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Abstract 

The purpose of this study is to investigate and conceptualize the ranks of importance of 
social cognitive variables on university students’ computer programming performances. 
Spatial ability, working memory, self-efficacy, gender, prior knowledge and the universities 
students attend were taken as variables to be analyzed. The study has been conducted with 
129 2nd year undergraduate students, who have taken Programming Languages-I course 
from three universities. Spatial ability has been measured through mental rotation and 
spatial visualization tests; working memory has been attained through the measurement of 
two sub-dimensions; visual-spatial and verbal working memory. Data were analyzed 
through Boosted Regression Trees and Random Forests, which are non-parametric 
predictive data mining techniques. The analyses yielded a user model that would predict 
students’ computer programming performance based on various social and cognitive 
variables. The results yielded that the variables, which contributed to the programming 
performance prediction significantly, were spatial orientation skill, spatial memory, mental 
orientation, self-efficacy perception and verbal memory with equal importance weights. 
Yet, the effect of prior knowledge and gender on programming performance has not been 
found to be significant. The importance of ranks of variables and the proportion of predicted 
variance of programming performance could be used as guidelines when designing 
instruction and developing curriculum. 
 
Keywords: Improving classroom teaching; Computer programming; Social cognitive 
approach; Individual differences  
 
 

Introduction 
 
Programming is a very complex and multi-staged process, where each sub-process requires a 
different content knowledge, demands different cognitive processes (Ambrosio, Costa, Almeida, 
Franco, & Macedo, 2011) and numerous skills to be addressed in teaching programming 
(Howard, 2002; Lehman, Bruning, & Horn, 1983). For instance, reading comprehension, critical 
reasoning, systematic thinking, acquiring cognitive components in problem identification, 
planning and producing solutions, creativity, intellectual curiosity, mathematical skills, 
situational reasoning, procedural thinking, temporary reasoning, analytical and quantitative 
reasoning, making use of different sources, being creative and flexible in producing solutions are 
just some of those reported skills (Ambrosio et al., 2011; Lau & Yuen, 2011). 
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Programming competencies are based on knowledge and skills; knowledge consists of 
definitions, facts, language constructs (i.e., syntax) and specific algorithms of programming 
knowledge whereas programming skills consists of certain required actions including the 
strategies in applying this knowledge (Caspersen, 2007). Individuals perform differently when 
they transfer their knowledge of programming knowledge into actions. Yet, whether there is any 
individual differences and how those differences play a role in programming remain a salient 
question to be explored. 
 
In search of an answer to explore these individual differences, researchers undertake an expert-
novice paradigm. The main underlying premise with expert-novice paradigm is that if we knew 
how experts perform and which steps they follow; one can easily observe the differences 
between users. Therefore, these differences help educators to make judgments about (i.e., 
(Ambrosio et al., 2011; Mancy & Reid, 2004), and develop instructional guidance in teaching 
programming for poor or unsuccessful individuals (i.e., Mason, Seton & Cooper, 2016). Research 
about the individuals with high programming performance in general reported that those 
individuals are intelligent, intellectually challenging, and able to think analytically (Byrne & 
Lyons, 2001). In a recent study, Lin et al. (2016) explored students' cognitive processes while 
debugging programs and found that expert (high-performance) students traced programs in a 
more logical manner.  
 
Since the 1950s, researchers wanted to determine which variables are more effective in 
predicting computer programming performances (i.e., Alspaugh, 1972; Bergersen & Gustafsson, 
2011; Merrienboer & Paas, 1990; Rowan, 1957), mainly using the expert-novice paradigm (Lin, 
Wu, Hou, Lin, Yang, & Chang, 2016). Among those variables are gender, personality, intelligence, 
attitude towards computers, experience, level of comfort, background in mathematics, courses 
taken, the playing of games (Charlton & Birkett, 1999; Wilson, 2002), academic background and 
psychological factors (Bergin & Reilly, 2006), cognitive, behavioral and attitudinal factors (i.e., 
deRaadt et al., 2005), study habits (Willman,  Linden,  Kaila, Rajala, Laakso, & Salakoski, 2015) 
and cognitive skills (i.e., Bergersen & Gustafsson, 2011). Recently, on the other hand, there is a 
common criticism in that individual differences have not been sufficiently quantified (Bergersen 
& Gustafsson, 2011), and the problem of construct validity in relation to programming 
performance has still not been resolved (Hannay, Arisholm, Engvik, & Sjoberg, 2010).  
 
