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Solution of Some Integral Equations by Point-Collocation Method 
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Abstract 

In several engineering or physics problems, particularly those involving electromagnetic theory, thermal and radiation 

effects, acoustics, elasticity, and some fluid mechanics, it is not always easy or possible to find the analytical solution of 

integral equations that describe them. For this reason, numerical techniques are used. In this study, Point-collocation 

method was applied to linear and nonlinear, Volterra and Fredholm type integral equations and the performance and 

accuracy of the method was compared with several other methods that seem to be popular choices.  As the base functions, 

a suitably chosen family of polynomials were employed.  The convergence of the method was verified by increasing the 

number of polynomial base functions.  The results demonstrate that the collocation method performs well even with a 

relatively low number of base functions and is a good candidate for solving a wide variety of integral equations. Nonlinear 

problems take longer to calculate approximate solution coefficients than linear problems. Furthermore, it is necessary to 

use the real and smallest coefficients found in order to obtain a suitable approximate solution to these problems. 

Keywords: Collocation method, Nonlinear integral equations, Volterra equations, Fredholm equations, Approximate 

solution method. 

 

 

Bazı İntegral Denklemlerin Nokta Kollokasyon Yöntemiyle Çözümü  

 

Öz 

Çeşitli mühendislik veya fizik problemlerinde, özellikle elektromanyetik teori, termal ve radyasyon etkileri, akustik, 

elastisite ve akışkanlar mekaniğinde, bunları tanımlayan integral denklemlerin analitik çözümünü bulmak her zaman 

kolay veya mümkün değildir. Bu yüzden sayısal teknikler kullanılır. Bu çalışmada temel bilimlerde ve mühendislikte 

karşılaşılan integral denklemlerin sayısal çözümleri için kullanılabilecek polinom temelli kollokasyon yöntemi 

sunulmuştur. Yöntem, doğrusal veya doğrusal olmayan Volterra ve Fredholm integral denklemlerine uygulanacak şekilde 

formüle edilmiştir. Doğrusal olmayan denklemlerin kollokasyon noktalarında cebirsel denklemlere indirgenmesi ve 

meydana gelen denklem sisteminin çözümü mümkün olmuştur. İncelenen örneklerin sayısal sonuçları, önerilen bu 

yöntemin iyi çalıştığını ve az sayıda kollokasyon noktası alındığında bile polinom seçiminin yaklaşık çözüm için uygun 

olduğunu göstermektedir. Ayrıca, yöntemin performansı farklı polinom mertebeleri için karşılaştırılmıştır. Doğrusal 

olmayan problemlerin yaklaşık çözüm katsayılarını hesaplamak doğrusal problemlere göre daha uzun sürmektedir. Ayrıca 

bu problemlere uygun yaklaşık çözüm elde edebilmek için bulunan gerçek ve en küçük katsayıların kullanılması 

gerekmektedir. 

Anahtar Kelimeler: Kollokasyon yöntemi, Doğrusal olmayan integral denklemler, Volterra denklemleri, Fredholm 

denklemleri, Yaklaşık çözüm yöntemi 
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1. Introduction 

 

Integral equations are useful in modelling a wide range of problems in science and engineering. 

For instance, integral equations define mathematical models relevant to engineering studies 

concerning electromagnetic theory, thermal and radiation effects, acoustics, elasticity, fluid 

mechanics, and some mechanics problems.  A number of approximate methods for solving 

differential equations first formulate the differential problem in the form of an integral equation; a 

well-known example for this is the method of boundary integral equations. 

Volterra integral equations are usually encountered in evolution type physical problems 

(Krasnov et al., 1971). Fredholm integral equations can model, for example, fluid-solid interactions; 

a recent interesting example is (Daddi-Moussa-Ider et al., 2019) where the hydrodynamic interactions 

between a cell membrane and nanoparticles were investigated.  The third type of integral equations, 

Volterra-Fredholm equations (Wazwaz, 2011) are encountered in parabolic models employed in 

various physical and biological problems.  Various diffusion, population development, nerve 

behaviour, viscoelastic material, materials with memory problems can also be modeled based on 

integral equations (Guo, 2020). 

