Turk. J. Math. Comput. Sci. 15(2)(2023) 414–422 © MatDer DOI : 10.47000/tjmcs.1127766

On Polynomial Space Curves with Flc-frame

Mustafa Dede

Department of Mathematics, Faculty of Science, Kilis 7 Aralık University, 79000 Kilis, Turkey.

Received: 08-06-2022 • Accepted: 17-07-2023

ABSTRACT. The first and second derivatives of a curve provide us fundamental information in the study of the behavior of curve near a point. However, if a curve is a polynomial space curve of degree *n*, we don't know much about the geometric meaning of the *n*-th derivative of the curve. There is no doubt that the Frenet frame is not suitable for this purpose because it is constructed by using first and second derivatives of a curve. On the other hand, in this paper by using a new frame called as Flc-frame we are able to give the geometric meaning of the *n*-th derivative of a curve. Moreover, we explore some basic concepts regarding polynomial space curves from point of view of Flc-frame in three dimensional Euclidean space.

2020 AMS Classification: 53A04, 68U05

Keywords: Frenet frame, space curve, adapted frame, polynomial curve.

1. INTRODUCTION

As far as our knowledge the geometrical significance of the *n*-th order derivative of a curve does not seem to be discussed in literature. However, there is some paper which deals with geometrical interpretation of higher order derivatives of a curve. For instance, the geometrical significance of the third derivative of a curve is discussed in [11]. The third derivative is represented geometrically in terms of the quantity called aberrancy, which measures the asymmetry of a curve about its normal [12]. But, one can ask, what exactly prevented us from accomplishing geometrical significance of the *n*-th order derivative of a curve. The major difficulty arises from the fact that we can not write the *n*-th order derivative of a curve in term of Frenet frame. It is clear that the Frenet frame is not suitable for the investigation of the geometric interpretation of higher order derivatives of a curve, we are able to give geometric interpretation of *n*-th order derivatives of a curve.

Bishop [2] showed that apart from the Frenet frame, we can construct more frame along a space curve. His approach is based on rotating the Frenet frame by an angle [7, 14]

 $\theta = -\int \tau \left\| \alpha'(t) \right\| dt.$

Despite the fact that Bishop frame is more suitable for applications [8], this frame is not an analitic frame [4]. Recently, Dede introduced a new frame along a polynomial space curve, called as Flc-frame. The computation of Flc-frame is easier than the both Frenet and Bishop frames. Moreover, the Flc-frame has less singular points than the Frenet frame. Therefore, the Flc-frame can be considered as an effective alternative to the RMF. Discussion of the Flc-frame and its

Email address: mustafadede@kilis.edu.tr (M. Dede)

application to the tube surfaces can be found in [3]. Morever, for some of the recent researchs about the Flc-frame, see [1,9,13].

Let $\alpha(t)$ be a polynomial space curve of degree *n*. The Flc-frame is given by

$$\mathbf{t} = \frac{\alpha'}{\|\alpha'\|}, \mathbf{D}_1 = \frac{\alpha' \wedge \alpha^{(n)}}{\|\alpha' \wedge \alpha^{(n)}\|}, \mathbf{D}_2 = \mathbf{D}_1 \wedge \mathbf{t},$$
(1.1)

where the prime ' indicates the differentiation with respect to t [3]. If the order of derivative exceeds three, we replaced prime by the superscript (*n*), such as $\alpha^{'''} = \alpha^{(4)}$. The new vectors **D**₁ and **D**₂ are called as binormal-like vector and normal-like vector, respectively.

The local rate of change of the Flc-frame called as the Frenet-like formulas can be expressed in the following form

$$\begin{bmatrix} \mathbf{t}' \\ \mathbf{D}'_2 \\ \mathbf{D}'_1 \end{bmatrix} = v \begin{bmatrix} 0 & d_1 & d_2 \\ -d_1 & 0 & d_3 \\ -d_2 & -d_3 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{D}_2 \\ \mathbf{D}_1 \end{bmatrix},$$
(1.2)

where $\|\alpha'\| = v$.

