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Mustafa Dede

Department of Mathematics, Faculty of Science, Kilis 7 Aralık University, 79000 Kilis, Turkey.

Received: 08-06-2022 • Accepted: 17-07-2023

Abstract. The first and second derivatives of a curve provide us fundamental information in the study of the
behavior of curve near a point. However, if a curve is a polynomial space curve of degree n, we don’t know much
about the geometric meaning of the n-th derivative of the curve. There is no doubt that the Frenet frame is not
suitable for this purpose because it is constructed by using first and second derivatives of a curve. On the other
hand, in this paper by using a new frame called as Flc-frame we are able to give the geometric meaning of the n-th
derivative of a curve. Moreover, we explore some basic concepts regarding polynomial space curves from point of
view of Flc-frame in three dimensional Euclidean space.
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1. Introduction

As far as our knowledge the geometrical significance of the n-th order derivative of a curve does not seem to be
discussed in literature. However, there is some paper which deals with geometrical interpretation of higher order
derivatives of a curve. For instance, the geometrical significance of the third derivative of a curve is discussed in
[11]. The third derivative is represented geometrically in terms of the quantity called aberrancy, which measures
the asymmetry of a curve about its normal [12]. But, one can ask, what exactly prevented us from accomplishing
geometrical significance of the n-th order derivative of a curve. The major difficulty arises from the fact that we can
not write the n-th order derivative of a curve in term of Frenet frame. It is clear that the Frenet frame is not suitable
for the investigation of the geometric interpretation of higher order derivatives of a curve. On the other hand by using
the Flc-frame which is constructed by using the higher order derivatives of the curve, we are able to give geometric
interpretation of n-th order derivatives of a curve.

Bishop [2] showed that apart from the Frenet frame, we can construct more frame along a space curve. His approach
is based on rotating the Frenet frame by an angle [7, 14]

θ = −

∫
τ
∥∥∥α′(t)∥∥∥ dt.

Despite the fact that Bishop frame is more suitable for applications [8], this frame is not an analitic frame [4]. Recently,
Dede introduced a new frame along a polynomial space curve, called as Flc-frame. The computation of Flc-frame is
easier than the both Frenet and Bishop frames. Moreover, the Flc-frame has less singular points than the Frenet frame.
Therefore, the Flc-frame can be considered as an effective alternative to the RMF. Discussion of the Flc-frame and its
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application to the tube surfaces can be found in [3]. Morever, for some of the recent researchs about the Flc-frame,
see [1, 9, 13].

Let α(t) be a polynomial space curve of degree n. The Flc-frame is given by

t =
α′

∥α′∥
,D1 =

α′ ∧ α(n)∥∥∥α′ ∧ α(n)
∥∥∥ ,D2 = D1 ∧ t, (1.1)

where the prime ′ indicates the differentiation with respect to t [3]. If the order of derivative exceeds three, we replaced
prime by the superscript (n), such as α

′′′′

= α(4). The new vectors D1 and D2 are called as binormal-like vector and
normal-like vector, respectively.

The local rate of change of the Flc-frame called as the Frenet-like formulas can be expressed in the following form t′
D′2
D′1

 = v

 0 d1 d2
−d1 0 d3
−d2 −d3 0


 t

D2
D1

 , (1.2)

where ∥α′∥ = v.
We may define three new invariants of the curve by

d1 =
⟨t′,D2⟩

v
, d2 =

⟨t′,D1⟩

v
, d3 =

〈
D′2,D1

〉
v

. (1.3)

Theorem 1.1 ( [3]). A polynomial space curve is a straight line if and only if the all of the curvatures vanish identically,
d1 = d2 = d3 = 0 .

Theorem 1.2 ( [3]). A polynomial space curve with the curvature d1 , 0 is planar if and only if the curvatures d2 and
d3 vanish identically, d2 = d3 = 0.

