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ABSTRACT 

 

Conditional image synthesis is the translation of images from different domains with the same 

dimensions into each other. Generative Adversarial Networks (GANs) are commonly used in 

translation studies in this field. With the classical GAN approach, data are transferred between the 

encoder and decoder of the generator network in the image translation. While this data transfer 

increases the quality of the translated image, it also leads to data dependency. This dependence has 

two negative effects: First, it prevents the understanding of whether the encoder or the decoder causes 

the error in the translated images, other causes the image synthesis quality to depend on the parameter 

increment of the network. In this study, two different architectures (dY-Net, uY-Net) are proposed. 

These architectures are developed on the principle of equalizing high-level feature parameters in 

cross-domain image translation. The first of these architectures concentrates on the speed of image 

synthesis, the other on its quality. There is a significant reduction in data dependency and parameter 

space in the dY-Net architecture, which concentrates on speed performance in image synthesis. The 

uY-Net architecture, which concentrates on image synthesis quality, attempts to maximize the results 

of metrics that measure quality like SSIM and PSNR. Three different datasets (Maps, Cityscapes, and 

Denim2Mustache) were used for performance testing of the proposed architectures and existing image 

synthesizing approaches. As a result of the tests, it has been seen that the proposed architecture 

synthesized images with similar accuracy, although it has approximately 66% parameters compared to 

DiscoGAN, which is one of the existing approaches. The results obtained show that WY-Net 

architectures, which provide high performance and translation quality, can be used in image synthesis. 

 

Keywords: Generative adversarial networks, Image synthesis, Deep learning, Image to image 

translation 

 

1. INTRODUCTION 

 

Deep learning is a subfield of machine learning where the features that best express data can be 

learned autonomously. Using this area is increasing gradually, and it is also multiplying in the 

subareas it branches. Recently, deep learning-based applications have been increasing. For example, it 

is used in many fields, such as language translation, chatbots, face identification, voice signature, 

disease diagnosis, data augmentation, autonomous vehicles, and anomaly analysis. Although this field 
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contains many learning methods, one of the most popular todays is Generative Adversarial Networks 

(GANs). Goodfellow and his team developed this learning method based on the min-max algorithm in 

2014 [1].  

 

GANs are a special type of neural network developed to model relationships between samples in a 

dataset [1-3]. The network tries to learn the features that best express these samples to model the 

relationship between the samples [2,3]. The basic structure of these networks is based on the game 

theory of the famous mathematician John Nash and comprises two convolutional modules that learn 

by working with each other in an adversarial manner [1]. One of these modules is called the generator 

network, and the other is called the discriminator network. The generative network tries to simulate a 

random or special data block (sampler) given to it to the desired data sample. The discriminant 

network is a classifier that tries to distinguish between the synthesized sample by the generator 

network and the real data sample. During the training phase, the generator and discriminant network 

parameters are fed with the similarity cost (loss) of the real and predicted (synthesized) outputs. The 

working mechanism of these models is shown in Figure 1. In this schema, real data with synthesized 

data from the generator network are given as input to the discriminator network. Then the cost of 

similarity between the outputs of the discriminator network is calculated. With this cost, the 

discriminator and generator network are fed. 

 

Figure 1. The basic schema of GAN architectures. 

 

Since the development of Generative adversarial networks, multiple types have been developed for 

use in image generation and manipulation. One of the first examples in this area is the DCGAN [2] 

architecture developed by Radford et al. in 2015. This architecture can learn the numerical distribution 

of its features by training with examples in a dataset consisting of images. It is a light and powerful 

model that can be used in data augmentation. One of the biggest problems in image studies is the low-

resolution problem. In solving this problem, the perceptual similarity cost-based SRGAN [3] 

architecture developed by Ledig et al. has achieved significant success. Convolutional neural 

networks-based VGG [4] network is used so that the content in the images is not distorted while 

synthesizing low resolution images in high resolution. The Progressive GAN [5] architecture, which 

performs progressive learning to reduce distortions in high resolution synthesized images, was 

developed by Karras et al. in 2017. After learning with 4x4 image scale in the architecture training 

phase, it continues until it synthesizes 1024x1024 images by increasing the scale step by step. The 

networks with attention mechanisms have been developed so that GAN architectures focus on the 

important parts instead of focusing on the whole image. One of these studies, the spatial attention and 

spectral normalization-based SAGAN [6] architecture, was developed by Zhang et al. in 2018 to 

reduce the instability of the learning curve due to unbalanced learning in the training phase of the 

generator and discriminator network in GAN architectures. The StyleGAN [7] architecture fed with 

content and style image was developed by Karras et al. to transfer any style image to a content image 
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in 2018. The modulation and reverse modulation-based StyleGAN2 [8] architecture to minimize the 

distortions on the network sourced image in StyleGAN architecture was developed in 2019. The 