We may define three new invariants of the curve by

$$d_1 = \frac{\langle \mathbf{t}', \mathbf{D}_2 \rangle}{\nu}, d_2 = \frac{\langle \mathbf{t}', \mathbf{D}_1 \rangle}{\nu}, d_3 = \frac{\langle \mathbf{D}'_2, \mathbf{D}_1 \rangle}{\nu}.$$
 (1.3)

Theorem 1.1 ([3]). A polynomial space curve is a straight line if and only if the all of the curvatures vanish identically, $d_1 = d_2 = d_3 = 0$.

Theorem 1.2 ([3]). A polynomial space curve with the curvature $d_1 \neq 0$ is planar if and only if the curvatures d_2 and d_3 vanish identically, $d_2 = d_3 = 0$.

The Darboux vector of a frame also known as angular velocity is a crucial information to understand the behaviour of the frame. The Darboux vector $\mathbf{d}_F = \tau \mathbf{t} + \kappa \mathbf{b}$ of Frenet frame describes the instantaneous rate of change of each of the vectors of Frenet frame at a given instant [5]. Therefore, the instantaneous angular speed satisfies $||\mathbf{d}_F|| = \sqrt{\tau^2 + \kappa^2}$. The RMF is characterized by the fact that the Darboux vector \mathbf{d}_{RMF} of RMF satisfies $\langle \mathbf{d}_{RMF}, \mathbf{t} \rangle = 0$, that is, the normal-plane vectors have no instantaneous rotation around the tangent vector [10].

2. FLC-FRAME ALONG A POLYNOMIAL SPACE CURVE

In this chapter, we begin an investigation into the local theory of space curves by using the Flc-frame. Then, we obtain new formulas for calculating the three curvatures d_1 , d_2 and d_3 of the curve.

Theorem 2.1. Let $\alpha(t)$ be a polynomial space curve of degree *n*. The curvatures d_1, d_2 and d_3 of the curve can be computed as

$$d_1 = \frac{\left\langle \alpha' \land \alpha'', \alpha' \land \alpha^{(n)} \right\rangle}{\left\| \alpha' \right\|^3 \left\| \alpha' \land \alpha^{(n)} \right\|}, d_2 = \frac{\det[\alpha'', \alpha', \alpha^{(n)}]}{\left\| \alpha' \right\|^2 \left\| \alpha' \land \alpha^{(n)} \right\|}$$
(2.1)

and

$$d_{3} = \frac{\det[\alpha', \alpha'', \alpha^{(n)}] \left\langle \alpha', \alpha^{(n)} \right\rangle}{\|\alpha'\|^{2} \left\|\alpha' \wedge \alpha^{(n)}\right\|^{2}}.$$
(2.2)

Proof. In order to find the curvature d_1 , we first differentiate the unit tangent vector **t** in (1.1), then by substituting result in (1.3), we get

$$d_{1} = \frac{\left\langle \alpha^{\prime\prime}, (\alpha^{\prime} \wedge \alpha^{(n)}) \wedge \alpha^{\prime} \right\rangle}{\|\alpha^{\prime}\|^{3} \left\| \alpha^{\prime} \wedge \alpha^{(n)} \right\|}$$

By using the vector triple product $(\mathbf{a} \wedge \mathbf{b}) \wedge \mathbf{c} = -\mathbf{a} \langle \mathbf{b}, \mathbf{c} \rangle + \mathbf{b} \langle \mathbf{a}, \mathbf{c} \rangle$ gives

$$d_{1} = \frac{\left\|\alpha'\right\|^{2} \left\langle \alpha'', \alpha^{(n)} \right\rangle - \left\langle \alpha'', \alpha' \right\rangle \left\langle \alpha', \alpha^{(n)} \right\rangle}{\left\|\alpha'\right\|^{3} \left\|\alpha' \wedge \alpha^{(n)}\right\|}.$$
(2.3)

Thus, from the Lagrange's identity, it follows that

$$d_1 = \frac{\left\langle \alpha' \wedge \alpha'', \alpha' \wedge \alpha^{(n)} \right\rangle}{\|\alpha'\|^3 \left\| \alpha' \wedge \alpha^{(n)} \right\|}.$$

Similar to the previous case, by using a direct computation one can obtain the curvature d_2 as follows

$$d_2 = \frac{\det[\alpha^{\prime\prime}, \alpha^{\prime}, \alpha^{(n)}]}{\|\alpha^{\prime}\|^2 \|\alpha^{\prime} \wedge \alpha^{(n)}\|}$$