Learning a programming language is both social and cognitive activity. It is suggested in the 
literature that cognitive structures should be analyzed to understand a person’s programming 
process (Caspersen, 2007), however the effect of cognitive skills on programming performance 
in studies has generally been neglected for a long time (Irons, 1982). Furthermore, students’ 
understanding of “selves” might be a powerful predictor of their success in programming (Askar 
& Davenport, 2009); so, it would not be comprehensive if such social cognitive attributes are left 
out in analyses. With regard to instructional context, the measurement related to individuals’ 
cognitive processes may be used as clues in developing course programs for educational 
purposes (Shute, 1991; Lin, et al., 2016). In addition, knowing about the factors which affect 
programming performance of individuals may be beneficial in supporting individuals which in 
advance come as disadvantaged (Byrne & Lyons, 2001). From this point of view, the purpose of 
this study is to explore the importance ranks of some certain cognitive and social variables when 
learning a programming language in an undergraduate setting. 
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Theoretical Background 
 
Individual Differences: Social and Cognitive Variables 
 

Individuals become different from each other both in terms of their general skills, preferences 
of knowledge processing, making inferences from knowledge, and applying them to new 
situations with varying learning tasks in real life situations. Different tasks, environments and 
outputs require different skills and abilities (Jonassen & Grabowski, 1993). In cases where the 
effect of cognitive individual differences are not controlled, it has been stated that the efficiency 
of learning processes cannot clearly be put forth (Stalcup, 2005). Cognitive differences in didactic 
manipulations and the individual’s performance are emphasized (Ackerman, Beier, & Bowen, 
2002) and taking the differences in individuals’ cognitive skills into consideration is important 
throughout life (Alwin, 1994).  
 
It has been well accepted that programming performance is not a sum of individual skills alone, 
but a hierarchy of skills where the programmer uses any of these skills at any stage (Jenkins, 
2002). Furthermore, it has been underlined that cognitive skills such as perception, attention 
and memory capacity (Irons, 1982; Jenkins, 2002) and their interaction effects with(in) social 
interactions should be taken into consideration. Thus, the differences in cognitive processes are 
as a result of many cognitive factors among which are memory capacity, attention spans spatial 
skills, perceptions, language acquisition, mental models, problem solving, and reasoning. 
Working memory and spatial skills, nevertheless, are the most frequently reported variables 
when handling tasks in computer-based environments (Román-González, Pérez-González & 
Jiménez-Fernández, 2016; Pak, Rogers, & Fisk, 2006). In the following section, those variables 
will be presented briefly and reported based on the literature findings. 
 
Spatial ability. One of the individual differences which relates to programming performance is 
spatial ability, which is addressed differently in the forms of verbal, mathematical and reasoning 
skills, as a dimension of intelligence and heterogeneous skills clusters (Jones & Burnett, 2008). 
Spatial skill is defined in the most general sense as perception, coding, remembrance, 
transformation, differentiation of symbolic and non-verbal knowledge. It can be expressed that 
spatial characteristics such as location, dimension, size, distance, direction, shape and 
movement are cognitive (Lawton, 2010; McGee, 1979).  
 
Spatial ability is closely related to daily life experiences and is needed for many processes such 
as interaction with various tools, remembering-depiction of space and direction, mental 
visualization, making plans, etc. (Lawton, 2010). Spatial ability is also reported to be one of the 
major variables in the literature to determine cognitive differences (Blustein & Satel, 2003; 
Vicente & Williges, 1988), and academic success in many areas such as mathematics, physics, 
chemistry, engineering, architecture, medicine, graphics, art, computer sciences, etc. and in the 
choice of profession related to these areas (McGee, 1979; Wright, Thompson, Ganis, 
Newcombe, & Kosslyn, 2008).  
 