StyleGAN3 [9] architecture by including Fourier-based features and various changes in this 

architecture to solve the signal problem from the hidden field caused by translation and rotation in the 

StyleGAN architectures was developed in 2021. The BigGAN [10] architecture, which can generate 

class-level images on the ImageNet dataset for high-resolution synthetic image generation, was 

developed by Brock et al. in 2018. This architecture tries to minimize cosine similarity without 

restricting the norms between binary filters for quality and diverse image synthesis. This 

regularization term, added to the parameters of the filters, enables the synthesizing of high-quality 

images belonging to different classes. The BigGAN-based BigBiGAN [11] architecture to develop a 

system capable of generating more realistic images was developed by Donahue et al. in 2019. This 

architecture has an encoder that can convert real images into a random variable, and a discriminator 

network operating with a binary cost function. For better quality learning, the system tries to bring the 

values from the encoder network and the values from the hidden field to the same representation. 

 

Image to image translation: A major challenge in image translation is to get a high-dimensional image 

from a low-dimensional visual space [13,14,16]. An example can be given for a better understanding. 

Translations such as coloring a black-and-white image [13], getting a semantic label map from an 

image with an edge map [13,16], converting a real image into an animation image [12] can be given as 

examples. These translations are difficult to perform with basic image processing algorithms. It is 

known that GAN architectures are widely used to solve these high-level problems [2-16]. Today, 

researchers for image-to-image translation have proposed many GAN architectures [12-16]. Although 

the architectures have differences among themselves, the primary aim is to generate a quality artificial 

image at an appropriate temporal cost by making an excellent translation between the two domains. 

One of the first architectures developed in the field of image-to-image translation is Pix2Pix [13]. This 

architecture was developed by Isola et al. in 2016 to translate between pairs of images in supervised 

datasets. The architecture includes the 𝐿1 metric in addition to the traditional GAN loss. A new 

version of this architecture, the Pix2PixHD [14] architecture, was developed by Wang et al. in 2018 to 

synthesize realistic images from high-resolution semantic image maps. Researchers at Nvidia 

enhanced the SPADE [15] architecture by adding spatial adaptive normalization on top of the basic 

structure of the Pix2PixHD architecture to produce realistic nature photographs from unlabeled 

semantic image maps. The CycleGAN [16] architecture based on double-sided validation was 

developed by Zhu et al.  to perform image-to-image translation in unsupervised datasets. The 

MixNMatch [17] architecture for various content generation and in-depth image change was 

developed by Li et al. in 2020. This architecture has a design that takes content, shape, poses, and 

background images and combines them. To increase the quality of semantic map-based image 

synthesis, the study called “Panoptic-based Image Synthesis” for panoptic map-based image 

production was developed by Dundar et al. in 2020 [18]. The GFP-GAN [19] architecture with spatial 

feature conversion to synthetically generate old or poor-quality images of human faces in high-quality, 

noiseless, and colorful was developed by Wang et al. in 2021. The Real-ESRGAN [20] architecture, 

which can reduce effects such as low resolution, blur, compression, and noise in an image and 

concentrate on over one problem area at the same time for quality image synthesis, was developed by 

Wang et al. in 2021. The Fourier convolution-based LaMa [21] architecture to remove unwanted 

objects or regions on the image without disturbing the basic design of the actual image was developed 

by Suvorov et al. in 2021. 
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In this study, we proposed a new architecture can translate from image-to-image more efficiently. 

Performance comparison of this architecture was made with DiscoGAN architecture on three different 

datasets. In Section 2.1, explanations are given about the similarity metrics used in the study. In 

Section 2.2, DiscoGAN [22] architecture’s basic design is explained. In Section 2.3, the basic design 

of the proposed (WY-Net) architecture is explained. Information about the datasets used is given in 

Section 2.4. In Section 3, the results obtained in the study are shared. 

