
CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

195

Individual Differences in Learning Computer Programming:
A Social Cognitive Approach

Sacide Guzin Mazman Akar
Usak University, Turkey

Arif Altun

Hacettepe University, Turkey

Abstract

The purpose of this study is to investigate and conceptualize the ranks of importance of
social cognitive variables on university students’ computer programming performances.
Spatial ability, working memory, self-efficacy, gender, prior knowledge and the universities
students attend were taken as variables to be analyzed. The study has been conducted with
129 2nd year undergraduate students, who have taken Programming Languages-I course
from three universities. Spatial ability has been measured through mental rotation and
spatial visualization tests; working memory has been attained through the measurement of
two sub-dimensions; visual-spatial and verbal working memory. Data were analyzed
through Boosted Regression Trees and Random Forests, which are non-parametric
predictive data mining techniques. The analyses yielded a user model that would predict
students’ computer programming performance based on various social and cognitive
variables. The results yielded that the variables, which contributed to the programming
performance prediction significantly, were spatial orientation skill, spatial memory, mental
orientation, self-efficacy perception and verbal memory with equal importance weights.
Yet, the effect of prior knowledge and gender on programming performance has not been
found to be significant. The importance of ranks of variables and the proportion of predicted
variance of programming performance could be used as guidelines when designing
instruction and developing curriculum.

Keywords: Improving classroom teaching; Computer programming; Social cognitive
approach; Individual differences

Introduction

Programming is a very complex and multi-staged process, where each sub-process requires a
different content knowledge, demands different cognitive processes (Ambrosio, Costa, Almeida,
Franco, & Macedo, 2011) and numerous skills to be addressed in teaching programming
(Howard, 2002; Lehman, Bruning, & Horn, 1983). For instance, reading comprehension, critical
reasoning, systematic thinking, acquiring cognitive components in problem identification,
planning and producing solutions, creativity, intellectual curiosity, mathematical skills,
situational reasoning, procedural thinking, temporary reasoning, analytical and quantitative
reasoning, making use of different sources, being creative and flexible in producing solutions are
just some of those reported skills (Ambrosio et al., 2011; Lau & Yuen, 2011).

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

196

Programming competencies are based on knowledge and skills; knowledge consists of
definitions, facts, language constructs (i.e., syntax) and specific algorithms of programming
knowledge whereas programming skills consists of certain required actions including the
strategies in applying this knowledge (Caspersen, 2007). Individuals perform differently when
they transfer their knowledge of programming knowledge into actions. Yet, whether there is any
individual differences and how those differences play a role in programming remain a salient
question to be explored.

In search of an answer to explore these individual differences, researchers undertake an expert-
novice paradigm. The main underlying premise with expert-novice paradigm is that if we knew
how experts perform and which steps they follow; one can easily observe the differences
between users. Therefore, these differences help educators to make judgments about (i.e.,
(Ambrosio et al., 2011; Mancy & Reid, 2004), and develop instructional guidance in teaching
programming for poor or unsuccessful individuals (i.e., Mason, Seton & Cooper, 2016). Research
about the individuals with high programming performance in general reported that those
individuals are intelligent, intellectually challenging, and able to think analytically (Byrne &
Lyons, 2001). In a recent study, Lin et al. (2016) explored students' cognitive processes while
debugging programs and found that expert (high-performance) students traced programs in a
more logical manner.

Since the 1950s, researchers wanted to determine which variables are more effective in
predicting computer programming performances (i.e., Alspaugh, 1972; Bergersen & Gustafsson,
2011; Merrienboer & Paas, 1990; Rowan, 1957), mainly using the expert-novice paradigm (Lin,
Wu, Hou, Lin, Yang, & Chang, 2016). Among those variables are gender, personality, intelligence,
attitude towards computers, experience, level of comfort, background in mathematics, courses
taken, the playing of games (Charlton & Birkett, 1999; Wilson, 2002), academic background and
psychological factors (Bergin & Reilly, 2006), cognitive, behavioral and attitudinal factors (i.e.,
deRaadt et al., 2005), study habits (Willman, Linden, Kaila, Rajala, Laakso, & Salakoski, 2015)
and cognitive skills (i.e., Bergersen & Gustafsson, 2011). Recently, on the other hand, there is a
common criticism in that individual differences have not been sufficiently quantified (Bergersen
& Gustafsson, 2011), and the problem of construct validity in relation to programming
performance has still not been resolved (Hannay, Arisholm, Engvik, & Sjoberg, 2010).

Learning a programming language is both social and cognitive activity. It is suggested in the
literature that cognitive structures should be analyzed to understand a person’s programming
process (Caspersen, 2007), however the effect of cognitive skills on programming performance
in studies has generally been neglected for a long time (Irons, 1982). Furthermore, students’
understanding of “selves” might be a powerful predictor of their success in programming (Askar
& Davenport, 2009); so, it would not be comprehensive if such social cognitive attributes are left
out in analyses. With regard to instructional context, the measurement related to individuals’
cognitive processes may be used as clues in developing course programs for educational
purposes (Shute, 1991; Lin, et al., 2016). In addition, knowing about the factors which affect
programming performance of individuals may be beneficial in supporting individuals which in
advance come as disadvantaged (Byrne & Lyons, 2001). From this point of view, the purpose of
this study is to explore the importance ranks of some certain cognitive and social variables when
learning a programming language in an undergraduate setting.