There are many approximate solution methods for integral equations. In addition to classical 

methods, some of the contemporary methods are Adomian decomposition (Wazwaz, 2011), 

homotopy analysis (Adawi et al., 2009), modified Taylor’s method (Matoog et al., 2023), Runge-

Kutta (Brunner et al., 1982), differential transform (Arikoglu and Ozkol, 2008), variational iteration 

(Shakeri et al., 2009; Prajapati et al., 2011), series solutions (Wazwaz and Khuri, 1996), and 

homotopy perturbation method (S. Abbasbandy, 2006; Biazar and Eslami, 2010). 

On the contrary, the Adomian decomposition method, the collocation method does not need to 

use any special polynomials. In this method, it is not necessary to rely on the auxiliary parameter of 

the series solution for solution convergence as in the homotopy analysis method. Furthermore, there 

is no need to linearize when collocation is applied to nonlinear problems. 

In the present study, some of the problems solved by various authors with a selection of above 

methods will be solved by the collocation method and compared in terms of accuracy and simplicity 

of the method of solution. 
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2. Material and method 

 

2.1. Weighted residual and collocation methods 

 

Collocation method is a type of weighted residual method.  To shortly describe both, consider 

an equation (differential or integral, linear or nonlinear) involving a single variable function 𝑦(𝑥) 

 

𝐿[𝑦(𝑥)] = 0                       (1a) 

 

where L is a linear or nonlinear operator and appropriate boundary conditions 

 

𝐵[𝑦(𝑥)] = 0               (1b) 

 

Denote an approximate solution of the equation as 

 

𝑦̂(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑁)              (1c) 

 

Here the form of this solution is to be chosen and involves free parameters 𝐶1, 𝐶2, … , 𝐶𝑁   to be 

found so that the approximate solution is as close to the exact solution as possible. 

𝑦̂(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑁) can be chosen to satisfy the boundary conditions 

 

𝐵[𝑦̂(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑁)] = 0             (1d) 

 

But it will not satisfy the equation; when substituted, the result will be the residual 

 

𝑅(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑁) = 𝐿[𝑦̂(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑁)] ≠ 0         (2) 

 

In equation 2, the expression 𝑅 is called the residual. In the weighted residual method, the free 

parameters within the approximate solution are determined from 

 

∫ 𝑅(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑁) 𝑊𝑛(𝑥)𝑑𝑥 = 0              𝑛 = 1,2, … , 𝑁        (3) 

 

where the integration is over the solution domain and 𝑊𝑛(𝑥) are weight functions, also to be chosen.  

Various weighted residual methods exist according to the choice of weight functions. 

In the collocation method, the weight functions are taken as 
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𝑊𝑛(𝑥) = 𝛿(𝑥 − 𝑥𝑛)              (4) 

 

Hence Eq. 3 becomes 

 

∫ 𝑅(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑁) 𝛿(𝑥 − 𝑥𝑛)  𝑑𝑥 = 0              𝑛 = 1,2, … , 𝑁         (5) 

 

In the equation, δ denotes the delta function and possesses the following attribute in solution region 

 

∫ 𝛿(𝑥 − 𝑥0)𝜃(𝑥)
Ω

𝑑Ω = 𝜃(𝑥0)              (6) 

 

and 𝑥𝑛 are chosen collocation points within the solution domain Ω. This makes (3) a system of 𝑁 

equations for the parameters 𝐶1, 𝐶2, … , 𝐶𝑁 

 

𝑅(𝑥𝑛, 𝐶1, 𝐶2, … , 𝐶𝑁) = 0             𝑛 = 1,2, … , 𝑁            (7) 

 

In principle, the form of the approximate solution can be chosen freely.  In the following, the 

approximate solution will be taken as a linear combination of polynomials 

 

𝑦̂(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑁) = ∑ 𝐶𝑛𝑥𝑛𝑁
𝑛=1               (8) 

 

2.2. Application to integral equations 

 

The following Volterra equation was solved in (Wazwaz, 2011) by Adomian Decomposition Method 

 

𝑦(𝑥) = 1 − ∫ y(𝑡) 𝑑𝑡
𝑥

0
                (9) 

 

The exact solution is = 𝑒−𝑥 . Since (9) gives 𝑦(0) = 1, the approximate solution is taken as 

 

𝑦̂(𝑥) = 1 + ∑ 𝐶𝑛𝑥𝑛𝑁
𝑛=1               (10) 

 

involving 𝑁 = 5 free parameters.  The residual is 

 