From (1.1) and (1.3), we have

$$d_3 = \frac{\left\langle \mathbf{D}_2', \mathbf{D}_1 \right\rangle}{\|\alpha'\|} = \frac{\left\langle \mathbf{D}_1' \wedge \mathbf{t}, \mathbf{D}_1 \right\rangle}{\|\alpha'\|}.$$

From which the curvature d_3 is given by

$$d_3 = \frac{\left\langle \mathbf{D}_1' \land \alpha', \alpha' \land \alpha^{(n)} \right\rangle}{\left\| \alpha' \right\|^2 \left\| \alpha' \land \alpha^{(n)} \right\|},$$

and therefore using Lagrange's identity, we can establish the following formula

$$d_{3} = \frac{\left\langle \mathbf{D}_{1}^{\prime}, \alpha^{\prime} \right\rangle \left\langle \alpha^{\prime}, \alpha^{(n)} \right\rangle - \left\langle \mathbf{D}_{1}^{\prime}, \alpha^{(n)} \right\rangle \left\langle \alpha^{\prime}, \alpha^{\prime} \right\rangle}{\left\| \alpha^{\prime} \right\|^{2} \left\| \alpha^{\prime} \wedge \alpha^{(n)} \right\|}.$$
(2.4)

On the other hand, by differentiating \mathbf{D}_1 in (1.1), we have

$$\mathbf{D}_{1}^{\prime} = \frac{(\alpha^{\prime\prime} \wedge \alpha^{(n)} + \alpha^{\prime} \wedge \alpha^{(n+1)})}{\left\|\alpha^{\prime} \wedge \alpha^{(n)}\right\|} - \frac{\left\|\alpha^{\prime} \wedge \alpha^{(n)}\right\|^{\prime} (\alpha^{\prime} \wedge \alpha^{(n)})}{\left\|\alpha^{\prime} \wedge \alpha^{(n)}\right\|^{2}}.$$
(2.5)

Note that the n + 1-th derivative of the curve vanishes therefore by substituting (2.5) into (2.4), we get

$$d_3 = \frac{\det[\alpha', \alpha'', \alpha^{(n)}] \left\langle \alpha', \alpha^{(n)} \right\rangle}{\left\| \alpha' \right\|^2 \left\| \alpha' \wedge \alpha^{(n)} \right\|^2}.$$

Thus, we state the following fundamental corollary.

Corollary 2.2. The curvatures d_1 , d_2 and d_3 of the Flc-frame can be computed directly from the parametric curve.

Theorem 2.3. The new curvatures d_1 , d_2 and d_3 of the curve does not depend on the parameter representation of the curve. Thus, the curvatures form a complete system of differential invariants.

Proof. Let $\beta(t)$ be a space curve of degree *n* with curvature d_1 and let $\alpha(s) = \beta(\phi(t))$ be an another parametrization of the same curve with curvature \tilde{d}_1 . Without loss of generality, we can choose $\phi(t) = s^m$. Since the degree of the curve α is n + m, we need to calculate the (n+m)-th derivative.

The first three derivatives of α are evaluated as follows:

$$\alpha' = \beta'(\phi)\phi',\tag{2.6}$$

$$\alpha^{\prime\prime} = \beta^{\prime\prime}(\phi)\phi^{\prime2} + \beta^{\prime}(\phi)\phi^{\prime\prime},$$

$$\alpha^{\prime\prime\prime} = \beta^{\prime\prime\prime}(\phi)\phi^{\prime3} + 3\beta^{\prime\prime}(\phi)\phi^{\prime}\phi^{\prime\prime} + \beta^{\prime}(\phi)\phi^{\prime\prime\prime}.$$

Similarly, n-th derivative of the curve α is obtained by

$$\alpha^{(n)} = \beta^{(n)}(\phi)\phi'^n + \frac{n(n-1)}{2}\beta^{(n-1)}(\phi)\phi'^{n-2}\phi''\dots + \beta'(\phi)\phi^{(n)}.$$

Differentiating again $\alpha^{(n)}$, then using $\beta^{(n+1)} = (0, 0, 0)$, we have

$$\alpha^{(n+1)} = n\beta^{(n)}(\phi)\phi'^{n-1}\phi' + \frac{(n+1)n}{2}\beta^{(n)}(\phi)\phi'^{n-1}\phi'' + \dots + \beta'(\phi)\phi^{(n+1)}$$