Working Memory. Working memory is a system which stores and integrates information during 
complex activities (Baddeley, 1992). This cognitive structure has an important role in the 
performance of various complex cognitive tasks (Haavisto & Lehto, 2005). Working memory, 
with its critical roles such as temporary activation of long-term memory, coordination of 
multiple duties, task switching and calling for strategies, organization of capacity to be used or 
allocated, emerges as a structure which determines the performance of other cognitive 
processes (Daneman & Merikle, 1996; Mancy & Reid, 2004). 
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Learning a programming language requires various syntactic (syntax) skills. Code writing, code 
reading, knowing unique writing rules for each programming language require individuals to put 
their verbal memory process at work. On the other hand, although a written program consists 
of small code particles, it requires navigation between the code particles and processes to 
achieve the perception of the whole program. The correction of errors, creating a mental model 
for the representation of its flow and hierarchy in relation to the program’s algorithm bring 
individual’s visual-spatial memory to the fore. 
 
Programming Self-Efficacy. The belief of self-efficacy affects the individual’s choice of efficiency 
in being successful when performing a task, the level of the effort spent, and resistance in 
dealing with difficulties and most importantly, performance (Bandura, 1977). Rather than 
knowledge, skill and previous success of the individual in any context, the individual’s belief in 
the results of his own skills and efforts has a very strong effect (Pajares, 1996). In this context, 
self-efficacy is defined as the belief of the individual in his skills and even if the individual has 
doubts about his performance despite sufficient knowledge and skill, if his motivation is low and 
his perception about being successful is low, then it is expressed that the individual may be 
unsuccessful (Askar & Davenport, 2009).  
 
Prior knowledge. Previous knowledge or prior experience in a certain field mostly emerge as 
having a balancing effect in differences related to individuals’ skills. In other words, if the 
individual has sufficient preliminary knowledge or experience, the previous experiences he has 
will facilitate the process without feeling the need to use that skill, even if some of his cognitive 
skills are low. In related literature, the effect of preliminary knowledge or experience on 
programming performance is dealt with either separately or as a single factor (Bergin & Reilly, 
2005; deRaadt et al., 2005; Lau & Yuen, 2011). 
 
Gender. One of the variables where the performances of individuals differ in computer-based 
environments is gender. Gender is known for having a quite variance in programming research. 
Since disciplines such as computer sciences are preferred mostly by males, there is a difference 
in the feeling of efficacy in terms of gender other than the individuals’ existing skills and 
performances. In addition, there is a prejudiced difference had been reported in terms of males 
and females from an external perspective (Byrne & Lyons, 2001; Svedin & Balter , 2016). 
 
 

The Current Study 
 

When designing a course or program in teaching programming based on individuals’ 
characteristics, decision makers can tailor the needs of individuals when presenting the content 
especially for novices. Therefore, this study aims at contributing to the development of a 
personalized model taking the social cognitive factors into account. The variables included 
spatial skill, working memory, self-efficacy, gender, university and prior knowledge, which have 
been included into the model to identify the relationship between these variables and their 
order of importance when developing a predictive model. More specifically, the following 
research questions are framed: 

1. Is there a relationship between college students' programming performance, and their 
self-efficacy, spatial abilities and working memory capacities? 

2. How much of the programming performance can be predicted by cognitive abilities, 
self-efficacy, prior knowledge, university and gender?   
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Method 
 
This study has been modeled on the foundation of Boosted Regression Trees and Random 
Forests techniques that are based on mining and are used in non-parametric situations. The 
model has firstly been tested with Boosted Regression Trees method and with Random Forest 
technique in order to predict the validity of the model. 
 
  
Participants 
 

The study group consisted of 129 undergraduates attending the Department of Computer 
Education and Instructional Technology (CEIT) from three different universities who have taken 
the Programming Languages-I course. The Programming Languages-I course is the first course 
given in relation to programming in CEIT and is offered in the third semester. Participation to 
the study was on a volunteer base. All of the students are in the 18-25 age group, 69 (53.5%) are 
female and 60 (46.5%) male, and all have taken the first programming course in their 
undergraduate studies. All universities were located in the same city and were state-funded. 
They select their students based on a nation-wide university entrance exam and they were 
among the top 10% of the overall placement nationwide.  
 
 

Data Collection Tools 
 

A demographic information form, spatial orientation test, visual-spatial memory test, verbal 
memory test, self-efficacy perception scale related to programming and programming 
performance grades have been gathered through computerized measurement tools. These 
measurement tools are described in detail below. 
 