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

197

Theoretical Background

Individual Differences: Social and Cognitive Variables

Individuals become different from each other both in terms of their general skills, preferences
of knowledge processing, making inferences from knowledge, and applying them to new
situations with varying learning tasks in real life situations. Different tasks, environments and
outputs require different skills and abilities (Jonassen & Grabowski, 1993). In cases where the
effect of cognitive individual differences are not controlled, it has been stated that the efficiency
of learning processes cannot clearly be put forth (Stalcup, 2005). Cognitive differences in didactic
manipulations and the individual’s performance are emphasized (Ackerman, Beier, & Bowen,
2002) and taking the differences in individuals’ cognitive skills into consideration is important
throughout life (Alwin, 1994).

It has been well accepted that programming performance is not a sum of individual skills alone,
but a hierarchy of skills where the programmer uses any of these skills at any stage (Jenkins,
2002). Furthermore, it has been underlined that cognitive skills such as perception, attention
and memory capacity (Irons, 1982; Jenkins, 2002) and their interaction effects with(in) social
interactions should be taken into consideration. Thus, the differences in cognitive processes are
as a result of many cognitive factors among which are memory capacity, attention spans spatial
skills, perceptions, language acquisition, mental models, problem solving, and reasoning.
Working memory and spatial skills, nevertheless, are the most frequently reported variables
when handling tasks in computer-based environments (Román-González, Pérez-González &
Jiménez-Fernández, 2016; Pak, Rogers, & Fisk, 2006). In the following section, those variables
will be presented briefly and reported based on the literature findings.

Spatial ability. One of the individual differences which relates to programming performance is
spatial ability, which is addressed differently in the forms of verbal, mathematical and reasoning
skills, as a dimension of intelligence and heterogeneous skills clusters (Jones & Burnett, 2008).
Spatial skill is defined in the most general sense as perception, coding, remembrance,
transformation, differentiation of symbolic and non-verbal knowledge. It can be expressed that
spatial characteristics such as location, dimension, size, distance, direction, shape and
movement are cognitive (Lawton, 2010; McGee, 1979).

Spatial ability is closely related to daily life experiences and is needed for many processes such
as interaction with various tools, remembering-depiction of space and direction, mental
visualization, making plans, etc. (Lawton, 2010). Spatial ability is also reported to be one of the
major variables in the literature to determine cognitive differences (Blustein & Satel, 2003;
Vicente & Williges, 1988), and academic success in many areas such as mathematics, physics,
chemistry, engineering, architecture, medicine, graphics, art, computer sciences, etc. and in the
choice of profession related to these areas (McGee, 1979; Wright, Thompson, Ganis,
Newcombe, & Kosslyn, 2008).

Working Memory. Working memory is a system which stores and integrates information during
complex activities (Baddeley, 1992). This cognitive structure has an important role in the
performance of various complex cognitive tasks (Haavisto & Lehto, 2005). Working memory,
with its critical roles such as temporary activation of long-term memory, coordination of
multiple duties, task switching and calling for strategies, organization of capacity to be used or
allocated, emerges as a structure which determines the performance of other cognitive
processes (Daneman & Merikle, 1996; Mancy & Reid, 2004).

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

198

Learning a programming language requires various syntactic (syntax) skills. Code writing, code
reading, knowing unique writing rules for each programming language require individuals to put
their verbal memory process at work. On the other hand, although a written program consists
of small code particles, it requires navigation between the code particles and processes to
achieve the perception of the whole program. The correction of errors, creating a mental model
for the representation of its flow and hierarchy in relation to the program’s algorithm bring
individual’s visual-spatial memory to the fore.

Programming Self-Efficacy. The belief of self-efficacy affects the individual’s choice of efficiency
in being successful when performing a task, the level of the effort spent, and resistance in
dealing with difficulties and most importantly, performance (Bandura, 1977). Rather than
knowledge, skill and previous success of the individual in any context, the individual’s belief in
the results of his own skills and efforts has a very strong effect (Pajares, 1996). In this context,
self-efficacy is defined as the belief of the individual in his skills and even if the individual has
doubts about his performance despite sufficient knowledge and skill, if his motivation is low and
his perception about being successful is low, then it is expressed that the individual may be
unsuccessful (Askar & Davenport, 2009).

Prior knowledge. Previous knowledge or prior experience in a certain field mostly emerge as
having a balancing effect in differences related to individuals’ skills. In other words, if the
individual has sufficient preliminary knowledge or experience, the previous experiences he has
will facilitate the process without feeling the need to use that skill, even if some of his cognitive
skills are low. In related literature, the effect of preliminary knowledge or experience on
programming performance is dealt with either separately or as a single factor (Bergin & Reilly,
2005; deRaadt et al., 2005; Lau & Yuen, 2011).

Gender. One of the variables where the performances of individuals differ in computer-based
environments is gender. Gender is known for having a quite variance in programming research.
Since disciplines such as computer sciences are preferred mostly by males, there is a difference
in the feeling of efficacy in terms of gender other than the individuals’ existing skills and
performances. In addition, there is a prejudiced difference had been reported in terms of males
and females from an external perspective (Byrne & Lyons, 2001; Svedin & Balter , 2016).

The Current Study

When designing a course or program in teaching programming based on individuals’
characteristics, decision makers can tailor the needs of individuals when presenting the content
especially for novices. Therefore, this study aims at contributing to the development of a
personalized model taking the social cognitive factors into account. The variables included
spatial skill, working memory, self-efficacy, gender, university and prior knowledge, which have
been included into the model to identify the relationship between these variables and their
order of importance when developing a predictive model. More specifically, the following
research questions are framed:

1. Is there a relationship between college students' programming performance, and their
self-efficacy, spatial abilities and working memory capacities?