Similarly differentiating up to order m+n and using $\phi^{(n+m)} = 0$ gives

$$\alpha^{(n+m)} = \delta\beta^{(n)}(\phi), \tag{2.8}$$

(2.7)

where

$$\delta = ([n(n-1)...(n-m+1)]\phi'^{n-m}\phi'^m + n\phi'^{n-1}\phi^{(m)} + ... +)$$

Substituting (2.6), (2.7) and (2.8) into (2.1) gives

$$\widetilde{d}_{1} = \left. \frac{\phi^{\prime 4} \delta \left\langle \beta^{\prime}(\phi) \land \beta^{\prime\prime}(\phi), \beta^{\prime}(\phi) \land \beta^{(n)}(\phi) \right\rangle}{\phi^{\prime 4} \delta \left\| \beta^{\prime}(\phi) \right\| \left\| \beta^{\prime}(\phi) \land \beta^{\prime\prime}(\phi), \beta^{\prime}(\phi) \land \beta^{(n)}(\phi) \right\|} \right|_{t},$$

which implies that

$$\widetilde{d}_{1} = \left. \frac{\left\langle \beta' \land \beta'', \beta' \land \beta^{(n)} \right\rangle}{\|\beta'\| \left\| \beta' \land \beta'', \beta' \land \beta^{(n)} \right\|} \right|_{\phi(t)} = d_{1} \circ \phi(t)$$

The proof of the invariance of the curvatures d_2 and d_3 are similar.

For example, let us consider the curve given by

$$\beta(t) = (t, t^2, t^3).$$

The curveture d_1 is obtained by

$$d_1 = \frac{12t^3 + 6t}{\sqrt{4t^2 + 1}(9t^4 + 4t^2 + 1)^{3/2}}$$

For $\phi(t) = s^2$, we have another curve given by

$$\alpha(s) = (s^2, s^4, s^6).$$

Now, $\alpha(s)$ is a curve of degree six. Then, the curveture \tilde{d}_1 is obtained by

$$\widetilde{d}_1 = \frac{12s^6 + 6s^2}{\sqrt{4s^4 + 1}(9s^8 + 4s^4 + 1)^{3/2}}$$

It is easy to see that $\tilde{d_1} = d_1 \circ \phi(t)$.

Corollary 2.4. Let $\alpha(t)$ be a polynomial space curve of degree *n*. Apart from the Frenet frame, there are (n - 2) type frames which can be obtained by using this method. For example, we can obtain a new binormal vector by using the first and third derivatives of the curve. But, there is just one frame(Flc-frame) which is invariant under the reparameterization of the curve.

Corollary 2.5. *If the degree of polynomial space curve is two, then the Flc-frame coincides with the Frenet frame with curvatures* $d_1 = \kappa$, $d_2 = 0$ and $d_3 = \tau = 0$.

Theorem 2.6. Let $\alpha(t)$ be a polynomial space curve of degree *n*. The relation between curvatures d_1, d_2 and d_3 of the *Flc-frame is obtained by*

$$-\frac{(\frac{d_3}{d_2})'}{1+(\frac{d_3}{d_2})^2} = vd_1$$

Proof. Let ψ be an Euclidean angle between the normal-like vector \mathbf{D}_2 and the *n*-th derivative of the curve $\alpha^{(n)}$, shown in Figure 1, then we have

$$\left\langle \alpha^{(n)}, \mathbf{D}_{2} \right\rangle = \left\| \alpha^{(n)} \right\| \cos \psi.$$
 (2.9)

From (1.1) we see that, the vectors α^n and \mathbf{D}_1 are orthogonal and so

$$\left\langle \alpha^{(n)}, \mathbf{t} \right\rangle = \left\| \alpha^{(n)} \right\| \sin \psi,$$
 (2.10)

which implies that

$$\langle \alpha^{(n)}, \alpha' \rangle = v ||\alpha^n|| \sin \psi.$$
 (2.11)

Combining (2.1), (2.2) and (2.10), we have

$$\frac{d_3}{d_2} = -\frac{\left\langle \alpha', \alpha^{(n)} \right\rangle}{\left\| \alpha' \wedge \alpha^{(n)} \right\|} = -\tan\psi.$$
(2.12)

FIGURE 1. The angle between the vectors \mathbf{D}_2 and $\alpha^{(n)}$.