Spatial Orientation Test. In the study, the computer-based “Spatial Orientation Test” has been 
used. This test was originally developed by Kozhevnikov and Hegarty (2001) and revised by 
Mazman and Altun (2013). Psychometric properties and norm data for Turkish university 
students was presented in detail at Mazman and Altun (2013) study.  
 
Visuo-Spatial Memory / Number Rotation Test. “Visuo-Spatial Memory-Number Rotation Test” 
was developed by Blasko, Holliday-Darr, Mace, and Blasko-Drabik, (2004) within the scope of 
Visual Evaluation and Instruction Project (VIS) (http://viz.bd.psu.edu), to evaluate, analyze and 
develop spatial performances. There are two different sub-tasks in the test, namely rotating 
certain letters in the mind and keeping the direction locations of the rotated letters. This test 
has been coded in E-Prime by the researchers. Based on the participants’ performances, a visuo-
spatial memory score is generated.  
 
Verbal Working Memory Test. The measurement of the individuals’ verbal working memory has 
been carried out by the n-back task software called “Brain workshop” (Hoskinson, 2012). Since 
the software is open source code, it has been compiled and made ready to use by the translation 
of its interface and sound files (Cevik, 2012). The default beginning of the software is dual 2-
back mode. Here, dual expresses the presentation type of the software – its modality – (sound, 
location, color, shape… etc.) and 2-back expresses the n value needed to go back. In the study, 
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since only the auditory working memory was measured, only the auditory modality has been 
utilized. 
 
Self-efficacy for Programming. The “Programming Self-efficacy Scale”, developed by 
Ramalingam and Wiedenbeck (1998) and adapted to Turkish by Altun and Mazman (2012) has 
been used to measure perceived self-efficacy related to programming. The scale consists of nine 
questions with a seven Likert-type options. It consists of two factors, “complex programming 
tasks” and “simple programming tasks”. The minimum score achievable in the scale is 7 and the 
maximum is 63. The internal consistency coefficient of the scale has been calculated as 0.928. 
 
Programming Performance. For programming performance, the end of semester grades 
individuals received upon completion of the Programming-I course have been evaluated. The 
students’ end of year passing grade (as percentages) has been requested from three instructors 
at three universities. The end of the year passing grade consists of the midterm and the end of 
year final tests.  
 
Demographic Variables. Data about gender, age, university and prior knowledge were gathered 
through a demographic information form. Questions about prior knowledge consisted of “if they 
had taken any programming course before the university and whether they could write a 
program in any programming languages?” If answer is “yes” for either of the questions that 
participant is coded as having prior knowledge. If answer is “no” for both of the two questions 
that participants is coded as having no prior knowledge. 
 

 
Data Collection Process 
 
Data has been collected from three different universities. Once the students were informed 
about the place and duration of the data collection process, each session was carried out on a 
one-to-one basis with each student, each lasting between 25 to 30 minutes. Participants were 
informed about that the time was not limited but their reaction time will be logged through their 
number of correct answers for scoring. Instruction screens and sample solution video was 
presented for a computer-based test, which was followed by practice questions proceeding to 
the test questions. Once the computerized tests were finished, the participants were asked to 
fill out a self-efficacy scale related to their computer programming experience.  
 
 
Scoring  
 

The total score received from the self-efficacy scale was calculated for each participant 
(maximum: 63 and minimum: 0). Verbal working memory scores were computed by the 
software itself as a performance score, which was calculated in terms of reaction times and 
accuracy (See Jaeggi, 2010 for detailed information). For the Spatial Orientation, Mental 
Rotation, and Visuo-Spatial Memory Tests, two separate scores were calculated; the reaction 
time score and accuracy score. Since both the accuracy score and reaction time score present 
important information about the difficult level of the task and the skills individuals possess, it is 
stated that it would be more significant to weigh and integrate the accuracy and reaction time 
scores and produce a single dependent variable (Bruyer & Brysbaert, 2011; Wagenmakers et al., 
2007). Thus, the general efficacy scores suggested by Luft et al. (2013) have been calculated by 
the following formula (1).  
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Efficacy Score  = 
Number of correct answers - Number of wrong answers 

Average Reaction Time 
 
 