2. How much of the programming performance can be predicted by cognitive abilities,
self-efficacy, prior knowledge, university and gender?

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

199

Method

This study has been modeled on the foundation of Boosted Regression Trees and Random
Forests techniques that are based on mining and are used in non-parametric situations. The
model has firstly been tested with Boosted Regression Trees method and with Random Forest
technique in order to predict the validity of the model.

Participants

The study group consisted of 129 undergraduates attending the Department of Computer
Education and Instructional Technology (CEIT) from three different universities who have taken
the Programming Languages-I course. The Programming Languages-I course is the first course
given in relation to programming in CEIT and is offered in the third semester. Participation to
the study was on a volunteer base. All of the students are in the 18-25 age group, 69 (53.5%) are
female and 60 (46.5%) male, and all have taken the first programming course in their
undergraduate studies. All universities were located in the same city and were state-funded.
They select their students based on a nation-wide university entrance exam and they were
among the top 10% of the overall placement nationwide.

Data Collection Tools

A demographic information form, spatial orientation test, visual-spatial memory test, verbal
memory test, self-efficacy perception scale related to programming and programming
performance grades have been gathered through computerized measurement tools. These
measurement tools are described in detail below.

Spatial Orientation Test. In the study, the computer-based “Spatial Orientation Test” has been
used. This test was originally developed by Kozhevnikov and Hegarty (2001) and revised by
Mazman and Altun (2013). Psychometric properties and norm data for Turkish university
students was presented in detail at Mazman and Altun (2013) study.

Visuo-Spatial Memory / Number Rotation Test. “Visuo-Spatial Memory-Number Rotation Test”
was developed by Blasko, Holliday-Darr, Mace, and Blasko-Drabik, (2004) within the scope of
Visual Evaluation and Instruction Project (VIS) (http://viz.bd.psu.edu), to evaluate, analyze and
develop spatial performances. There are two different sub-tasks in the test, namely rotating
certain letters in the mind and keeping the direction locations of the rotated letters. This test
has been coded in E-Prime by the researchers. Based on the participants’ performances, a visuo-
spatial memory score is generated.

Verbal Working Memory Test. The measurement of the individuals’ verbal working memory has
been carried out by the n-back task software called “Brain workshop” (Hoskinson, 2012). Since
the software is open source code, it has been compiled and made ready to use by the translation
of its interface and sound files (Cevik, 2012). The default beginning of the software is dual 2-
back mode. Here, dual expresses the presentation type of the software – its modality – (sound,
location, color, shape… etc.) and 2-back expresses the n value needed to go back. In the study,

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

200

since only the auditory working memory was measured, only the auditory modality has been
utilized.

Self-efficacy for Programming. The “Programming Self-efficacy Scale”, developed by
Ramalingam and Wiedenbeck (1998) and adapted to Turkish by Altun and Mazman (2012) has
been used to measure perceived self-efficacy related to programming. The scale consists of nine
questions with a seven Likert-type options. It consists of two factors, “complex programming
tasks” and “simple programming tasks”. The minimum score achievable in the scale is 7 and the
maximum is 63. The internal consistency coefficient of the scale has been calculated as 0.928.

Programming Performance. For programming performance, the end of semester grades
individuals received upon completion of the Programming-I course have been evaluated. The
students’ end of year passing grade (as percentages) has been requested from three instructors
at three universities. The end of the year passing grade consists of the midterm and the end of
year final tests.

Demographic Variables. Data about gender, age, university and prior knowledge were gathered
through a demographic information form. Questions about prior knowledge consisted of “if they
had taken any programming course before the university and whether they could write a
program in any programming languages?” If answer is “yes” for either of the questions that
participant is coded as having prior knowledge. If answer is “no” for both of the two questions
that participants is coded as having no prior knowledge.

Data Collection Process

Data has been collected from three different universities. Once the students were informed
about the place and duration of the data collection process, each session was carried out on a
one-to-one basis with each student, each lasting between 25 to 30 minutes. Participants were
informed about that the time was not limited but their reaction time will be logged through their
number of correct answers for scoring. Instruction screens and sample solution video was
presented for a computer-based test, which was followed by practice questions proceeding to
the test questions. Once the computerized tests were finished, the participants were asked to
fill out a self-efficacy scale related to their computer programming experience.

Scoring

The total score received from the self-efficacy scale was calculated for each participant
(maximum: 63 and minimum: 0). Verbal working memory scores were computed by the
software itself as a performance score, which was calculated in terms of reaction times and
accuracy (See Jaeggi, 2010 for detailed information). For the Spatial Orientation, Mental
Rotation, and Visuo-Spatial Memory Tests, two separate scores were calculated; the reaction
time score and accuracy score. Since both the accuracy score and reaction time score present
important information about the difficult level of the task and the skills individuals possess, it is
stated that it would be more significant to weigh and integrate the accuracy and reaction time
scores and produce a single dependent variable (Bruyer & Brysbaert, 2011; Wagenmakers et al.,
2007). Thus, the general efficacy scores suggested by Luft et al. (2013) have been calculated by
the following formula (1).

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

201

Efficacy Score =
Number of correct answers - Number of wrong answers

Average Reaction Time

Data Analysis

Boosted Regression Tree (BRT), which is one of the tree-based methods based on data mining
method, was utilized to analyze the data. According to traditional approaches, the reactions
given by individuals in cognitive systems are generally the common product of the effect of a
series of constructs. Although it is known that the inner dynamics of these constructs are
complex, the interaction between these constructs are limited most of the time as in the most
general example of the assumption, the interaction between the constructs is linear (Carello &
Moreno, 2005). However, cognitive skills cannot always be linear. Therefore, there is a need for
non-linear methods which could help us better define such complex relationships in particular
(Luft et al., 2013). In order to test the validity of BRT findings, the same model has been analyzed
with the Random Forests method.

