameter values. Now, all of the conditions for the 
existence of the Neimark-Sacker bifurcation are satisfied 
and this bifurcation is shown in Figure 1c and Figure 2. 
From the equation (24), the value of k that determines the 

direction of the Neimark-Sacker bifurcation is calculated 
as k = −0.00468125 which show the existence of 
supercritical Neimark-Sacker bifurcation. We also deal 
with the bifurcation analysis for the other parameters 
such as β and p. The effect of the deceleration of growth 
parameter p and additional shape parameter β on the 
dynamic structure of the system is seen in Figures 3 and 
Figure 4, respectively. From these figures we can also 
observe the Neimark-Sacker bifurcation for the parameter 
values p∗ = 1.37721 and β∗ = 1.32529  and so the model 
exhibits more unstable dynamics behavior for increased 
parameters p and β. 

Model (12) and model (6) exhibit similar dynamic 
behaviors such as Neimark-Sacker bifurcation and chaos 
according to changing the growth rate parameter r and ρ.  
However, model (12) is a more generalized version of 
model (6) and includes extra parameters such as β and p. 
We provide that model (12) also exhibits Neimark-Sacker 
bifurcation according to changing  parameters β and p. 

Discrete dynamical system (14) is also considered on 
the star network with N = 20  nodes. In order to 
investigate the complex dynamics of the model (14) into 
coupled dynamical network, system (26) is represented 
the state equations of star network. All simulations have 
used the same initial condition for all nodes, which are 
slightly different from the fixed point. Figure 5 shows the 
star network with N = 20 nodes. For the star network 
with N = 20 nodes, the coupling matrix A can be obtained 
from the equation (27) as follows. 

A =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Now let's consider the nodes with the highest degree 

in the star network with N = 20 nodes. which for is 1 and 
. Figure 6 shows that if the coupling parameter 𝑐 reaches 
the some critical value where it is interval c ∈
[2x10−3, 4x10−3] , then Neimark-Sacker bifurcation 
occurs about the positive fixed point. 
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