The Darboux vector of a frame also known as angular velocity is a crucial information to understand the behaviour
of the frame. The Darboux vector dF = τt+κb of Frenet frame describes the instantaneous rate of change of each of the
vectors of Frenet frame at a given instant [5]. Therefore, the instantaneous angular speed satisfies ∥dF∥ =

√
τ2 + κ2. The

RMF is characterized by the fact that the Darboux vector dRMF of RMF satisfies ⟨dRMF , t⟩ = 0, that is, the normal-plane
vectors have no instantaneous rotation around the tangent vector [10].

2. Flc-frame Along a Polynomial Space Curve

In this chapter, we begin an investigation into the local theory of space curves by using the Flc-frame. Then, we
obtain new formulas for calculating the three curvatures d1, d2 and d3 of the curve.

Theorem 2.1. Let α(t) be a polynomial space curve of degree n. The curvatures d1, d2 and d3 of the curve can be
computed as

d1 =

〈
α′ ∧ α′′, α′ ∧ α(n)

〉
∥α′∥3

∥∥∥α′ ∧ α(n)
∥∥∥ , d2 =

det[α′′, α′, α(n)]
∥α′∥2

∥∥∥α′ ∧ α(n)
∥∥∥ (2.1)

and

d3 =
det[α′, α′′, α(n)]

〈
α′, α(n)

〉
∥α′∥2

∥∥∥α′ ∧ α(n)
∥∥∥2 . (2.2)

Proof. In order to find the curvature d1, we first differentiate the unit tangent vector t in (1.1), then by substituting
result in (1.3), we get

d1 =

〈
α′′, (α′ ∧ α(n)) ∧ α′

〉
∥α′∥3

∥∥∥α′ ∧ α(n)
∥∥∥ .

By using the vector triple product (a∧b) ∧ c = −a ⟨b, c⟩ + b ⟨a, c⟩ gives

d1 =
∥α′∥2

〈
α′′, α(n)

〉
− ⟨α′′, α′⟩

〈
α′, α(n)

〉
∥α′∥3

∥∥∥α′ ∧ α(n)
∥∥∥ . (2.3)
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Thus, from the Lagrange’s identity, it follows that

d1 =

〈
α′ ∧ α′′, α′ ∧ α(n)

〉
∥α′∥3

∥∥∥α′ ∧ α(n)
∥∥∥ .

Similar to the previous case, by using a direct computation one can obtain the curvature d2 as follows

d2 =
det[α′′, α′, α(n)]
∥α′∥2

∥∥∥α′ ∧ α(n)
∥∥∥ .

From (1.1) and (1.3), we have

d3 =

〈
D′2,D1

〉
∥α′∥

=

〈
D′1 ∧ t,D1

〉
∥α′∥

.

From which the curvature d3 is given by

d3 =

〈
D′1 ∧ α

′, α′ ∧ α(n)
〉

∥α′∥2
∥∥∥α′ ∧ α(n)

∥∥∥ ,

and therefore using Lagrange’s identity, we can establish the following formula

d3 =

〈
D′1,α

′
〉 〈
α′, α(n)

〉
−
〈
D′1,α

(n)
〉
⟨α′, α′⟩

∥α′∥2
∥∥∥α′ ∧ α(n)

∥∥∥ . (2.4)

On the other hand, by differentiating D1 in (1.1), we have

D′1 =
(α′′ ∧ α(n) + α′ ∧ α(n+1))∥∥∥α′ ∧ α(n)

∥∥∥ −

∥∥∥α′ ∧ α(n)
∥∥∥′ (α′ ∧ α(n))∥∥∥α′ ∧ α(n)

∥∥∥2 . (2.5)

Note that the n + 1-th derivative of the curve vanishes therefore by substituting (2.5) into (2.4), we get

d3 =
det[α′, α′′, α(n)]

〈
α′, α(n)

〉
∥α′∥2

∥∥∥α′ ∧ α(n)
∥∥∥2 .

□

Thus, we state the following fundamental corollary.

Corollary 2.2. The curvatures d1, d2 and d3 of the Flc-frame can be computed directly from the parametric curve.

Theorem 2.3. The new curvatures d1, d2 and d3 of the curve does not depend on the parameter representation of the
curve. Thus, the curvatures form a complete system of differential invariants.