Data Analysis 
 
Boosted Regression Tree (BRT), which is one of the tree-based methods based on data mining 
method, was utilized to analyze the data. According to traditional approaches, the reactions 
given by individuals in cognitive systems are generally the common product of the effect of a 
series of constructs. Although it is known that the inner dynamics of these constructs are 
complex, the interaction between these constructs are limited most of the time as in the most 
general example of the assumption, the interaction between the constructs is linear (Carello & 
Moreno, 2005). However, cognitive skills cannot always be linear. Therefore, there is a need for 
non-linear methods which could help us better define such complex relationships in particular 
(Luft et al., 2013). In order to test the validity of BRT findings, the same model has been analyzed 
with the Random Forests method. 
 
BRT is a technique which combines the strengths of regression trees (models that relate a 
response to their predictors by recursive binary splits) and boosting (an adaptive method for 
combining many simple models to give improved predictive performance) (Elith, Leathwick, and 
Hastie, 2008).  On the contrary of standard regression methods which produce a single 
predictive model, BRT fit multiple simple models and combine them for prediction, thus 
improving predictive performance (Buston & Elith, 2011). While different algorithms can be used 
to build a BRT model, Stochastic Gradient Boosting algorithm (Friedman, 2002) was performed.  
Random Forests, on the other hand, is a technique based on model aggregation ideas, for both 
classification and regression problems (Genuer, Poggi, & Tuleau-Malot, 2010). Random Forests 
are a combination of tree predictors such that each tree depends on the values of a random 
vector sampled independently and with the same distribution for all trees in the forests 
(Breiman, 2001). Random Forests runs efficiently on large data bases and handle thousands of 
input variables without variable deletion giving estimates of what variables are important in the 
classification (Breiman & Cutler, 2004). 
 
 

Findings 
 
The descriptive statistical results achieved from the spatial orientation test, mental rotation test, 
visuo-spatial memory test, verbal memory test and self-efficacy perception scale related to the 
programming grades taken as programming performance are given in Table 1.  
 
Table 1. Descriptive Statistics Related to Programming Performance, Spatial Orientation, 
Working Memory and Self-Efficacy Perception 
 

 X̅ Sd se Kurtosis Skewness 

Programming Performance 66.36 18.4 1.62 0.506 -0.790 
Self-efficacy 42.12 11.8 1.04 -0.270 -0.562 
Spatial Orientation 0.1016 0.0053 0.00047 1.900 -0.955 
Mental Rotation 0.0043 0.0032 0.00027 0.509 0.633 
Spatial Memory 0.0026 0.0058 0.00051 0.263 -0.142 
Verbal Memory 60.64 19.1 1.68 -0.431 -0.246 

(1) 
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The correlations between the variables has been calculated and presented in Table 2. 
 
Table 2.Correlation Matrix between the Variables 

 
Programming 
Performance 

Self-efficacy 
Spatial 
Orientation 

Mental 
Rotation 

Spatial 
Memory 

Verbal 
Memory 

Progr. Perform. 1      

Self-efficacy 0.406** 1     

Spatial Orientation 0.063 0.000 1    

Mental Rotation 0.027 0.062 0.130 1   

Spatial Memory 0.117 0.091 0.168 0.061 1  

Verbal Memory -0.037 0.059 0.089 0.148 0.225* 1 

 
As presented in Table 2, while there is a very low (r<0.5, p<0.05) correlation between 
programming performance and self-efficacy perception and spatial memory and verbal 
memory, no correlations between the other variables have been significant.  
 
 
Predicting Programming Performance Model with Tree-based Methods 
 
In order to determine the predictive power of programming performance of a total of eight 
variables, the boosted regression analysis technique has been applied. The maximum number 
of nodes for each tree has been set to be three as the default, the number of additive terms 
(successive number of trees) has been left as 200 as the default and learning rate (shrinkage 
parameter) has been selected as 0.1000 as default. The random test data proportion has been 
determined as 0.1 (10%). This proportion expresses that 10% of the total observation number 
will be used as test data for validity and 90% will be used as education data for modeling. As a 
result of the analysis, the most suitable sub-sampling value has been determined as 0.45. Default 
values have been set for stop parameters. The analyses yielded the optimal number of trees to 
reach at 166. The optimization graphic related to the boosted regression tree basic effect model 
is given in Figure 1.  
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Figure 1. Optimization Graphic of Boosted Regression Tree Analysis for Programming 

Performance (Optimal number of trees, 166) 
 
Figure 1 represents a plot of the prediction error function for the training data over successive 
trees and also an independently sampled testing data set at each stage. According to the results 
of the analysis, the eight variables together predict 65% of programming performance. In the 
determination of the prediction power of each variable separately in the boosted model, the 
relative importance weight and variable rank parameters have been analyzed. The importance 
weight and variable rank values of the variables that contribute to the prediction of the 
dependent variable are given in Table 3. 
 