It follows that,

$$\psi = \arctan(-\frac{d_3}{d_2}),$$

and differentiating the above equation yields

$$d\psi = -\frac{(\frac{d_3}{d_2})'}{1 + (\frac{d_3}{d_2})^2}.$$
(2.13)

On the other hand by using $\alpha' = v\mathbf{t}$ and $\alpha'' = v'\mathbf{t} + v^2(d_1\mathbf{D}_2 + d_2\mathbf{D}_1)$, we have

$$\langle \alpha'', \alpha' \rangle = v'v. \tag{2.14}$$

Differentiating (2.11) yields

$$\left\langle \alpha^{\prime\prime}, \alpha^{(n)} \right\rangle = v^{\prime} \left\| \alpha^{n} \right\| \sin \psi + v \left\| \alpha^{n} \right\| \cos \psi d\psi.$$
(2.15)

Substituting (2.10), (2.14) and (2.15) into (2.3) gives

$$d_1 = \frac{d\psi}{v}.\tag{2.16}$$

Combining (2.13) and (2.16), we have the desired formula.

Theorem 2.7. Let $\alpha(t)$ be a polynomial space curve of degree *n*. The *n*-th derivative of curve can be written in term of the basis {**t**, **D**₁, **D**₂} in the following form

$$\alpha^{(n)}(t) = \left\|\alpha^{(n)}\right\| (\sin\psi \mathbf{t} + \cos\psi \mathbf{D}_2),$$

where $\psi = \int d_1 v dt$.

Proof. By using (2.9) and (2.10) the *n*-th derivative of the curve can be written as

$$\alpha^{(n)}(t) = \|\boldsymbol{\alpha}^n\| \left(\sin\psi \mathbf{t} + \cos\psi \mathbf{D}_2\right)$$
(2.17)

By differentiating (2.17) with respect to *t* gives

$$\mathbf{t}\cos\psi(d\psi-vd_1)+\mathbf{D}_2\sin\psi(vd_1-d\psi)+\mathbf{D}_1(\sin\psi vd_2+\cos\psi vd_3)=0.$$

Since the vectors \mathbf{t}, \mathbf{D}_2 and \mathbf{D}_1 are linearly independent, the above equation is satisfied if and only if

$$\begin{cases} d\psi - vd_1 = 0 \\ v\sin\psi d_2 + v\cos\psi d_3 = 0. \end{cases}$$
(2.18)

From (2.12), we have $\sin \psi d_2 + \cos \psi d_3 = 0$, therefore the solution of the equation (2.18) is $d\psi - vd_1 = 0$, that is

$$\psi = \int d_1 v dt.$$

In addition, the tangential $\alpha_T^{(n)}$ and normal $\alpha_N^{(n)}$ components of the *n*-th derivative of the curve $\alpha^{(n)}$ can be written as

$$\alpha^{(n)}(t) = \alpha_T^{(n)}(t)\mathbf{t} + \alpha_N^{(n)}(t)\mathbf{D}_2,$$

FIGURE 2. The circle (blue) has the same tangent (grey) and normal-like vector (red) with the curve (black).

where

$$\alpha_T^{(n)}(t) = \frac{\left\|\alpha' \wedge \alpha^{(n)}\right\|}{\|\alpha'\|}, \alpha_N^{(n)}(t) = \frac{\left\langle\alpha', \alpha^{(n)}\right\rangle}{\|\alpha'\|}$$

Note that, a osculating-like plane of a curve $\alpha(t)$ at point t_0 is the plane spanned by $\mathbf{t}(t_0)$ and $\mathbf{D}_2(t_0)$ with normal vector $\mathbf{D}_1(t_0)$. The equation of osculating-like plane is given by

$$\langle X - \alpha(t_0), \mathbf{D}_1(t_0) \rangle = 0.$$

It follows that

$$\left[X - \alpha(t_0), \alpha'(t_0), \alpha^{(n)}(t_0)\right] = 0,$$

where X = (x, y, z) is the coordinate system.

Now we can give the geometric meaning of the *n*-th derivative of a polynomial space curve of degree *n*.