 

2. MATERIAL AND METHODS 

 

2.1. Similarity Metrics 

In this section are given the basic similarity methods frequently used in the study. 

 

2.1.1. SSIM 

Structural similarity metric (SSIM) is a method that analyzes the perceived change in the image along 

with important perceptual properties, such as brightness, masking, and contrast. This metric is a 

statistical measurement built on the mean (𝜇) and standard deviation (𝜎) parameters in calculating the 

similarity between the image pairs, ignoring the positional difference between the pixels in the image 

[23]. 

 

Calculation of structural similarity between real (𝑥) and predicted (𝑦) image statistically is shown in 

Eq. (1). In this equation, 𝜇𝑥 and 𝜇𝑦  denote the pixel mean of the real and predicted image, the 

variance of 𝜎𝑥
2 and 𝜎𝑦

2, while σxy denotes the covariance between the real and predicted image. In 

addition, the constant values 𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2 are calculated by taking the 𝐿 value 255., 

which specifies the pixel pitch. 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

(1) 

 

2.1.2 MSE 

It is a comparison metric where the square of the point difference is taken to calculate the similarity 

cost between two data samples [24]. The main formula of this metric is shown in Eq. (2). In the 

equation, each pixel difference between the real (𝑥) and predicted (𝑦) image is squared and summed. 

Divide the total result by the number of pixels (𝑛). 

 

𝐿2 =  𝑀𝑆𝐸(𝑥, 𝑦) =
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 
(2) 

2.1.3. MAE 

It is a comparison metric in which the absolute value of the point error is taken to calculate the 

similarity cost between two data samples [25]. The main formula for this metric is shown in Eq. (3). 

In the equation, the absolute value of each pixel difference between the real (𝑥) and predicted (𝑦) 

image is taken and summed. Divided the total result by the number of pixels (𝑛). While measuring, 

the direction of the error is not considered, it focuses on the absolute difference. 

 

𝐿1 =  𝑀𝐴𝐸(𝑥, 𝑦) =
1

𝑛
∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 
(3) 
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2.1.4. PSNR 

It is a logarithmic-based metric used for the ratio between the maximum power of a signal and the 

power of noise that affects the accuracy of its representation [26]. The signal is a real image or data, 

while noise is the error caused by compression or distortion in the data. This ratio between two images 

is calculated in decibels. The main formula for this metric is shown in Eq. (4). For the measurement 

between the real (𝑥) and predicted (𝑦) image in the equation, the 𝑀𝑆𝐸(𝑥, 𝑦) value and the largest 

pixel value of the real image (𝑀𝐴𝑋𝑥
2) are included in the calculation. 

 

𝑃𝑆𝑁𝑅 (𝑥, 𝑦) = 10 ∗ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝑥

2

𝑀𝑆𝐸(𝑥, 𝑦)
) 

(4) 

 

The higher the measurement value, the better the signal quality, that is, the lower the cost between the 

real and the predicted data. 

 

2.1.5. Hinge embedding loss 

It is a metric often used to calculate the similarity between nonlinear or semi-supervised data blocks 

[27]. This metric measures the distance between a real input vector (𝑥) and a label vector (𝑦) 

(containing 1 or -1). The main formula of the metric is given in Eq. (5). The 𝐿 value in the equation 

contains the input and label list. The number of features in the list is expressed as n. 

 

 𝐿𝐻𝐸 = {
𝑚𝑒𝑎𝑛(𝐿), 𝑖𝑓  𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ′𝑚𝑒𝑎𝑛′,

𝑠𝑢𝑚(𝐿), 𝑖𝑓  𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ′𝑠𝑢𝑚′,
 

𝐿 = ∑ ℓ(𝑥𝑖 , 𝑦𝑖) = {
𝐿2(𝑥𝑖 , 𝑦𝑖), 𝑖𝑓  𝑦𝑖 = 1,

𝑚𝑎𝑥 (0, 𝑚 − 𝐿2(𝑥𝑖 , 𝑦𝑖)), 𝑖𝑓  𝑦𝑖 = −1,

𝑛

𝑖

 

(5) 

 

2.2. DiscoGAN 

The DiscoGAN (Learning to discover cross-domain relations with generative adversarial networks) is 

a conditional GAN architecture developed to explore the relationship between different datasets and 

synthesize quality images [22]. This architecture has a structure that can work on supervised or 

unsupervised datasets. 