Table 3. Variable Ranks and Importance Weights Related to the Variables which Explain the 
Boosted Regression Tree Analysis 
 

 Variables Importance 

Spatial Orientation 100 1 

Spatial Memory 97 0.965* 

Self-efficacy 93 0.929* 

Mental Rotation 88 0.876* 

Verbal Memory 83 0.830* 

University 81 0.809* 

Gender 37 0.365 

Prior-knowledge 17 0.169 
* = Importance level> 0.4 variables   

 
Numbers in Table 3 indicated that, while the spatial orientation is the variable with the highest 
relative importance weight among the analyzed variables in relation to the prediction of 
programming performance (importance level= 1), spatial memory takes the second place 
(importance level = 0.965), self-efficacy perception the third place (importance level = 0.929), 
mental rotation skill takes fourth (importance level = 0.876) and these were followed by mental 
memory in fifth (importance level = 0.830) and the university variable in sixth place (importance 
level = 0.809). The variables of gender (importance level = 0.365) and prior knowledge 
(importance level = 0.169) took the last two places in order of importance in predicting the 
programming performance. This finding shows that cognitive skills, self-efficacy perception and 
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university variables indicate almost equal importance in the prediction of programming 
performance, whereas the importance of gender and prior knowledge are relatively low. The 
scatter graph which shows the relationship between observed and predicted values in relation 
to programming performance is given in Figure 2.  
 

 
Figure 2. Correlation between Predicted and Observed Values for Programming Performance 

in Boosted Regression Tree Analysis  
 
In order to verify the model created in relation to programming performance, Random Forests 
method was applied. For the random trees analysis, the total number of trees has been set to 
500. The random test data proportion to be used for verification has been determined as 0.1 
(10%) and the most suitable sub-sampling value has been determined as 0.56. 
 
For stop parameters, the following values have been set: “maximum node number: 100, 
minimum number of observations possible in the child node: 5, minimum number to stop, which 
controls division in a manner where the minimum number indicated in all terminal nodes does 
not remain more than the observation five and the maximum level possible in each tree (the 
depth of the tree from the root node to the highest node): 10. The total number of trees included 
in the analysis is 500 and the maximum tree dimension is 100. In the analysis process, the 
average error square graphic which reflects the development process related to the consecutive 
average proportion on the test and education data is shown in Figure 3. 
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Figure 3. Average Error Squares Estimation Graphic for Programming Performance  

(Number of trees, set to 500) 
 
Figure 3 reflects the basic operation in the over fitting prevention of the Random Forest 
algorithm. The most simple trees are added to this model, the more the erroneous classification 
related to the education set will decrease (StatSoft, 2013). According to the results of the 
Random Forests analysis, the eight variables (mental rotation, spatial orientation, visuo-spatial 
memory, verbal memory, self-efficacy perception related to programming, prior knowledge, the 
university students were attending, and gender) together predicted 60% of programming 
performance. In the identification of prediction power of each variable in the boosted model 
separately, the relative importance weights and variable rank parameters have been analyzed. 
The relative weight of importance of the variables and rank of the variables are given in Table 4.  
 