Theorem 2.8. Let $\alpha(t) : I \to R^3$ be a polynomial space curve of degree *n*. A new circle $\beta(\psi)$ with radius $||\alpha^n||$ can be parametrized by

$$\beta(\psi) = p_0 - \left\| \alpha^{(n)} \right\| \left(\sin(\psi) \mathbf{t}(t_0) + \cos(\psi) \mathbf{D}_2(t_0) \right)$$
(2.19)

in the osculating-like plane of the curve at the point $t_0 \in I$ and the center of the circle p_0 is given by

$$p_0 = \alpha(t_0) + \left\| \alpha^{(n)} \right\| \mathbf{D}_2(t_0)$$

In Figure 2, the circle has the same tangent and normal-like vectors with the curve at the point t_0 .

Proof. If $\psi = 0$, then we have $\beta(0) = p_0 - ||\alpha^n|| \mathbf{D}_2(t_0) = \alpha(t_0)$ which implies

$$p_0 = \alpha(t_0) + \|\alpha^{(n)}\| \mathbf{D}_2(t_0).$$

Differentiating (2.19) with respect to ψ gives

$$\beta'(\psi) = -\left\|\alpha^{(n)}\right\| (d\psi \cos(\psi)\mathbf{t}(t_0) + d\psi \sin(\psi)\mathbf{D}_2(t_0)),$$

which implies that the tangent vector \mathbf{t}_{β} of the circle coincides with the tangent vector of the curve as follows

$$\mathbf{t}_{\beta}(0) = \frac{\beta'(0)}{\|\beta'(0)\|} = \mathbf{t}(t_0)$$

and this concludes that the curve and circle have the common normal-like vector $\mathbf{D}_2(t_0)$.

Note that, the new circle is the unique circle which passes through t_0 , has the same tangent in t_0 as α as well as the same curvature d_1 , and whose center lies in the direction of the unit normal-like vector.

419

FIGURE 3. The curve $\alpha(t) = (t, t, t^3/10)$ with two circles at the points $t_0 = -1.3$ and $t_0 = 0.9$

(a) The curve $a(t) = (t, t^2, t^3/10)$ with circles. (b) The curve $a(t) = (t, t^2, t^3/30)$ with circles. FIGURE 4. The circles at the points t=-1.3 and t=0.9. The effect of of leading coefficients.

Corollary 2.9. Let $\alpha(t)$ be a polynomial space curve of degree n parametrized by

$$\alpha(t) = (\sum_{i=0}^{n} a_i t^i, \sum_{i=0}^{n} b_i t^i, \sum_{i=0}^{n} c_i t^i),$$

where a_i, b_i and c_i are coefficients.

The circle $\beta(\psi)$ *can be characterized by the following properties:*

- Since the radius of the circle is $\|\alpha^{(n)}\| = n!c$ where $c = \sqrt{a_n^2 + b_n^2 + c_n^2}$, the radius of the circle is constant. Figure 3 demonstrated that just the position of the circle changes when the circle moves along the curve.
- The radius of the circle is just depend on leading coefficients a_n, b_n or c_n and degree of the curve.
- This circle is a global property of polynomial space curves. For the curves have the same degree, if c decreases then the radius of the circle decreases. The Figure 4 demonstrates that if c decrease then the curve approximates the osculating-like plane.

Theorem 2.10. The Darboux vector \mathbf{d}_{Flc} of the Flc-frame can be obtained as in the following form

$$\mathbf{d}_{Flc} = v(d_3\mathbf{t} - d_2\mathbf{D}_2 + d_1\mathbf{D}_1).$$

Proof. The variation of the Flc-frame in terms of its Darboux vector \mathbf{d}_{Flc} can be written as

$$\mathbf{t}' = \mathbf{d}_{Flc} \wedge \mathbf{t}, \mathbf{D}'_2 = \mathbf{d}_F \wedge \mathbf{D}_2, \mathbf{D}'_1 = \mathbf{d}_F \wedge \mathbf{D}_1.$$
(2.20)

Since $\{\mathbf{t}, \mathbf{D}_2, \mathbf{D}_1\}$ are mutually orthogonal, they form a basis for the vector fields along. Hence, there exist functions *a*,*b*, *c* such that

$$\mathbf{d}_{Flc} = a\mathbf{t} + b\mathbf{D}_2 + c\mathbf{D}_1. \tag{2.21}$$

Thus, from (1.2), (2.20) and (2.21) we have

$$\mathbf{d}_{Flc} = v(d_3\mathbf{t} - d_2\mathbf{D}_2 + d_1\mathbf{D}_1).$$

It is easy to see that, the Darboux vector \mathbf{d}_{Flc} of the Flc-frame does not satisfy $\langle \mathbf{d}_{Flc}, \mathbf{t} \rangle = 0$, therefore it is not a RMF.