 

2.2.1. Generator network 

The DiscoGAN architecture has two generator networks with the same structure. This architecture 

learns two separate translation functions: the first network (G_X2Y) learns to translate the image in the 

X-domain (Real_X) into the predicted Y-image (Fake_Y), while the second network learns to translate 

the image in the Y-domain (Real_Y) into the predicted X-image (Fake_X). After the initial processing, 

the architecture generates the reconstructed Recons_X image by passing the predicted Fake_Y image 

through the G_Y2X network for complete learning, while passing the Fake_X image through the 

G_X2Y network to generate the reconstructed Recons_Y image. The basic diagram of the generator 

networks in the DiscoGAN architecture is shown in Figure. 2. The first translation takes place from X 

to Y and the other from Y to X. Reconstructed images are used for double-sided verification. This 

validation is calculated between the real and reconstructed images with the 𝐿2 metric. 
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Figure 2. The basic schema of DiscoGAN generator networks. DiscoGAN’s generator G_X2Y and 

G_Y2X networks learn 2 separate translations. 

 

2.2.2. Discriminator network 

The DiscoGAN architecture has two discriminator networks with the same structure. First of these 

networks (D_X) tries to classify the output of the two images as real or fake by trying to learn the 

properties of Real_X, which is the real image in the X-domain, and Fake_X, which is the fake image. 

The other network (D_Y) tries to classify the output of the two images as real or fake by trying to learn 

the properties of Real_Y, which is the real image, and Fake_Y, which is the fake image, in the Y-

domain. The basic schematic of the discriminator networks is given in Figure 3.  

 

Figure 3. The basic schema schematic of DiscoGAN discriminator networks. DiscoGAN’s 

discriminator D_X and D_Y networks learn 2 separate classification processes. 
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The first classification takes place between Real_X and Fake_X and the other between Real_Y and 

Fake_Y. The feature list of each image is extracted so that the generator networks can learn better. 

Outputs starting with the prefix D are used for the cost of discriminator, and F for generator. 

According to this scheme, two outputs are obtained from the image given as input to the discriminator 

network. The first output is the passed output from the activation function that the discriminator 

network uses for the adversarial loss. The second output is the feature list obtained from layers 2, 3, 

and 4 of the networks. This feature list is used for the cost function of the generator network. For 

example, the D_RealX result obtained by giving the Real_X image to the D_X network represents the 

output of the discriminator network, while the F_RealX value represents the feature list of this image. 

 

2.2.3. Loss functions 

The cost function of the generator networks in the DiscoGAN architecture is built on reconstructed, 

adversarial, and feature losses. The cost of discriminator networks in the architecture is based on the 

adversarial loss value in traditional GAN architectures.  

 

Generator Loss. In this architecture, the 𝐿2 metric is used for reconstructed loss. This is computed 

between the Recons_X and Recons_Y images reconstructed with the input images Real_X and Real_Y. 

Its formulation is expressed as Eq. (6). 

 

ℒ𝑐𝑜𝑛𝑠𝑡𝑋
= 𝐿2(𝑅𝑒𝑎𝑙_𝑋, 𝑅𝑒𝑐𝑜𝑛𝑠_𝑋) (6) 

 

The hinge embedding loss function is used for feature cost calculation. This process is calculated 

between the real (F_RealX) and fake (F_FakeX) feature list obtained from the discriminator network. 

It is shown in Eq. (7). It is calculated by taking the 𝜆1 value in the equation to 0.9. 

 

ℒ𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑋
=  𝜆1 ∗ 𝐿𝐻𝐸(𝐹_𝑅𝑒𝑎𝑙𝑋, 𝐹_𝐹𝑎𝑘𝑒𝑋) (7) 

 

The adversarial loss value is calculated with the fake (D_FakeX) value obtained from the activation 

function of the discriminator network. This process is shown in Eq. (8). It is calculated by taking the 

𝜆2  value in the equation to 0.1. 

