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Abstract 

We display the power Topp-Leone (PTL) distribution with two parameters. The following major 

features of the PTL distribution are investigated: quantile measurements, certain moment’s 

measures, residual life function, and entropy measure. Maximum likelihood, least squares, 

Cramer von Mises, and weighted least squares approaches are used to estimate the PTL 

parameters. A numerical illustration is prepared to compare the behavior of the achieved 

estimates. Data analysis is provided to scrutinize the flexibility of the PTL model matched with 

Topp-Leone distribution. 
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1. INTRODUCTION 

 

The origin of Topp-Leone (TL) distribution can be referred to [1] who introduced it. They obtained 

moments of the TL distribution as well as modeled it for some failure data. General formulae for some 

measures of moments and  hazard rate function (hrf) motivation to the distribution have been discussed in 

[2]. [3] proposed the reflected generalized TL model, explored its properties and applied financial data in 

fitting income distribution. Some reliability measures of the TL model have been studied in [4]. Formulae 

of single and product moments based on order statistics were given in [5].  

 

The density function of the TL distribution is J-shaped. A TL distribution's probability density function 

(pdf) is denoted by 

 
-1 1(1 )(2 ) , 0 1,( ; ) = 2  > 0.z z zf z z    −− −    (1) 

 

The cumulative distribution function (cdf) related to Equation (1) is given by:  

 

( ; ) (2 ) .F z z z  = −  (2) 

 

Constructions of the TL distribution have been found to be useful in several fields. Many efforts have been 

made by notable authors to propose new generalized and extended forms of TL model,  for instance; TL 

inverse Weibull distribution [6]; TL geometric distribution [7], TL Nadarajah-Haghighi distribution [8], 
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TL linear exponential distribution [9], new power TL (PTL) family [10], type II generalized TL family 

[11], type II PTL family [12], TL odd Fréchet distribution [13], inverse TL distribution [14] transmuted TL 

power function distribution [15], and TL inverse Lomax distribution [16] among others. 

 

However, besides TL distribution there exist several unit distributions proposed recently by many 

researchers including;  unit Johnson SU distribution [17], unit generalized half normal distribution [18], 

logit slash distribution [19], truncated power Lomax distribution [20], and unit Burr-XII distribution [21]. 

So, the main aim here is to provide a new unit model related to the TL with an extra shape parameter, the 

so-called PTL distribution using the transformation, 
1

,T Z =  where Z has TL distribution. The 

motivations of new distribution are (i) to give more desirable properties due to the extra parameter; (ii) to 

yield more flexibility in the form of its hrf and pdf, (iii) to produce kurtosis flexibility of the PTL 

distribution than the base TL model. In addition to real data analysis, properties and parameter estimates 

utilising maximum likelihood (ML), least squares (LS), weighted least squares (WLS), and Cramer-von-

Mises (CV) techniques are considered. 

 

The following sections are included in the paper's layout. Section 2 defines the PTL distribution. Section 3 

investigates the statistical characteristics of the PTL distribution. ML, LS, WLS, and CV estimators for 

model parameters are developed in Section 4. Section 5 includes a numerical inquiry. Section 6 contains 

data analysis. The essay concludes with a summary and conclusion. 

 

2. GENESIS OF POWER TOPP-LEONE DISTRIBUTION 

 

Herein, we contribute to the notion of PTL distribution.  

 

Definition:  

 

If we use the power transformation 
1

,T Z = and Z is a TL distribution with density function, we may say 

that a random variable T has the power TL (PTL) distribution. The cdf of the PTL distribution with shape 

parameters  and  , denoted by T ~ PTL ( , )  , is as follows: 

 
1 1 1

) ( ) ( ),( ; , ) ( ) ( Zt P Z t F tF t P T t P Z      =  ==  =  
 

where 
1

( )ZF t   is the cdf of TL distribution. Hence the cdf of the PTL distribution is written as: 

 

( ; , ) (2 ) ; 0  1, , 0.F t t t t     = −     (3) 

 

The pdf of the PTL distribution corresponding to Equation (3) is formed as follows: 

 
1 1(1 )( ; , ) 2 (2 ) ; 0  1, , 0.t tf t t t      − − −= −     (4) 

 