BRT is a technique which combines the strengths of regression trees (models that relate a
response to their predictors by recursive binary splits) and boosting (an adaptive method for
combining many simple models to give improved predictive performance) (Elith, Leathwick, and
Hastie, 2008). On the contrary of standard regression methods which produce a single
predictive model, BRT fit multiple simple models and combine them for prediction, thus
improving predictive performance (Buston & Elith, 2011). While different algorithms can be used
to build a BRT model, Stochastic Gradient Boosting algorithm (Friedman, 2002) was performed.
Random Forests, on the other hand, is a technique based on model aggregation ideas, for both
classification and regression problems (Genuer, Poggi, & Tuleau-Malot, 2010). Random Forests
are a combination of tree predictors such that each tree depends on the values of a random
vector sampled independently and with the same distribution for all trees in the forests
(Breiman, 2001). Random Forests runs efficiently on large data bases and handle thousands of
input variables without variable deletion giving estimates of what variables are important in the
classification (Breiman & Cutler, 2004).

Findings

The descriptive statistical results achieved from the spatial orientation test, mental rotation test,
visuo-spatial memory test, verbal memory test and self-efficacy perception scale related to the
programming grades taken as programming performance are given in Table 1.

Table 1. Descriptive Statistics Related to Programming Performance, Spatial Orientation,
Working Memory and Self-Efficacy Perception

 X̅ Sd se Kurtosis Skewness

Programming Performance 66.36 18.4 1.62 0.506 -0.790
Self-efficacy 42.12 11.8 1.04 -0.270 -0.562
Spatial Orientation 0.1016 0.0053 0.00047 1.900 -0.955
Mental Rotation 0.0043 0.0032 0.00027 0.509 0.633
Spatial Memory 0.0026 0.0058 0.00051 0.263 -0.142
Verbal Memory 60.64 19.1 1.68 -0.431 -0.246

(1)

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

202

The correlations between the variables has been calculated and presented in Table 2.

Table 2.Correlation Matrix between the Variables

Programming
Performance

Self-efficacy
Spatial
Orientation

Mental
Rotation

Spatial
Memory

Verbal
Memory

Progr. Perform. 1

Self-efficacy 0.406** 1

Spatial Orientation 0.063 0.000 1

Mental Rotation 0.027 0.062 0.130 1

Spatial Memory 0.117 0.091 0.168 0.061 1

Verbal Memory -0.037 0.059 0.089 0.148 0.225* 1

As presented in Table 2, while there is a very low (r<0.5, p<0.05) correlation between
programming performance and self-efficacy perception and spatial memory and verbal
memory, no correlations between the other variables have been significant.

Predicting Programming Performance Model with Tree-based Methods

In order to determine the predictive power of programming performance of a total of eight
variables, the boosted regression analysis technique has been applied. The maximum number
of nodes for each tree has been set to be three as the default, the number of additive terms
(successive number of trees) has been left as 200 as the default and learning rate (shrinkage
parameter) has been selected as 0.1000 as default. The random test data proportion has been
determined as 0.1 (10%). This proportion expresses that 10% of the total observation number
will be used as test data for validity and 90% will be used as education data for modeling. As a
result of the analysis, the most suitable sub-sampling value has been determined as 0.45. Default
values have been set for stop parameters. The analyses yielded the optimal number of trees to
reach at 166. The optimization graphic related to the boosted regression tree basic effect model
is given in Figure 1.

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

203

Figure 1. Optimization Graphic of Boosted Regression Tree Analysis for Programming

Performance (Optimal number of trees, 166)

Figure 1 represents a plot of the prediction error function for the training data over successive
trees and also an independently sampled testing data set at each stage. According to the results
of the analysis, the eight variables together predict 65% of programming performance. In the
determination of the prediction power of each variable separately in the boosted model, the
relative importance weight and variable rank parameters have been analyzed. The importance
weight and variable rank values of the variables that contribute to the prediction of the
dependent variable are given in Table 3.

Table 3. Variable Ranks and Importance Weights Related to the Variables which Explain the
Boosted Regression Tree Analysis

 Variables Importance

Spatial Orientation 100 1

Spatial Memory 97 0.965*

Self-efficacy 93 0.929*

Mental Rotation 88 0.876*

Verbal Memory 83 0.830*

University 81 0.809*

Gender 37 0.365

Prior-knowledge 17 0.169
* = Importance level> 0.4 variables

Numbers in Table 3 indicated that, while the spatial orientation is the variable with the highest
relative importance weight among the analyzed variables in relation to the prediction of
programming performance (importance level= 1), spatial memory takes the second place
(importance level = 0.965), self-efficacy perception the third place (importance level = 0.929),
mental rotation skill takes fourth (importance level = 0.876) and these were followed by mental
memory in fifth (importance level = 0.830) and the university variable in sixth place (importance
level = 0.809). The variables of gender (importance level = 0.365) and prior knowledge
(importance level = 0.169) took the last two places in order of importance in predicting the
programming performance. This finding shows that cognitive skills, self-efficacy perception and

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

204

university variables indicate almost equal importance in the prediction of programming
performance, whereas the importance of gender and prior knowledge are relatively low. The
scatter graph which shows the relationship between observed and predicted values in relation
to programming performance is given in Figure 2.