 

ℒ𝑎𝑑𝑣𝑋
= 𝜆2 ∗  𝑎𝑟𝑔 𝑚𝑖𝑛

𝐺_𝑋2𝑌
(𝑙𝑜𝑔(1 − 𝐷_𝐹𝑎𝑘𝑒𝑋)) (8) 

 

The loss function required for the X-domain of the network is expressed like Eq. (9). The starting ratio 

in the equation is initially given as 𝓇 = 0.01. This value is changed to 𝓇 = 0.5 after 10000 iterations 

of training. 

 

ℒ𝐺_𝑋2𝑌 = 𝓇 ∗ ℒ𝑐𝑜𝑛𝑠𝑡𝑋
+ (1 − 𝓇) ∗ (ℒ𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑋

+ ℒ𝑎𝑑𝑣𝑋
) (9) 

 

The overall loss of the generator networks is calculated for both areas and then added up. The total 

loss function is written like Eq. (10). 

 

ℒ𝐺 = ℒ𝐺_𝑋2𝑌 + ℒ𝐺_𝑌2𝑋 (10) 
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Discriminator Loss. The required loss value for the X-domain of the discriminator networks is 

calculated between the D_RealX blocks of the real data and the D_FakeY blocks of the fake data we 

want to translate. This process is illustrated in Eq. 11. 

 

ℒ𝑎𝑑𝑣𝐷_𝑋
= 𝑎𝑟𝑔𝑚𝑎𝑥

𝐷_𝑋
(𝑙𝑜𝑔(𝐷_𝑅𝑒𝑎𝑙𝑋) − 𝑙𝑜𝑔(1 − 𝐷_𝐹𝑎𝑘𝑒𝑋)) (11) 

 

The total loss of the two discriminator networks is calculated like Eq. 12. 

 

ℒ𝐷 = ℒ𝑎𝑑𝑣𝐷_𝑋
+  ℒ𝑎𝑑𝑣𝐷_𝑌

 (12) 

 

2.3. WY-Net: Proposed Method  

When we want to translate from one image domain to another with GAN architectures, unlike Auto-

encoders, the encoder and decoder of the generator network are evaluated together. The disadvantage 

of this is that it cannot be understood that the real error is from the encoder or decoder. The WY-Net 

architecture proposed in this study allows us to understand this problem by trying to reduce the 

features of the images in the two domains to the common denominator while translating from one 

image domain to another image domain. We delegate the feature extraction of images from two 

domains to a single network. The advantage of this is that it makes the architecture lighter and faster, 

while also showing how the network will translate between image domains. 

 

2.3.1. Improving generator network 

WY-Net architecture has a generator network with one encoder and two decoders. The encoder tries to 

learn the features of the data of the X and Y-domain. One of the decoders tries to reconstruct the data 

belonging to this domain from the features of the X-domain, the other does the same for the Y-

domain. This architecture learns two separate translation operations, the first translation is from the X-

domain to the Y-domain, the second translation is from the Y-domain to the X-domain. The first 

translation yields three outputs, Fake_Y, Feature_X, Recons_X data respectively. The first output is 

the image in the X-domain translated to the Y-domain. The second output is the feature map of the 

data in the X-domain obtained after passing through the encoder. The third output is the reconstructed 

image of the data in the X-domain, with this image double-sided validation is performed. The same 

translation process is done for the Y-domain. The WY-Net architecture proposed in this study has two 

different uses: 1) dY-Net based on DiscoGAN generator network; 2) uY-Net based on U-Net [28] 

generator network. The dY-Net architecture concentrates on temporal and hyperparameter 

optimization, while uY-Net architecture concentrates on image quality. Two different design 

prototypes of the WY-Net architecture are shown in Figure 4. The first translation takes place from X 

to Y and the other from Y to X. Reconstructed images are used for double-sided verification. This 

validation is calculated between the real and reconstructed images with the 𝐿2 metric. For a better 

comparison, a similarity calculation is made between the real and fake data with the 𝐿1 metric. Then, 

the high-level features of the real X and Y images are compared with the 𝐿𝐻𝐸 metric and reduced to the 

common denominator. 
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Figure 4. The basic schema of WY-Net generator network. Generator network (G_WY-Net) of WY-

Net architectures (dY-Net, uY-Net) learn 2 separate translations. 