Table 4. Variable Ranks and Their Weight of Importance in Relation to Random Forests Analysis 
Explanatory Variables 
 

 Variable Rank Importance 

University  100 1* 

Self-efficacy  95 0.952* 
Mental Rotation  48 0.483* 
Spatial Memory 47 0.474* 
Spatial Orientation 47 0.470* 
Verbal Memory  42 0.416* 
Prior knowledge   22 0.215 
Gender 19 0.186 

* = Importance level > 0.4 variables 
 
Table 4 presents the predictive values for programming performance, created with the Random 
Forests analysis. In this model, importance weight was set to 0.4 or over to estimate the 
predictive contribution significantly and the identified variables were determined as university, 
self-efficacy perception, mental rotation, spatial memory, spatial orientation and verbal 
memory. This finding completely overlaps with the finding achieved as a result of boosted 
regression analysis. However, the rank of importance of the variables in accordance with the 
boosted regression analysis becomes different. While the variable with the highest relative 
importance of weight is university, self-efficacy takes the second place, mental rotation takes 
the third, spatial memory takes the fourth place. These are followed by spatial orientation and 
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verbal memory in the fifth and sixth places. Prior knowledge and gender as variables take the 
last two places in terms of their ranks of importance in predicting programming performance 
(See Table 4). The scatter graph shows the relationship between the observed and predicted 
values related to programming performance (See, Figure 4).  
 

 
Figure 0. Correlation between Predicted and Observed Values for Programming Performance 

in Random Forests Analysis 
 
The results of the Random Forests analysis have shown similar results to the boosted regression 
tree analysis. While the importance weight proportions in dependent variable prediction have 
been observed to be very close, the variables which contributed to the model have been 
observed to be the same yet in slightly different order. While cognitive skills, self-efficacy 
perception and the university students were attending have been identified as significant 
variables which contribute to the model, the importance weight of variables of gender and prior 
knowledge have been shown to be very low.  
 
 

Conclusion and Discussion 
 
This study explored the effects of various self-report and cognitive performance data on 
undergraduate students’ computer programming performances from individual differences 
paradigm. The model included variables related to cognitive skills such as spatial skills (spatial 
orientation and mental rotation) and working memory (spatial memory and verbal memory), 
together with self-efficacy perception related to programming, gender, prior knowledge and the 
university students attend. At first, the correlation matrix had been evaluated, which indicated 
a very low (r<0.5, p<0.05) correlation between programming performance and self-efficacy 
perception and spatial memory and verbal memory; yet, no correlations between the other 
variables had been significant. This finding can be interpreted as the lack of collinearity among 
predictor variables, which implies that the order of variables entering the model may not affect 
the model leading to bias in relative importance among predictor variables.  
 
First of all, the results showed that no linear relationship was observed among variables. This 
finding indicated that the interaction between the selected social cognitive skills of individuals 
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and their performance (or success) could be dynamic; in other words, individuals who are good 
at particular skills could have been poor at other skills. In fact, Carello and Moreno (2005) also 
expressed that the interaction between the response times given by individuals in cognitive 
systems as generally being the common product of a series of the effects of components, and 
that these components will be complex and a linear assumption will limit us to predict this 
interaction. Luft et al. (2013) stated that the relationship between low and high performances 
and cognitive skills will not always be linear; therefore, educators are cautioned not to 
overgeneralize their beliefs when teaching computer programming.  
 
According to the boosted regression tree analysis results that yielded the 65% of programming 
performance, the most important variable has been determined as the spatial orientation skill 
in terms of programming performance prediction. On the other hand, spatial memory, mental 
orientation, self-efficacy perception and verbal memory have been identified as variables which 
contributed to programming performance prediction the most. Yet, the effect of prior 
knowledge and gender on programming performance has not been found to be significant. This 
finding shows that individuals’ cognitive skills have a very important effect on programming 
performance. In order to cross-validate the models, Random Forests has been applied to test it. 
According to the result of the Random Forests analysis, while 60% of programming performance 
has been predicted, the variables, which contributed significantly to the modeling of 
programming, remained the same and their rank of importance slightly changed. When the 
calculated results from both techniques are compared, the prediction rate for both techniques 
has been found to be similar and although the significant variables have not changed, the rate 
predicted with the boosted regression trees technique shows that this technique is acceptable 
in the interpretation of findings within the scope of the study. The variables, which contribute 
significantly to the prediction of the dependent variable in the model, may be taken as cross-
validation of the other technique.  
 