Figure 2. Correlation between Predicted and Observed Values for Programming Performance

in Boosted Regression Tree Analysis

In order to verify the model created in relation to programming performance, Random Forests
method was applied. For the random trees analysis, the total number of trees has been set to
500. The random test data proportion to be used for verification has been determined as 0.1
(10%) and the most suitable sub-sampling value has been determined as 0.56.

For stop parameters, the following values have been set: “maximum node number: 100,
minimum number of observations possible in the child node: 5, minimum number to stop, which
controls division in a manner where the minimum number indicated in all terminal nodes does
not remain more than the observation five and the maximum level possible in each tree (the
depth of the tree from the root node to the highest node): 10. The total number of trees included
in the analysis is 500 and the maximum tree dimension is 100. In the analysis process, the
average error square graphic which reflects the development process related to the consecutive
average proportion on the test and education data is shown in Figure 3.

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

205

Figure 3. Average Error Squares Estimation Graphic for Programming Performance

(Number of trees, set to 500)

Figure 3 reflects the basic operation in the over fitting prevention of the Random Forest
algorithm. The most simple trees are added to this model, the more the erroneous classification
related to the education set will decrease (StatSoft, 2013). According to the results of the
Random Forests analysis, the eight variables (mental rotation, spatial orientation, visuo-spatial
memory, verbal memory, self-efficacy perception related to programming, prior knowledge, the
university students were attending, and gender) together predicted 60% of programming
performance. In the identification of prediction power of each variable in the boosted model
separately, the relative importance weights and variable rank parameters have been analyzed.
The relative weight of importance of the variables and rank of the variables are given in Table 4.

Table 4. Variable Ranks and Their Weight of Importance in Relation to Random Forests Analysis
Explanatory Variables

 Variable Rank Importance

University 100 1*

Self-efficacy 95 0.952*
Mental Rotation 48 0.483*
Spatial Memory 47 0.474*
Spatial Orientation 47 0.470*
Verbal Memory 42 0.416*
Prior knowledge 22 0.215
Gender 19 0.186

* = Importance level > 0.4 variables

Table 4 presents the predictive values for programming performance, created with the Random
Forests analysis. In this model, importance weight was set to 0.4 or over to estimate the
predictive contribution significantly and the identified variables were determined as university,
self-efficacy perception, mental rotation, spatial memory, spatial orientation and verbal
memory. This finding completely overlaps with the finding achieved as a result of boosted
regression analysis. However, the rank of importance of the variables in accordance with the
boosted regression analysis becomes different. While the variable with the highest relative
importance of weight is university, self-efficacy takes the second place, mental rotation takes
the third, spatial memory takes the fourth place. These are followed by spatial orientation and

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

206

verbal memory in the fifth and sixth places. Prior knowledge and gender as variables take the
last two places in terms of their ranks of importance in predicting programming performance
(See Table 4). The scatter graph shows the relationship between the observed and predicted
values related to programming performance (See, Figure 4).

Figure 0. Correlation between Predicted and Observed Values for Programming Performance

in Random Forests Analysis

The results of the Random Forests analysis have shown similar results to the boosted regression
tree analysis. While the importance weight proportions in dependent variable prediction have
been observed to be very close, the variables which contributed to the model have been
observed to be the same yet in slightly different order. While cognitive skills, self-efficacy
perception and the university students were attending have been identified as significant
variables which contribute to the model, the importance weight of variables of gender and prior
knowledge have been shown to be very low.

Conclusion and Discussion

This study explored the effects of various self-report and cognitive performance data on
undergraduate students’ computer programming performances from individual differences
paradigm. The model included variables related to cognitive skills such as spatial skills (spatial
orientation and mental rotation) and working memory (spatial memory and verbal memory),
together with self-efficacy perception related to programming, gender, prior knowledge and the
university students attend. At first, the correlation matrix had been evaluated, which indicated
a very low (r<0.5, p<0.05) correlation between programming performance and self-efficacy
perception and spatial memory and verbal memory; yet, no correlations between the other
variables had been significant. This finding can be interpreted as the lack of collinearity among
predictor variables, which implies that the order of variables entering the model may not affect
the model leading to bias in relative importance among predictor variables.

First of all, the results showed that no linear relationship was observed among variables. This
finding indicated that the interaction between the selected social cognitive skills of individuals

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

207

and their performance (or success) could be dynamic; in other words, individuals who are good
at particular skills could have been poor at other skills. In fact, Carello and Moreno (2005) also
expressed that the interaction between the response times given by individuals in cognitive
systems as generally being the common product of a series of the effects of components, and
that these components will be complex and a linear assumption will limit us to predict this
interaction. Luft et al. (2013) stated that the relationship between low and high performances
and cognitive skills will not always be linear; therefore, educators are cautioned not to
overgeneralize their beliefs when teaching computer programming.

According to the boosted regression tree analysis results that yielded the 65% of programming
performance, the most important variable has been determined as the spatial orientation skill
in terms of programming performance prediction. On the other hand, spatial memory, mental
orientation, self-efficacy perception and verbal memory have been identified as variables which
contributed to programming performance prediction the most. Yet, the effect of prior
knowledge and gender on programming performance has not been found to be significant. This
finding shows that individuals’ cognitive skills have a very important effect on programming
performance. In order to cross-validate the models, Random Forests has been applied to test it.
According to the result of the Random Forests analysis, while 60% of programming performance
has been predicted, the variables, which contributed significantly to the modeling of
programming, remained the same and their rank of importance slightly changed. When the
calculated results from both techniques are compared, the prediction rate for both techniques
has been found to be similar and although the significant variables have not changed, the rate
predicted with the boosted regression trees technique shows that this technique is acceptable
in the interpretation of findings within the scope of the study. The variables, which contribute
significantly to the prediction of the dependent variable in the model, may be taken as cross-
validation of the other technique.