𝑅(𝑥) = 𝑦̂(𝑥) − ∫ 𝑦̂(𝑡) 𝑑𝑡
𝑥

0
             (11) 
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To simplify notation, the dependence on 𝐶𝑛 is suppressed.  Substituting (10) into (11) gives 

 

𝑅(𝑥) = 1 + ∑ 𝐶𝑛𝑥𝑛5
𝑛=1 − 1 + ∫ (1 + ∑ 𝐶𝑛𝑡𝑛5

𝑛=1 ) 𝑑𝑡
𝑥

0
        (12) 

 

Collocation points will be equally spaced within the solution domain 0 < 𝑥 < 1, i.e., 

 

𝑥𝑛 =
𝑛

𝑁+1
            𝑛 = 1,2, . . , 𝑁            (13) 

 

Thus the collocation equations 

 

𝑅(𝑥𝑛) = 0              𝑛 = 1,2, . . , 𝑁            (14) 

 

Become 

 

0.167 + 0.181𝐶1 + 0.029𝐶2 + 0.004𝐶3 + 0.0007𝐶4 + 0.0001𝐶5 = 0
0.333 + 0.389𝐶1 + 0.123𝐶2 + 0.040𝐶3 + 0.0013𝐶4 + 0.004𝐶5 = 0
0.500 + 0.625𝐶1 + 0.292𝐶2 + 0.140𝐶3 + 0.0068𝐶4 + 0.033𝐶5 = 0
0.667 + 0.889𝐶1 + 0.543𝐶2 + 0.345𝐶3 + 0.223𝐶4 + 0.146𝐶5 = 0

0.833 + 1.1806𝐶1 + 0.887𝐶2 + 0.669𝐶3 + 0.562𝐶4 + 0.457𝐶5 = 0

     (15) 

 

After solving this linear system of equations for 𝐶𝑛, the approximate solution becomes 

 

𝑦̂(𝑥) = 1 + ∑ 𝐶𝑛𝑥𝑛5
𝑛=1              (16a) 

 

The solution was also carried out with 𝑁 = 10 and 𝑁 = 15, the exact solution, approximate solutions 

and errors are shown in Table 1. 
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Table 1. Collocation solution of linear Volterra integral equation (9). 

 Approximate Solution Absolute Errors in Eq (9) 

x Exact N=5 N=10 N=15 N=5 N=10 N=15 

0.0 1.00000 1.000000 1.000000 1.000000 0.00000 0.00000 0.00000 

0.1 0.90483 0.904838 0.904837 0.904837 2.1x10-7 2.6x10-15 5.5x10-16 

0.2 0.81873 0.818731 0.818731 0.818731 1.0x10-7 2.2x10-16 2.2x10-16 

0.3 0.74081 0.740818 0.740818 0.740818 6.5x10-8 1.1x10-15 0.000000 

0.4 0.67032 0.670320 0.670320 0.670320 4.8x10-8 4.4x10-16 1.1x10-16 

0.5 0.60653 0.606531 0.606531 0.606531 2.0x10-8 7.7x10-16 1.1x10-16 

0.6 0.54881 0.548812 0.548812 0.548812 1.1x10-7 1.1x10-16 2.2x10-16 

0.7 0.49658 0.496585 0.496585 0.496585 1.0x10-7 1.3x10-15 1.1x10-16 

0.8 0.44932 0.449329 0.449329 0.449329 2.5x10-7 2.0x10-15 2.2x10-16 

0.9 0.40657 0.406568 0.406569 0.406570 2.1x10-6 1.4x10-14 1.9x10-15 

1.0 0.36787 0.367866 0.367879 0.367879 1.3x10-5 2.1x10-12 4.6x10-13 

 

Approximate solutions for 𝑁 = 10  and 𝑁 = 15  are respectively 

 

𝑦(𝑥) = 1 − 𝑥 + 0.5𝑥2 − 0.166𝑥3 + 0.041𝑥4 − 0.008𝑥5 + 0.001𝑥6 − 1 × 10−4𝑥7 + 2 ×

10−5 × 𝑥8 − 2 × 10−6𝑥9 + 1.75 × 10−7𝑥10                  (16b) 

 

𝑦(𝑥) = 1 − 𝑥 + 0.5𝑥2 − 0.166𝑥3 + 0.041𝑥4 − 0.008𝑥5 + 0.001𝑥6 − 2 × 10−4𝑥7 + 2.9 ×

10−5 × 𝑥8 − 1.2 × 10−5𝑥9 + 1.4 × 10−5𝑥10 − 1.51 × 10−7𝑥11 + 1.15 × 10−7𝑥12 − 5.95 ×

10−6𝑥13 + 1.83 × 10−6𝑥14 − 2.57 × 10−7𝑥15         (16c) 

 

The following nonlinear Volterra equation was solved in (Darania et al., 2006) by Linearization 

method. 