Proof. Let β(t) be a space curve of degree n with curvature d1 and let α(s) = β(ϕ(t)) be an another parametrization of
the same curve with curvature d̃1. Without loss of generality, we can choose ϕ(t) = sm. Since the degree of the curve α
is n + m, we need to calculate the (n+m)-th derivative.

The first three derivatives of α are evaluated as follows:

α′ = β′(ϕ)ϕ′, (2.6)

α′′ = β′′(ϕ)ϕ′2 + β′(ϕ)ϕ′′, (2.7)
α′′′ = β′′′(ϕ)ϕ′3 + 3β′′(ϕ)ϕ′ϕ′′ + β′(ϕ)ϕ′′′.

Similarly, n-th derivative of the curve α is obtained by

α(n) = β(n)(ϕ)ϕ′n +
n(n − 1)

2
β(n−1)(ϕ)ϕ′n−2ϕ′′... + β′(ϕ)ϕ(n).

Differentiating again α(n), then using β(n+1) = (0, 0, 0), we have

α(n+1) = nβ(n)(ϕ)ϕ′n−1ϕ′ +
(n + 1)n

2
β(n)(ϕ)ϕ′n−1ϕ′′ + ... + β′(ϕ)ϕ(n+1).

Similarly differentiating up to order m+n and using ϕ(n+m) = 0 gives

α(n+m) = δβ(n)(ϕ), (2.8)
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where
δ = ([n(n − 1)...(n − m + 1)]ϕ′n−mϕ′m + nϕ′n−1ϕ(m) + ...+).

Substituting (2.6), (2.7) and (2.8) into (2.1) gives

d̃1 =
ϕ′4δ
〈
β′(ϕ) ∧ β′′(ϕ), β′(ϕ) ∧ β(n)(ϕ)

〉
ϕ′4δ ∥β′(ϕ)∥

∥∥∥β′(ϕ) ∧ β′′(ϕ), β′(ϕ) ∧ β(n)(ϕ)
∥∥∥
∣∣∣∣∣∣∣∣
t

,

which implies that

d̃1 =

〈
β′ ∧ β′′, β′ ∧ β(n)

〉
∥β′∥
∥∥∥β′ ∧ β′′, β′ ∧ β(n)

∥∥∥
∣∣∣∣∣∣∣∣
ϕ(t)

= d1 ◦ ϕ(t).

The proof of the invariance of the curvatures d2 and d3 are similar. □

For example, let us consider the curve given by

β(t) = (t, t2, t3).

The curveture d1 is obtained by

d1 =
12t3 + 6t

√
4t2 + 1(9t4 + 4t2 + 1)3/2

.

For ϕ(t) = s2, we have another curve given by

α(s) = (s2, s4, s6).

Now, α(s) is a curve of degree six. Then, the curveture d̃1 is obtained by

d̃1 =
12s6 + 6s2

√
4s4 + 1(9s8 + 4s4 + 1)3/2

.

It is easy to see that d̃1 = d1 ◦ ϕ(t).

Corollary 2.4. Let α(t) be a polynomial space curve of degree n. Apart from the Frenet frame, there are (n − 2)
type frames which can be obtained by using this method. For example, we can obtain a new binormal vector by
using the first and third derivatives of the curve. But, there is just one frame(Flc-frame) which is invariant under the
reparameterization of the curve.

Corollary 2.5. If the degree of polynomial space curve is two, then the Flc-frame coincides with the Frenet frame with
curvatures d1 = κ, d2 = 0 and d3 = τ = 0.

Theorem 2.6. Let α(t) be a polynomial space curve of degree n. The relation between curvatures d1, d2 and d3 of the
Flc-frame is obtained by

−

(
d3

d2
)′

1 + (
d3

d2
)2
= vd1.