The study findings show that individuals’ cognitive skills are the determinant variables in
computer programming performances. This finding supports the existing studies which suggest
that programming is an individual activity and thus, programming performance should be
analyzed with a cognitive approach and individuals’ cognitive skills and processes should be
taken into consideration in teaching programming (Ambrosio et al., 2011; Lin et al., 2016). As
Sterling and Brinthaupt (2003) once put forward, certain set of cognitive skills in particular is one
of the most important success criteria within the context of rank of importance. Moreover,
adaptive instructional strategies and media can be designed to help low performance students
(Lin et al., 2016). In educational context, however, students acquire knowledge through a social-
cognitive process, mainly by observing models, with a goal-directed behavior which may or may
not be observable as a result of their internal process (Bandura, 1995). Furthermore, as social
cognitive theory posits, learning most likely occurs if there is a close identification between the
observer and the model and if the observer also has a good deal of self-efficacy. According to
Bandura (1995), self-efficacy is “the belief in one’s capabilities to organize and execute the
courses of action required to manage prospective situations”. Therefore, although technical
skills are given importance in both training the programmers in schools and the selection of
programmers in industry, other socio-cognitive variables, such as goal-directedness, modelling,
and the mode of feedback could also be expanded in further research and be integrated as an
instructional intervention.

The university students attended has emerged as an important variable which contributed to
the prediction of their programming performance. Although the context of the introductory
course to programming are similar in each university, this finding can be explained through

https://en.wikipedia.org/wiki/Self-efficacy

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

208

various factors such as the number of instructors giving the course, evaluation of the course and
grading of the exams. In his study, Mancy (2007) analyzed the relationship between working
memory and programming performance and Mancy (2007) concluded that when the scoring
methods are changed, the correlation coefficient between working memory and programming
performance also changes. Therefore, since scoring method can change in different universities
as different exam questions can be used, the university factor might have played a determinant
role in predicting programming performance. In order to maintain a standard in learning
outcomes, competency based evaluation can be implemented at schools.

Prior knowledge has not emerged as an important variable in modeling the programming
performance in the study. In related literature, different findings exist. In some studies, prior
knowledge emerges as a significant predictor of success related to programming (Wiedenbeck,
2005), whilst in others a relationship between having prior knowledge or not and programming
performance was not found (Jegede, 2009). The reason for the different findings in relation to
prior knowledge may be that data taken as a representation of prior knowledge is different for
each study. In her study, which was conducted to determine factors that promote success in an
introductory college computer science course, Wilson (2002) found that although programming
experience (which included both a previous programming course and self-initiated
programming) was not found to be significant in his full model, when the different types of
computing experiences were compared as predictors some of them were significant. Jegede
(2009) had dealt with prior knowledge in four different dimensions and he found that
programming experience and the number of program writing years are not related to self-
efficacy while the number of programming courses taken and success grades related to
programming courses have a significant relationship with self-efficacy.

Gender was not an important variable in the prediction of programming performance. This
shows that programming performances do not differ in accordance with whether the individuals
are male or female. This finding is in parallel with many studies in related literature (e.g., Byrne
and Lyons, 2001;) Milic (2009) and Pillay & Jugoo (2005) have shown that gender does not have
a significant effect on students’ programming performance. On the other hand, there are also
contrary findings which suggest that gender has an important role in programming performance.
While Lau and Yuen (2011) have put forth findings in favor of males in terms of programming
performance, Yurdugul and Askar (2013) have observed in their study related to the
development of programming knowledge that reach in males is higher and Aşkar and Davenport
(2009) have also found out that self-efficacy perception related to programming in males is once
again significantly higher in males. Beyer, DeKeuster, Walter, Colar and Holcomb (2005) have
shown that gender differences are in question at the beginning of introductory courses on
programming, however this difference decreases towards the end of the semester.

Lastly, some limitations of the study should be noted. First of all, this study is limited to the
participation of 129 undergraduate students in three universities. Although these universities
accept students from similar percentile based on a centralized university exam results; yet,
students’ developmental trajectories might vary during their two years of attendance. The
instructors might also be another intervening effect, which leads to another limitation. Research
with standardized testing on performance might overcome this issue. Another limitation could
be attributed to the statistical procedures. Due to the small sample, one can argue 10 % of the
participants for pre-training might not be enough for the selected sample size. More research is
needed to validate or reject the findings of this study.

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

209

References

Ackerman, P. L., Beier, M. E., & Bowen, K. R. (2002). What we really know about our abilities
and our knowledge. Personality and Individual Differences, 33, 587-605.

Altun, A., & Mazman, S. G. (2012). Programlamaya iliskin oz yeterlilik algisi olceginin Turkce

formumun gecerlilik ve gvvenirlik calismasi Reliability and validity study on Turkish

version of perceived self-efficacy scale for programming. Egitimde ve Psikolojide Olcme
ve Degerlendirme Dergisi, 3(2), 297-308.

Alwin, D. F. (1994). Aging, personality and social change: The stability of individual differences
over the adult life-span. In D. L. Featherman, R. M. Lerner & M. Perlmuter (Eds.),
Lifespan development and behavior. Hillsdale, NJ: Lawrence Erlbaum Associates.

Ambrósio, A. P., Costa, F. M., Almeida, L., Franco, A., & Macedo, J. (2011, October). Identifying
cognitive abilities to improve CS1 outcome. In Frontiers in Education Conference (FIE),
F3G-1.