 

𝑦(𝑥) = 𝑒𝑥 −
1

2
(𝑒2𝑥 − 1) + ∫ 𝑦2(𝑡) 𝑑𝑡

𝑥

0
           (17) 

 

The exact solution is 𝑦 = 𝑒𝑥. Since (17) gives 𝑦(0) = 1 the approximate solution involving 5 terms 

is taken as 

 

𝑦̂(𝑥) = 1 + ∑ 𝐶𝑛𝑥𝑛5
𝑛=1               (18) 

 

and the residual is 

 

𝑅(𝑥) = 𝑦̂(𝑥) − 𝑒𝑥 +
1

2
(𝑒2𝑥 − 1) − ∫ 𝑦̂2(𝑡) 𝑑𝑡

𝑥

0
         (19) 
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Collocation points are chosen as before; and the resulting system of equations is nonlinear for 

this problem. There are multiple solutions to this nonlinear system; some are complex numbers. It 

turns out that the real solutions with the smallest absolute values give the correct approximate 

solution. This results in 

 

𝑦(𝑥) = 1 + 1.0004𝑥 + 0.499538𝑥2 + 0.168836𝑥3 + 0.0370243𝑥4 + 0.0128194𝑥5 

                 (20) 

 

The solution was also carried out for 𝑁 = 10, and Table 2 displays the present solutions together with 

the solution given in (Darania et al., 2006), exact solution and errors made. 

 

Table 2. Absolute Errors for Nonlinear Volterra İntegral Equation (17) 

                         Collocation Point Number  

x 

(Darania et 

al., 2006), 

(h=0.0001) 

N=5 N=6 N=7 N=8 N=9 N=10 

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.1 2.0x10-8 7.6x10-7 2.6x10-8 7.1x10-10 1.5x10-11 2.7x10-13 2.8x10-15 

0.2 5.8x10-8 5.6x10-8 5.1x10-10 4.1x10-11 5.6x10-12 2.9x10-13 1.0x10-14 

0.3 8.5x10-8 1.2x10-7 1.1x10-8 5.1x10-10 1.5x10-11 3.9x10-13 1.0x10-14 

0.4 1.1x10-7 5.0x10-7 1.7x10-8 4.6x10-10 1.4x10-11 5.1x10-13 1.5x10-14 

0.5 1.8x10-7 5.1x10-7 1.4x10-8 6.8x10-10 2.5x10-11 7.1x10-13 2.0x10-14 

0.6 2.5x10-7 4.3x10-7 3.0x10-8 1.0x10-9 2.9x10-11 9.9x10-13 3.0x10-14 

0.7 3.8x10-7 1.1x10-6 4.5x10-8 1.1x10-9 5.3x10-11 1.4x10-12 4.1x10-14 

0.8 6.2x10-7 2.3x10-6 2.6x10-8 3.1x10-9 6.1x10-11 2.1x10-12 7.3x10-14 

0.9 9.3x10-7 1.7x10-6 2.2x10-7 6.2x10-10 1.5x10-10 4.0x10-12 6.1x10-14 

1.0 1.6x10-6 2.7x10-5 1.9x10-6 8.3x10-8 4.0x10-9 1.4x10-10 5.37x10-12 

 

The absolute error is seen to be smaller than that of (Darania et al., 2006) for all the cases with 7 or 

more collocation points. 