Thus, the instantaneous angular speed of the Flc-frame is calculated as follows

$$\|\mathbf{d}_{Flc}\| = v \sqrt{d_1^2 + d_2^2 + d_3^2}.$$

In this section we will compare the angular speed of the frames: Frenet $\|\mathbf{d}_F\| = v \sqrt{\tau^2 + \kappa^2}$, Bishop $\|\mathbf{d}_F\| = v \sqrt{\kappa^2}$ and Flc-frame $\|\mathbf{d}_{Flc}\| = v \sqrt{d_1^2 + d_2^2 + d_3^2}$.

Example 2.11. Let us consider a curve given by

$$\alpha(t) = (2t, t^2, t^3).$$

In Figure 5, we are able to compare the instantaneous angular speed of the Flc-frame against two standard methods of curve framing: the RMF and the Frenet frame.

FIGURE 5. Comparison of the instantaneous angular speed of the Flc-frame (left), RMF (center) and the Frenet frame (right).

Observe that although the Flc-frame is not rotation-minimizing frame with respect to \mathbf{t} , there is almost no difference between the instantaneous angular speeds of the frames: the RMF and the Flc-frame.

3. CONCLUSION

In this paper we propose a new method to examine the geometric meaning of the n-th derivative of a polynomial space curve of degree n. Summarizing, the norm of n-th derivative of a polynomial space curve of degree n is a radius of a circle in the osculating-like plane of the curve.

CONFLICTS OF INTEREST

The author declares that there are no conflicts of interest regarding the publication of this article.

AUTHORS CONTRIBUTION STATEMENT

The author has read and agreed to the published version of the manuscript.

References

- Ayvacı, K.H., Senyurt, S., Canlı, D., Some characterizations of spherical indicatrix curves generated by Flc frame, Turk. J. Math. Comput. Sci., 13(2021), 379–387.
- [2] Bishop, R.L., There is more than one way to frame a curve, Amer. Math. Monthly, 82(1975), 246–251.
- [3] Dede, M., A new representation of tubular surfaces, Houston Journal of Mathematics, 45(2018), 707–720.
- [4] Dede, M., Ekici, C., Görgülü, A., Directional q-frame along a space curve, IJARCSSE, 5(2015), 775–780.
- [5] Farouki, R. T., Pythagorean-Hodograph Curves: Algebra and Geometry, Springer, 2008.
- [6] Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition, CRC Press, Boca Raton, 1998.
- [7] Guggenheimer, H., Computing frames along a trajectory, Comput. Aided Geom. Des., 6(1989), 77–78.
- [8] Jüttler, B., Mäurer, C., Cubic Pythagorean Hodograph spline curves and applications to sweep surface modeling, Comput. Aided Design, 31(1999), 73–83.
- [9] Li, Y., Eren, K., Ayvacı, K.H., Ersoy, S., Simultaneous characterizations of partner ruled surfaces using Flc frame, AIMS Math., 7(2022), 20213–20229.
- [10] Ravani, R., Meghdari A., Ravani, B., *Rational Frenet-Serret curves and rotation minimizing frames in spatial motion design*, IEEE international conference on Intelligent engineering systems, (2004), 186–192.
- [11] Schot, S.H., Geometry of the third derivative, Mathematics Magazine, 51(1978), 259–275.
- [12] Schot, S.H., Geometrical properties of the penosculating tonics of a plane curve, Amer. Math. Monthly, 82(1979), 449–457.
- [13] Senyurt, S., Ayvacı, K.H., On geometry of focal surfaces due to Flc frame in Euclidean 3-space, Authorea, (2022).
- [14] Wang, W., Juttler, B., Zheng, D., Liu, Y., Computation of rotation minimizing frame, ACM Trans. Graph., 27(2008), article no. 2.