 

2.3.2. Improving discriminator network 

The WY-Net architecture has a discriminator network that takes real images (Real_X, Real_Y) and 

fake images (Fake_X, Fake_Y) together as input data, unlike traditional GAN architectures. This 

process is to be compatible with the generator network because, while the generator network tries to 

reduce the features of the two domains to the same denominator, the discriminator network must also 

reduce the images of these domains to the same denominator. Thus, the translation process between 

the two domains is ensured to be balanced. The basic diagram of the discriminator network is given in 

Figure 5. Discriminator network (D_WY-Net) of WY-Net architectures (dY-Net, uY-Net) tries to 

reduce real (Real_X, Real_Y) and fake (Fake_X, Fake_Y) data to a common denominator for better 

understand cross-domain image similarity. Outputs starting with the prefix D are used for the cost of 

discriminator, and F for generator. In the first stage of this diagram, the output of the discriminator 

network (D_Real) and the feature list (F_Real) of the real images are shown, while in the second 

stage, the D_Fake and F_Fake data of the synthesized fake images are shown. WY-Net discriminator 

network architecture was developed based on DiscoGAN. 
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Figure 5. The basic schema of WY-Net discriminator network. 

 

2.3.3. Improving loss functions 

The generator network loss function of WY-Net architecture is built on reconstructed, similarity, 

adversarial, and feature losses. The loss of the discriminator network is based on the traditional 

adversarial loss value. As the adversarial loss value, the hinge loss [29] technique was used instead of 

the min-max algorithm. 

 

Generator Loss. In this architecture, the reconstruction loss is calculated using the 𝐿2 metric as in Eq. 

8. This is computed between the Recons_X and Recons_Y images reconstructed with the input images 

Real_X and Real_Y. 

 

The similarity loss is calculated using the 𝐿1 metric. This process is calculated between the input 

images Real_X and Real_Y and the translated Fake_Y and Fake_X images to the other domain. It is 

shown in Eq. 13. 

 

ℒ𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑋
= 𝐿1(𝑅𝑒𝑎𝑙_𝑋, 𝐹𝑎𝑘𝑒_𝑋) (13) 

 

The hinge embedding loss function is used for feature cost calculation. This process is the sum of the 

result of the real (F_Real) and fake (F_Fake) feature list obtained from the discriminator network and 

the result of Feature_X of the X-domain and Feature_Y of the Y-domain from the generator network. 

This process is shown in Eq. 14. It is calculated by taking the 𝜆1 value in the equation to 0.9. 

 

ℒ𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 𝜆1 ∗  (𝐿𝐻𝐸(𝐹_𝑅𝑒𝑎𝑙, 𝐹_𝐹𝑎𝑘𝑒) +  𝐿𝐻𝐸(𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑋, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑌)) (14) 

 

Adversarial loss: It is calculated on the fake (D_Fake) result passed through the activation function of 

the discriminator network. This process is expressed as Eq. 15. It is calculated by taking the 𝜆2 value 

in the equation to 0.1. 

 

ℒ𝑎𝑑𝑣 = 𝜆2 ∗ 𝑚𝑒𝑎𝑛(−𝐷_𝐹𝑎𝑘𝑒) (15) 
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The overall loss of the generator network is expressed as Eq. 16. The starting ratio in the equation is 

initially given as 𝓇 = 0.01. This value is changed to 𝓇 = 0.5 after 10000 iterations of training. 

 

ℒ𝐺 = 𝓇 ∗ ( ℒ𝑐𝑜𝑛𝑠𝑡𝑋
+  ℒ𝑐𝑜𝑛𝑠𝑡𝑌

+  ℒ𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑋
+ ℒ𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑌

) + (1 − 𝓇) ∗ (ℒ𝑓𝑒𝑎𝑡𝑢𝑟𝑒 + ℒ𝑎𝑑𝑣) (16) 

 

Discriminator Loss. The loss of the discriminator network is calculated between the D_Real blocks of 

the real data and the D_Fake blocks of the fake data we want to translate. This process is illustrated in 

Eq. 17. The result is obtained by passing the averaged data block through the Relu activation function. 