The study findings show that individuals’ cognitive skills are the determinant variables in 
computer programming performances. This finding supports the existing studies which suggest 
that programming is an individual activity and thus, programming performance should be 
analyzed with a cognitive approach and individuals’ cognitive skills and processes should be 
taken into consideration in teaching programming (Ambrosio et al., 2011; Lin et al., 2016). As 
Sterling and Brinthaupt (2003) once put forward, certain set of cognitive skills in particular is one 
of the most important success criteria within the context of rank of importance. Moreover, 
adaptive instructional strategies and media can be designed to help low performance students 
(Lin et al., 2016). In educational context, however, students acquire knowledge through a social-
cognitive process, mainly by observing models, with a goal-directed behavior which may or may 
not be observable as a result of their internal process (Bandura, 1995). Furthermore, as social 
cognitive theory posits, learning most likely occurs if there is a close identification between the 
observer and the model and if the observer also has a good deal of self-efficacy. According to 
Bandura (1995), self-efficacy is “the belief in one’s capabilities to organize and execute the 
courses of action required to manage prospective situations”. Therefore, although technical 
skills are given importance in both training the programmers in schools and the selection of 
programmers in industry, other socio-cognitive variables, such as goal-directedness, modelling, 
and the mode of feedback could also be expanded in further research and be integrated as an 
instructional intervention.  
 
The university students attended has emerged as an important variable which contributed to 
the prediction of their programming performance. Although the context of the introductory 
course to programming are similar in each university, this finding can be explained through 

https://en.wikipedia.org/wiki/Self-efficacy
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various factors such as the number of instructors giving the course, evaluation of the course and 
grading of the exams. In his study, Mancy (2007) analyzed the relationship between working 
memory and programming performance and Mancy (2007) concluded that when the scoring 
methods are changed, the correlation coefficient between working memory and programming 
performance also changes. Therefore, since scoring method can change in different universities 
as different exam questions can be used, the university factor might have played a determinant 
role in predicting programming performance. In order to maintain a standard in learning 
outcomes, competency based evaluation can be implemented at schools. 
 
Prior knowledge has not emerged as an important variable in modeling the programming 
performance in the study. In related literature, different findings exist. In some studies, prior 
knowledge emerges as a significant predictor of success related to programming ( Wiedenbeck, 
2005), whilst in others a relationship between having prior knowledge or not and programming 
performance was not found (Jegede, 2009). The reason for the different findings in relation to 
prior knowledge may be that data taken as a representation of prior knowledge is different for 
each study. In her study, which was conducted to determine factors that promote success in an 
introductory college computer science course, Wilson (2002) found that although programming 
experience (which included both a previous programming course and self-initiated 
programming) was not found to be significant in his full model, when the different types of 
computing experiences were compared as predictors some of them were significant.  Jegede 
(2009) had dealt with prior knowledge in four different dimensions and he found that 
programming experience and the number of program writing years are not related to self-
efficacy while the number of programming courses taken and success grades related to 
programming courses have a significant relationship with self-efficacy.  
 
Gender was not an important variable in the prediction of programming performance. This 
shows that programming performances do not differ in accordance with whether the individuals 
are male or female. This finding is in parallel with many studies in related literature (e.g., Byrne 
and Lyons, 2001;) Milic (2009) and Pillay & Jugoo (2005) have shown that gender does not have 
a significant effect on students’ programming performance. On the other hand, there are also 
contrary findings which suggest that gender has an important role in programming performance. 
While Lau and Yuen (2011) have put forth findings in favor of males in terms of programming 
performance, Yurdugul and Askar (2013) have observed in their study related to the 
development of programming knowledge that reach in males is higher and Aşkar and Davenport 
(2009) have also found out that self-efficacy perception related to programming in males is once 
again significantly higher in males. Beyer, DeKeuster, Walter, Colar and Holcomb (2005) have 
shown that gender differences are in question at the beginning of introductory courses on 
programming, however this difference decreases towards the end of the semester.  
 
Lastly, some limitations of the study should be noted. First of all, this study is limited to the 
participation of 129 undergraduate students in three universities. Although these universities 
accept students from similar percentile based on a centralized university exam results; yet, 
students’ developmental trajectories might vary during their two years of attendance. The 
instructors might also be another intervening effect, which leads to another limitation. Research 
with standardized testing on performance might overcome this issue.  Another limitation could 
be attributed to the statistical procedures. Due to the small sample, one can argue 10 % of the 
participants for pre-training might not be enough for the selected sample size. More research is 
needed to validate or reject the findings of this study.  
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