The next problem from (Abbasbandy and Shivanian, 2011) is a linear Fredholm equation 

 

𝑦(𝑥) = 𝑥 + 𝑆𝑖𝑛(𝑥) − ∫ 𝑥𝑡𝑦(𝑡) 𝑑𝑡
𝜋/2

0
           (21) 

 

with the exact solution 𝑦 = sin 𝑥. 10 terms are taken in the approximate solution 

 

𝑦̂(𝑥) = ∑ 𝐶𝑛𝑥𝑛10
𝑛=1                        (22) 
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Residual is 

 

𝑅(𝑥) = 𝑦̂(𝑥) − 𝑥 − 𝑆𝑖𝑛(𝑥) + ∫ 𝑥𝑡𝑦̂(𝑡) 𝑑𝑡
𝜋/2

0
                   (23) 

 

Resulting linear system of 10 equations is solved and gives 

 

𝑦(𝑥) = 1.00𝑥 − 5.1 × 10−9𝑥2 − 0.16𝑥3 − 2.03 × 10−7𝑥4 + 0.008𝑥5 −

0.000001087940365171334𝑥6 − 0.0001𝑥7 − 0.000001𝑥8 + 0.000003𝑥9 − 1.7 × 10−7𝑥10

                  (24) 

 

Table 3 shows absolute errors. (Abbasbandy and Shivanian, 2011) gives errors as graphics and their 

method reproduces the exact solution for certain values of their “convergence control parameter”.  

But this is due to the peculiarity of this specific problem having a simple exact solution. 

 

Table 3. Collocation and Exact values for Linear Fredholm equation (21) in (Abbasbandy and Shivanian, 

2011) 

x Exact Collocation Absolute Error 

0.000000 0.000000 0.000000 0.000000 

0.157080 0.156434 0.156434 1.7x10-12 

0.314159 0.309017 0.309017 2.7x10-12 

0.471239 0.453990 0.453990 4.3x10-12 

0.628319 0.587785 0.587785 5.6x10-12 

0.785398 0.707107 0.707107 7.2x10-12 

0.942478 0.809017 0.809017 8.5x10-12 

1.099560 0.891007 0.891007 1.0x10-11 

1.256640 0.951057 0.951057 1.1x10-11 

1.413720 0.987688 0.987688 1.5x10-11 

1.570800 1.000000 1.000000 3.3x10-10 

 

Our last example is a nonlinear Fredholm equation from (Maturi, 2019) 

 

𝑦(𝑥) = 𝐶𝑜𝑠(𝑥) −
𝜋2

48
+

1

12
∫ 𝑡𝑦2(𝑡) 𝑑𝑡

𝜋 2⁄

0
           (25) 

 

With the exact solution 𝑦 = cos 𝑥. The approximate solution is in the form 

 

𝑦̂ = ∑ 𝐶𝑛𝑥𝑛𝑁
𝑛=0                (26) 

 

and calculations were carried out for 𝑁 = 6,7,8,9  and 10.  Table 4 shows the results 
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𝑅(𝑥) = 𝑦̂(𝑥) − 𝐶𝑜𝑠(𝑥) +
𝜋2

48
+ ∫ 𝑡𝑦̂2(𝑡) 𝑑𝑡

𝑥

0
                   (27) 

 

For example, the approximate solution for 𝑁 = 6 is 

 

𝑦(𝑥) = 1.001 − 0.0104𝑥 − 0.475111𝑥2 − 0.030𝑥3 + 0.0627557928𝑥4 − 0.0079𝑥5 

                  (28) 

 

Table 4. Absolute Errors for Nonlinear Fredholm equation (25) in (Maturi, 2019)  

x Ref [16] N=6 N=7 N=8 N=9 N=10 

0.1 6.59x10-4 9.89x10-8 7.23x10-8 1.60x10-7 1.15x10-7 1.63x10-11 

0.2 6.59x10-4 5.04x10-8 3.36x10-8 6.02x10-6 3.81x10-6 4.33x10-10 

0.3 6.59x10-4 2.42x10-8 1.40x10-8 2.12x10-6 1.14x10-6 1.29x10-10 

0.4 6.59x10-4 1.17x10-8 5.78x10-7 1.03x10-6 5.92x10-11 1.05x10-10 

0.5 6.59x10-4 6.94x10-7 3.56x10-7 1.00x10-6 7.29x10-11 1.33x10-10 

0.6 6.59x10-4 6.12x10-7 4.02x10-7 1.21x10-6 9.38x10-11 1.49x10-10 

0.7 6.59x10-4 6.88x10-7 5.24x10-7 1.37x10-6 1.03x10-6 1.51x10-10 

0.8 6.59x10-4 7.93x10-7 6.25x10-7 1.43x10-6 1.03x10-6 1.48x10-10 

0.9 6.59x10-4 8.70x10-7 6.73x10-7 1.41x10-6 9.96x10-11 1.46x10-10 

1.0 6.59x10-4 9.04x10-7 6.71x10-7 1.38x10-6 9.62x10-11 1.57x10-10 

 