Askar, P. & Davenport, D. (2009). An investigation of factors related to self-efficacy for Java
programming among engineering students. The Turkish Online Journal of Educational
Technology - TOJET, 8(1), 26-32.

Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological
Review, 84, 191-215.

Bandura, A. (1995). Self-efficacy in changing societies. New York: Cambridge University Press.

Bergersen, G. R. & Gustafsson, J. E. (2011). Programming skill, knowledge, and working
memory among professional software developers from an investment theory
perspective. Journal of Individual Differences, 32(4), 201-209.

Bergin, S. & Reilly, R. (2005). Programming: Factors that Influence Success. ACM SIGCSE
Bulletin., 37(1), 411-415.

Bergin, S. & Reilly, R. (2006). Predicting introductory programming performance: A multi-
institutional multivariate study. Computer Science Education, 16(4), 303-323.

Beyer, S., DeKeuster, M., Walter, K., Colar, M., & Holcomb, C. (2005). Changes in CS students'
sttitudes towards CS over time: An examination of gender differences. SIGCSE Bull.,
37(1), 392-396.

Blasko, D., Holliday-Darr, K., Mace, D., & Blasko-Drabik, H. (2004). VIZ: The visualization
assessment and training Web site. Behavior Research Methods, Instruments, &
Computers, 36(2), 256-260.

Blustein, J. & Satel, J. (2003). Spatial Ability and Information Shape: When do individual
differences matter Technical Report CS-2003-11. Canada: Faculty of Computer Science
Dalhousie University.

Breiman, L., (2001). Random forests. Machine Learning, 45, 5-32.

Breiman, L. & Cutler, A. (2004). Random forests. Retrived on 24 August 2016 from
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm.

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

210

Bruyer, R. & Brysbaert, M. (2011). Combining speed and accuracy in cognitive psychology: Is
the inverse efficiency score (IES) a better dependent variable than the mean reaction
time (RT) and the percentage of errors (PE)? Psychologica Belgica, 51(1), 5-13.

Byrne, P. & Lyons, G. (2001). The effect of student attributes on success in programming.
SIGCSE Bulletin, 33(3), 49-52.

Buston, P. M. & Elith, J. (2011). Determinants of reproductive success in dominant pairs of
clownfish: A boosted regression tree analysis. Journal of Animal Ecology, 80(3), 528-538.

Carello, C. & Moreno, M. A. (2005). Why nonlinear methods. In M. A. Riley and G. C. van Orden
(Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences (pp.1-
25). Retrieved on 24 August 2016 from https://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.
pdf

Caspersen, M. E. (2007). Educating novices in the skills of programming (Unpublished doctoral
dissertation). Aarhus, Denmark: University of Aarhus, Department of Computer Science.

Charlton, J. P. & Birkett, P. E. (1999). An integrative model of factors related to computing
course performance. Journal of Educational Computing Research, 20(3), 237-257.

Chen, C. (2000). Individual differences in a spatial-semantic virtual environment. Journal of the
American Society for Information Science, 51(6), 529-542.

Cevik, V. (2012). The roles of working memory capacity and instructional strategy teaching in
complex cognitive task performances (Unpublished doctoral dissertation). Ankara,
Turkey: Hacettepe University Department of Computer Education and Instructional
Technologies.

Daneman, M. & Merikle, P. M. (1996). Working memory and language comprehension: A
meta-analysis. Psychonomic Bulletin & Review, 3(4), 422-433.

deRaadt, M., Hamilton, M., Lister, R., Tutty, J., Baker, B., Box, I., & Tolhurs, D. (2005, July).
Approaches to learning in computer programming students and their effect on success.
Paper presented at the 28th HERDSA Annual Conference: Higher Education in a Changing
World. Sydney, Australia.

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression
trees. Journal of Animal Ecology, 77(4), 802-813.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data
Analysis, 38(4), 367-378.

Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random
forests. Pattern Recognition Letters, 31(14), 2225-2236.

Hannay, J. E., Arisholm, E., Engvik, H., & Sjøberg, D. I. (2010). Effects of personality on pair
programming. Software Engineering, IEEE transactions on education, 36(1), 61-80.

Haavisto, M.-L., & Lehto, J. E. (2005). Fluid/spatial and crystallized intelligence in relation to
domain-specific working memory: A latent-variable approach. Learning and Individual
Differences, 15(1), 1-21.

Hoskinson, P. (2012). Brain Workshop – a Dual N-Back game. Retrieved on 20 December 2012
from http://brainworkshop.sourceforge.net/.

Howard, E. V. (2002). Can we teach introductory programming as a liberal education course?
Yes, we can. The Proceedings of ISECON (Vol. 19). San Antonio, TX.

https://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

211

Irons, D. M. (1982). Cognitive correlates of programming tasks in novice programmers.
Proceedings of the 1982 Conference on Human Factors in Computing Systems.
Gaithersburg, Maryland, USA.

Jaeggi, S. M. , Buschkuehl, M., Perrig, W. J., & Meier, B. (2010). The concurrent validity of the
N-back task as a working memory measure, Memory, 18(4), 394-412,

Jegede, P. O. (2009). Predictors of Java programming self-efficacy among engineering students.
International Journal of Computer Science and Information Security, 4(1-2). Retrieved on
24 August 2016 from https://arxiv.org/ftp/arxiv/papers/0909/0909.0074.pdf

Jenkins, T. (2002). On the difficulty of learning to program. Paper presented at the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences. Loughborough
University, United Kingdom.