 

ℒ𝐷 =  𝑟𝑒𝑙𝑢(𝑚𝑒𝑎𝑛(1 − 𝐷_𝑅𝑒𝑎𝑙)) + 𝑟𝑒𝑙𝑢(𝑚𝑒𝑎𝑛(1 + 𝐷_𝐹𝑎𝑘𝑒)) (17) 

 

2.4. Datasets 

2.4.1. Denim2Mustache 

The Denim2Mustache dataset contains 950 image pairs (denim-mustache), 900 of which are training 

and 50 are tests [30]. The dataset includes front and back photos of different denim products, such as 

trousers, skirts, and shorts, and the mustache patterns on these denim images. Each image has a size of 

256 × 256 × 3. Sample images of this dataset are shown in Figure 6(a). 

 

2.4.2. Cityscapes 

The Cityscapes dataset contains various stereo video images from the streets of 50 different cities 

[31]. It contains semantic segmentation maps belonging to 30 different classes, such as a motor-

vehicle, road, building, and human. In this study, 2975 image pairs were used in the training phase 

and 500 in the testing phase. Sample images of this dataset are shown in Figure 6(b). 

 

2.4.3. Maps 

The Maps dataset comprises satellite images around New York and corresponding Google map 

images [13]. In these satellite images, there are objects and regions such as buildings, parks, roads. In 

this study, 2095 image pairs were used in the training phase and 98 in the testing phase. Sample 

images of this dataset are shown in Figure 6(c). 
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Figure 6. Example images from the Denim2Mustache (a), Cityscapes (b), and Maps (c) datasets. 
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3. RESULTS 

 

One of the most up-to-date architectures in image synthesis is DiscoGAN. In this section, the 

performances of the proposed WY-Net architecture and the DiscoGAN architecture in image synthesis 

are presented comparatively. Table 1. shows the structures and features of the architectures 

comprehensively.  

 

Table 1.  Quantitative property comparison of proposed methods and DiscoGAN. 

Network 

Type 

Property Name Model Name 

DiscoGAN dY-Net uY-Net 

Generator Number of networks 2 1 1 

Trainable Params 11,022,336 8,266,752 89,283,398 

Forward/backward pass size 

(MB) 

164.00 127.00 135.96 

Params size (MB) 42.04 31.54 340.59 

Estimated total size (MB) 207.54 159.29 477.30 

 

Discriminator Number of networks 2 1 1 

Trainable Params 5,527,552 2,766,848 2,766,848 

Forward/backward pass size 

(MB) 

74.00 37.00 37.00 

Params size (MB) 21.08 10.55 10.55 

Estimated total size (MB) 96.60 47.56 47.56 

 

In the second stage, training and testing processes were carried out on the Cityscapes, Maps, and 

Denim2Mustache datasets to compare the architectures. The training and testing processes of the 

architectures were carried out with the PyTorch deep learning library on a server with an RTX 2080 

graphics card, by taking the batch size of 1 for 150 epochs. Adjustments and arrangements such as 

hyperparameter, epoch, image dimensions have been made on the DiscoGAN architecture. Thus, the 

necessary environment has been prepared for the performance comparison of these models under 

appropriate conditions. 

 

Image synthesis quality and the temporal cost of the training process were used as performance 

criteria. Three different similarity measures (SSIM, PSNR, and MSE) were used to control the 

synthesis quality of the image pairs in the test set. The performances of the models on the image pairs 

in the test datasets are shown in Table 2. According to this table, it is seen that dY-Net architecture 

produces very similar visuals in terms of image quality, although it is approximately 25% more 

efficient in the generator network structure and 50% more efficient in the discriminator network 

compared to DiscoGAN. However, it is seen that the uY-Net architecture, which focuses on image 

quality, produces more successful results in image synthesis than DiscoGAN. The sample outputs of 

these architectures in the test datasets are shown in Figures. 7 to 9. 

 

Table 2. Performance comparison of proposed methods and DiscoGAN results. This performance 

comparison was made on the Denim2Mustache, Cityscapes and Maps datasets. 