Proof. Let ψ be an Euclidean angle between the normal-like vector D2 and the n-th derivative of the curve α(n), shown
in Figure 1, then we have 〈

α(n),D2

〉
=
∥∥∥α(n)
∥∥∥ cosψ. (2.9)

From (1.1) we see that, the vectors αn and D1 are orthogonal and so〈
α(n), t

〉
=
∥∥∥α(n)
∥∥∥ sinψ, (2.10)

which implies that 〈
α(n), α′

〉
= v ∥αn∥ sinψ. (2.11)

Combining (2.1), (2.2) and (2.10), we have

d3

d2
= −

〈
α′, α(n)

〉∥∥∥α′ ∧ α(n)
∥∥∥ = − tanψ. (2.12)
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Figure 1. The angle between the vectors D2 and α(n).

It follows that,

ψ = arctan(−
d3

d2
),

and differentiating the above equation yields

dψ = −
(
d3

d2
)′

1 + (
d3

d2
)2
. (2.13)

On the other hand by using α′ = vt and α′′ = v′t+v2(d1D2 + d2D1), we have〈
α′′, α′

〉
= v′v. (2.14)

Differentiating (2.11) yields 〈
α′′, α(n)

〉
= v′ ∥αn∥ sinψ + v ∥αn∥ cosψdψ. (2.15)

Substituting (2.10), (2.14) and (2.15) into (2.3) gives

d1 =
dψ
v
. (2.16)

Combining (2.13) and (2.16), we have the desired formula. □

Theorem 2.7. Let α(t) be a polynomial space curve of degree n. The n-th derivative of curve can be written in term of
the basis {t,D1,D2} in the following form

α(n)(t) =
∥∥∥α(n)
∥∥∥ (sinψt + cosψD2),

where ψ =
∫

d1vdt.

Proof. By using (2.9) and (2.10) the n-th derivative of the curve can be written as

α(n)(t) = ∥αn∥ (sinψt + cosψD2.) (2.17)

By differentiating (2.17) with respect to t gives

t cosψ(dψ − vd1) + D2 sinψ(vd1 − dψ) + D1(sinψvd2 + cosψvd3) = 0.

Since the vectors t,D2 and D1 are linearly independent, the above equation is satisfied if and only if{
dψ − vd1 = 0

v sinψd2 + v cosψd3 = 0. (2.18)

From (2.12), we have sinψd2 + cosψd3 = 0, therefore the solution of the equation (2.18) is dψ − vd1 = 0, that is

ψ =

∫
d1vdt.

In addition, the tangential α(n)
T and normal α(n)

N components of the n-th derivative of the curve α(n) can be written as

α(n)(t) = α(n)
T (t)t+α(n)

N (t)D2,
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Figure 2. The circle (blue) has the same tangent (grey) and normal-like vector (red) with the curve (black).

where

α(n)
T (t) =

∥∥∥α′ ∧ α(n)
∥∥∥

∥α′∥
, α(n)

N (t) =

〈
α′, α(n)

〉
∥α′∥

.

Note that, a osculating-like plane of a curve α(t) at point t0 is the plane spanned by t(t0) and D2(t0) with normal vector
D1(t0). The equation of osculating-like plane is given by

⟨X − α(t0),D1(t0)⟩ = 0.

It follows that [
X − α(t0), α′(t0), α(n)(t0)

]
= 0,

where X = (x, y, z) is the coordinate system. □

Now we can give the geometric meaning of the n-th derivative of a polynomial space curve of degree n.

Theorem 2.8. Let α(t) : I → R3 be a polynomial space curve of degree n. A new circle β(ψ) with radius ∥αn∥ can be
parametrized by

β(ψ) = p0 −
∥∥∥α(n)
∥∥∥ (sin(ψ)t(t0) + cos(ψ)D2(t0)) (2.19)

in the osculating-like plane of the curve at the point t0 ∈ I and the center of the circle p0 is given by

p0 = α(t0) +
∥∥∥α(n)
∥∥∥D2(t0)

In Figure 2, the circle has the same tangent and normal-like vectors with the curve at the point t0.

Proof. If ψ = 0, then we have β(0) = p0 − ∥α
n∥D2(t0) = α(t0) which implies

p0 = α(t0) +
∥∥∥α(n)
∥∥∥D2(t0).