Jonassen, D. H. & Grabowski, B. L. (1993). Handbook of individual differences learning and
instruction. London: Routledge.

Jones, S. J. & Burnett, G. (2008). Spatial ability and learning to program. Human Technology,
4(1), 47-61.

Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial
ability and spatial orientation ability. Memory & Cognition, 29(5), 745-756.

Lau, W. W. F., & Yuen, A. H. K. (2011). Modeling programming performance: Beyond the
influence of learner characteristics. Computers & Education, 571(1), 1202-1213.

Lawton, C. (2010). Gender, spatial abilities, and wayfinding. In J. C. Chrisler & D. R. McCreary
(Eds.), Handbook of gender research in psychology (pp. 317-341). New York: Springer.

Lehman, S., Bruning, R., & Horn, C. (1983). A tool for improving critical thinking in web-based
instruction: Two experimental studies. The CLASS project. The Center for Instructional
Innovation of the University of Nebraska.

Lin, Y. T., Wu, C. C., Hou, T. Y., Lin, Y. C., Yang, F. Y., & Chang, C. H. (2016). Tracking students’
cognitive processes during program debugging—An eye-movement approach. IEEE
transactions on education, 59(3), 175-186.

Luft, C. D. B., Gomes, J. S., Priori, D., & Takase, E. (2013). Using online cognitive tasks to predict
mathematics low school achievement. Computers & Education, 67(0), 219-228.

Mancy, R. & Reid, N. (2004). Aspects of cognitive style and programming. Paper presented at
the 16th Workshop of the Psychology of Programming Interest Group (PPIG 16). Carlow,
Ireland

Mancy, R. (2007). Explicit and implicit learning: The case of computer programming
(Unpublished doctoral dissertation). University of Glasgow, United Kingdom.

Mason, R., Seton, C., & Cooper, G. (2016). Applying cognitive load theory to the redesign of a
conventional database systems course. Computer Science Education, 26(1), 68-87.

Mazman, S. G. & Altun, A. (2013). Individual differences in spatial orientation performances:
An eye tracking study. World Journal on Educational Technology, 5(2), 266-280.

McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental,
genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-918.

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

212

Merrienboer, J. J. G. V., & Paas, F. G. W. C. (1990). Automation and schema acquisition in
learning elementary computer programming: Implications for the design of practice.
Computers in Human Behavior, 6(3), 273-289.

Milic, J. (2009). Predictors of success in solving programming tasks. . The Teaching of
Mathematics, 12(1), 25-31.

Pak, R., Rogers, W. A., & Fisk, A. D. (2006). Spatial ability subfactors and their influences on a
computer-based information search task. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 48(1), 154-165.

Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of Educational Research,
66(4), 543-578.

Pillay, N. & Jugoo, V. R. (2005). An investigation into student characteristics affecting novice
programming performance. SIGCSE Bulletin, 37(4), 107-110.

Ramalingam, V. & Wiedenbeck, S. (1998). Development and validation of scores on a computer
programming self-efficacy scale and group analyses of novice programmer self-efficacy.
Journal of Educational Computing Research, 19(4), 367-381.

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2016). Which cognitive
abilities underlie computational thinking? Criterion validity of the computational
thinking test. Computers in Human Behavior, 72, 678-691.

Rowan, T. C. (1957). Psychological tests and selection of computer programmers. Journal of the
ACM, 4(3), 348-353.

Shute, V. J. (1991). Who is likely to acquire programming skills? Journal of Educational
Computing Research, 7(1), 1-24.

Stalcup, K. A. A. (2005). Multimedia learning: Cognitive individual differences and display
design techniques predict transfer learning with multimedia learning modules.
(Unpublished doctoral dissertation). Graduate Faculty of Texas Tech University.

Sterling, G. D. & Brinthaupt, T. M. (2003). Faculty and industry conceptions of successful
computer programmers. Journal of Information Systems Education, 14(4), 417-424.

Svedin, M. & Balter, O. (2016). Gender neutrality improved completion rate for all. Computer
Science Education, 26(2-3), 192-207.

Vicente, K. J. & Williges, R. C. (1988). Accommodating individual differences in searching a
hierarchical file system. International Journal of Man-Machine Studies, 29(6), 647-668.

Wagenmakers, E.-J., Maas, H. J., & Grasman, R. P. P. (2007). An EZ-diffusion model for
response time and accuracy. Psychonomic Bulletin & Review, 14(1), 3-22.

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to program.
Paper presented at the First International Workshop on Computing Education Research.
Seattle, WA, USA.

Willman, S., Lindén, R., Kaila, E., Rajala, T., Laakso, M. J., & Salakoski, T. (2015). On study habits
on an introductory course on programming. Computer Science Education, 25(3), 276-
291.

Wilson, B. C. (2002). A study of factors promoting success in computer science including
gender differences. Computer Science Education, 12(1-2), 141-164.

CONTEMPORARY EDUCATIONAL TECHNOLOGY, 2017, 8(3), 195-213

213

Yurdugul, H. & Askar, P. (2013). Learning programming, problem solving and gender: A
longitudinal study. Procedia - Social and Behavioral Sciences, 83(0), 605-610.

Wright, R., Thompson, W., Ganis, G., Newcombe, N., & Kosslyn, S. (2008). Training generalized
spatial skills. Psychonomic Bulletin & Review, 15(4), 763-771.

Correspondence: Arif Altun, Professor, Department of Computer Education and Instructional
Technologies, Faculty of Education, Hacettepe University, Beytepe, Ankara, Turkey.