Dataset Name Model 

Name 

Metric 

Name 

Cross-domain image translation 

direction 

150 epochs 

training 
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X → X X → 

Y 

Y → Y Y → X time 

(minute) 

Cityscapes DiscoGAN SSIM  ↑ 0.451 0.384 0.676 0.676 715 

PSNR ↑ 18.85 15.73 19.92 18.22 

MSE   ↓ 943.96 2047.1 716.25 1108.1 

dY-Net SSIM  ↑ 0.835 0.397 0.871 0.688 475 

PSNR ↑ 27.04 16.32 28.01 18.88 

MSE   ↓ 143.61 1781.1 109.40 955.9 

uY-Net SSIM  ↑ 0.945 0.437 0.944 0.696 815 

PSNR ↑ 32.45 16.43 35.13 18.50 

MSE   ↓ 43.32 1744.7 22.21 1051.9 

Maps DiscoGAN SSIM  ↑ 0.268 0.245 0.589 0.516 495 

PSNR ↑ 18.02 15.80 28.15 26.48 

MSE   ↓ 1093.3 1809.2 129.76 205.5 

dY-Net SSIM  ↑ 0.742 0.255 0.739 0.515 335 

PSNR ↑ 23.44 16.14 33.25 26.93 

MSE   ↓ 320.57 1691.4 34.89 191.1 

uY-Net SSIM  ↑ 0.968 0.252 0.763 0.541 635 

PSNR ↑ 28.73 16.13 33.64 26.87 

MSE   ↓ 89.60 1676.7 31.63 204.4 

Denim2Mustache DiscoGAN SSIM  ↑ 0.712 0.673 0.922 0.849 210 

PSNR ↑ 19.05 19.06 25.26 19.44 

MSE   ↓ 956.1 1923.9 235.09 1049.9 

dY-Net SSIM  ↑ 0.814 0.688  0.970 0.819 145 

PSNR ↑ 28.30 16.53 32.42 19.18 

MSE   ↓ 143.8 1735.6 41.73 1166.8 

uY-Net SSIM  ↑ 0.977 0.739 0.983 0.869 265 

PSNR ↑ 36.85 16.69 38.08 20.96 

MSE   ↓ 27.46 1725.2 12.92 777.9 
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Figure 7. Example results of proposed methods and DiscoGAN on image synthesis 

cityscapes↔segmentation maps, compared to ground truth. Left to right: real X, predicted X, 

reconstructed X, real Y, predicted Y, reconstructed Y images. Top to bottom for three image pairs: The 

DiscoGAN, dY-Net, uY-Net architectures. 
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Figure 8. Example results of proposed methods and DiscoGAN on image synthesis satellite 

images↔Google maps, compared to ground truth. Left to right: real X, predicted X, reconstructed X, 

real Y, predicted Y, reconstructed Y images. Top to bottom for three image pairs: The DiscoGAN, dY-

Net, uY-Net architectures. 
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Figure 9. Example results of proposed methods and DiscoGAN on image synthesis denim 

images↔mustache patterns, compared to ground truth. Left to right: real X, predicted X, reconstructed 

X, real Y, predicted Y, reconstructed Y images. Top to bottom for three image pairs: The DiscoGAN, 

dY-Net, uY-Net architectures. 
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4. DISCUSSION and CONCLUSIONS 

 

In this study, two different architectures, dY-Net, and uY-Net are proposed to be used in the field of 

image synthesis. The dY-Net architecture has low parameter space and prioritizes performance at 

image synthesis speed. The uY-Net architecture includes embedding the U-Net structure in WY-Net 

and prioritizes image synthesis quality. Comparisons of the proposed architectures with existing 

counterparts are in terms of image synthesis time and accuracy. The basis of WY-Net architectures is 

the principle of synchronizing the feature spaces of the input and output images. Thus, there is a 

common use of parameters, and a serious reduction in the number of hyperparameters is realized. 

Comparisons were made with the DiscoGAN architecture to find out the position of the image 

synthesizing and speed performances of the proposed architectures in the literature. DiscoGAN 

architecture, with its bidirectional training structure, is widely used in the field of image synthesis. 

According to the obtained comparison results, although the number of parameters of dY-Net 

architecture is 34% lower than DiscoGAN, it can synthesize images of similar quality. It has been 

observed that uY-Net architecture synthesizes higher quality images than other architectures. Three 

different datasets (Maps, Cityscapes, and Denim2Mustache) were used in the validation process. 

These results reveal that two different architectures can be used for applications that prioritize 

performance or translation quality in image synthesis studies. The next study will be about 

transferring the feature space synchronization principle used in WY-Net architecture to SSL 

techniques. 
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