Differentiating (2.19) with respect to ψ gives

β′(ψ) = −
∥∥∥α(n)
∥∥∥ (dψ cos(ψ)t(t0) + dψ sin(ψ)D2(t0)),

which implies that the tangent vector tβ of the circle coincides with the tangent vector of the curve as follows

tβ(0) =
β′(0)
∥β′(0)∥

= t(t0),

and this concludes that the curve and circle have the common normal-like vector D2(t0). □

Note that, the new circle is the unique circle which passes through t0, has the same tangent in t0 as α as well as the
same curvature d1, and whose center lies in the direction of the unit normal-like vector.
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Figure 3. The curve α(t) = (t, t, t3/10) with two circles at the points t0 = −1.3 and t0 = 0.9

(a) The curve a(t) = (t, t2, t3/10) with circles. (b) The curve a(t) = (t, t2, t3/30) with circles.

Figure 4. The circles at the points t=-1.3 and t=0.9. The effect of of leading coefficients.

Corollary 2.9. Let α(t) be a polynomial space curve of degree n parametrized by

α(t) = (
n∑

i=0

aiti,

n∑
i=0

biti,

n∑
i=0

citi),

where ai, bi and ci are coefficients.
The circle β(ψ) can be characterized by the following properties:

• Since the radius of the circle is
∥∥∥α(n)
∥∥∥ = n!c where c =

√
a2

n + b2
n + c2

n, the radius of the circle is constant.
Figure 3 demonstrated that just the position of the circle changes when the circle moves along the curve.
• The radius of the circle is just depend on leading coefficients an, bn or cn and degree of the curve.
• This circle is a global property of polynomial space curves. For the curves have the same degree, if c de-

creases then the radius of the circle decreases. The Figure 4 demonstrates that if c decrease then the curve
approximates the osculating-like plane.

Theorem 2.10. The Darboux vector dFlc of the Flc-frame can be obtained as in the following form

dFlc = v(d3t − d2D2 + d1D1).

Proof. The variation of the Flc-frame in terms of its Darboux vector dFlc can be written as

t′ = dFlc ∧ t,D′2 = dF ∧ D2,D′1 = dF ∧ D1. (2.20)

Since {t,D2,D1} are mutually orthogonal, they form a basis for the vector fields along. Hence, there exist functions
a,b, c such that

dFlc = at + bD2 + cD1. (2.21)
Thus, from (1.2), (2.20) and (2.21) we have

dFlc = v(d3t − d2D2 + d1D1).



M. Dede, Turk. J. Math. Comput. Sci., 15(2)(2023), 414–422 421

□

It is easy to see that, the Darboux vector dFlc of the Flc-frame does not satisfy ⟨dFlc, t⟩ = 0, therefore it is not a
RMF.

Thus, the instantaneous angular speed of the Flc-frame is calculated as follows

∥dFlc∥ = v
√

d2
1 + d2

2 + d2
3 .

In this section we will compare the angular speed of the frames: Frenet ∥dF∥ = v
√
τ2 + κ2, Bishop ∥dF∥ = v

√
κ2

and Flc-frame ∥dFlc∥ = v
√

d2
1 + d2

2 + d2
3 .

Example 2.11. Let us consider a curve given by

α(t) = (2t, t2, t3).

In Figure 5, we are able to compare the instantaneous angular speed of the Flc-frame against two standard methods
of curve framing: the RMF and the Frenet frame.

Figure 5. Comparison of the instantaneous angular speed of the Flc-frame (left), RMF (center) and
the Frenet frame (right).

Observe that although the Flc-frame is not rotation-minimizing frame with respect to t, there is almost no difference
between the instantaneous angular speeds of the frames: the RMF and the Flc-frame.

3. Conclusion

In this paper we propose a new method to examine the geometric meaning of the n-th derivative of a polynomial
space curve of degree n. Summarizing, the norm of n-th derivative of a polynomial space curve of degree n is a radius
of a circle in the osculating-like plane of the curve.
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