The method (called successive approximation) used in (Maturi, 2019) results in a slightly shifted form 

of the exact solution cos x.  Therefore, their error values (column 2 in Table 4) are the same at each 

point.  This is again a peculiarity due to this problem having a simple closed form exact solution.  It 

is seen that the collocation method gives better solutions even for 𝑁 = 6, and it is likely to give good 

results for 𝑁 = 5, 4, may be even 3. 

 

3. Findings and Discussion 

 

Two linear and two nonlinear Volterra and Fredholm integral equations were solved by the 

point collocation method.  These equations were taken from (Wazwaz, 2011; Darania et al., 2006; 

Abbasbandy and Shivanian, 2011; Maturi, 2019). (Abbasbandy and Shivanian, 2011) is a linear and 

(Maturi, 2019). is a nonlinear Fredholm equation, while (Wazwaz, 2011) and (Darania et al., 2006) 

are linear and nonlinear Volterra equations, respectively.  All equations have the solution domain   

0 < 𝑥 < 1, and all of them were constructed to yield simple analytical solutions to facilitate 

comparison with numerical methods. It can be seen that about 5 collocation points give more than 

enough accuracy for all cases.  In (Wazwaz, 2011), linear Volterra equation was solved by Adomian 

Decomposition method; in (Darania et al., 2006) nonlinear problem (Volterra equation) was solved 

by Linearization method; in (Abbasbandy and Shivanian, 2011) linear Fredholm equation was solved 

by Homotopy analysis method, and in (Maturi, 2019). nonlinear equation was solved by Successive 
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approximation method.  Although all of these methods give good results, the present study shows that 

collocation method gives similar results with possibly less work. 

 

4. Conclusions and Recommendations  

 

Using the collocation method, it was possible to find polynomial based solutions to the 

problems studied. Thanks to this method, the solution of a system of equations is all that is needed to 

solve integral equations. If the collocation method's base functions are selected as polynomials, there 

is no requirement to compute numerical integrals in the examined problems. 

This approach significantly reduces the absolute errors in approximate solutions obtained with 

less complex algorithms. The technique is particularly useful to other researchers working in the field 

of numerical analysis, such as integral and integro differential, etc. It allows approximate solutions 

of equations to be found more easily. 

For example; Collocation, viscoelasticity-induced heat modelling (Yang et al., 2023),  

flexoelectricity (Tannhäuser, 2023), vibration of functionally graded structures under water (Xi, et 

al., 2024), thermal buckling of nanocomposite plates (Huang et al., 2023) etc., was used in 

engineering topics. In the field of health, the method was used to examine the new Coronavirus 

(SARS CoV-2) spread model (Yüzbaşı and Yıldırım, 2023). 

Since the equations of motion of plates and shells subject to flow-induced vibration are in 

integro-differential form, the collocation method can be used to solve these problems. In addition, the 

presented collocation method is a reliable method that can be applied to systems of integral and/or 

integro-differential equations. 

In future studies, the following points should be taken into consideration when using the 

collocation method; 

1. Unless the test functions are polynomials, it is necessary to select functions that are easy to 

integrate. 

2. When examining a nonlinear problem, the computation time for calculating approximate 

solution coefficients increases. In order to reduce this time, various numerical analysis methods and 

problem-specific computation algorithms should be developed. 

3. It is essential to examine the contrast between the values of the coefficients obtained from 𝑁 

collocation points and from 𝑁 + 1 collocation points when faced with a problem for which there is 

no analytical or numerical solution. Setting an acceptable criterion for this value will save significant 

time, especially in nonlinear studies. 
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Table 5. List of Symbols 

Symbol Symbol Name 

𝑦(𝑥) single variable function 

𝑦̂(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑁) approximate solution 

𝐿 differential or integral operator 

𝐵 boundary 

𝑅 residual 

𝐶1, 𝐶2, … , 𝐶𝑁    coefficients of the approximate solution 

𝑊𝑛(𝑥)  weight function 

𝛿  the delta function  

𝑥𝑛 collocation points 
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