For, 1 = , the pdf in Equation (4) yields the TL distribution. Plots of density for particular parameter 

values are exhibited in Figure 1. It is pdf is a very flexible model with diverse shapes. 
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Figure 1. The PTL model's pdf plots for various parameter values 

 

The survival function ( ; , ),S t   the hrf ( ; , )t   and the cumulative hrf ( ; , )t   of the PTL distribution 

are respectively, given by: 

( ; , ) 1 (2 ) ,tS t t    = − −  

 
1

1 1(1 ) ,( ; , ) 2 (2 ) 1 (2 )tt t t t t        
−

− −= −− − −  

and, 

ln .( ; , ) 1 (2 )tt t      = −  − −  

 

Plots of the hrf are demonstrated for specific parameters value in Figure 2. We conclude that the hrf earns 

various shapes so it can be modeled for different real data. 
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Figure 2. The PTL model's hrf plots for various parameter values 

 

3. SOME OF ESSENTIAL PROPERTIES  

 

Herein, the pivotal characteristics of the PTL distribution are formulated. 

 

3.1. Moments 

 

An explicit expression of the rth moment for the PTL is produced from (4) as follows 
1

1

0

1(1 ) .2 (2 )r
r t t dtt    + − − = −−  

   (5) 

Suppose that, y =t , then Equation (5) will be as follows 

( )1
1

0

1(1 ) .2 (2 )
r

r y y y dy    + − − = −−  

(6) 

Let, z =1− y , and by using the binomial expansion, then Equation (6) will be simplified to 

( )

( )

1
1

1

0 0

0

1
(1 )

1
, 2 .

2

2

r
q

r

q

q

z z dz
q

r q
q















 + −
+

=


=

− 
 = − 

 
− 

=  + + 
 

 


 

(7) 

 

Setting r =1, 2, 3, 4 in Equation (7), we obtain the first four moments about zero. Furthermore, based on 

(7), the moment generating function of the PTL distribution is provided by: 

0 , 0

1
( ) , 2 .

! !

2r r

t r

r r q

x r
M x q

qr r

x 
 



 

= =

−   
= =  + +   

  
   

 

The rth central moment ( r ) of T is given by: 

1 1

0

( ) ( 1) ( ) .
r

r
r r

r
E T    −

=

 
  = − = −  

 
  

Moments values of order 1− 4,  variance ( ), skewness (Sw) and kurtosis(Kr) of the PTL distribution for 

specific parameters values (a) ( 0.3, 0.8), = =  (b)  ( 0.3, 1.5), = = (c) ( 0.3, 2.5), = = (d) 

( 1.5, 0.8), = = (e) ( 1.5, 1.5), = =  (f) ( 1.5, 2.5), = =  and (g) ( 2.5, 0.8), = =  are recorded 

(Table 1).  
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Table 1. Some Moments Measures for Assigned Parameters Values 

s  (a) (b) (c) (d) (e) (f) (g) 

 1  0.113 0.223 0.346 0.346 0.53  0.442 

 2  0.045 0.104 0.186 0.173 0.328 0.477 0.244 

 3  0.024 0.061 0.118 0.103 0.222 0.358 0.154 

 4  0.015 0.041 0.083 0.068 0.16 0.278 0.105 

 0.032 0.054 0.066 0.053 0.046 0.031 0.049 

Sw 2.092 1.094 0.485 0.531 -0.088 -0.481 0.216 

Kr 7.088 3.272 2.163 2.4 2.206 2.669 2.216 

 

It is reported from Table 1 that the values of 1  and  get larger for increasing values of   and  . The 

behavior of distribution is left-skewed, right-skewed, and leptokurtic.  

 

Next, sth incomplete moment of T represented by ( ) ( )s
s t E X X t =   is derived from Equation (4) as 

follows: 

1 1

0 0

1 1( ) ( 2 2 .2) (1 ) (1 )
t t

s s
s t x dx x dxx x        + − + + −− −

  
= − 

  

− −   

(8) 

Let, y = 2x   , then Equation (8) will be formed as follows: 

( ) ( )
2 22 1 2 1

0 0

2

1 1( )

( ) ( )
( , , ) 2 ( 1, , ) ,

2 2

2 (1 ) 2 (1 )

2

t t
s s s s

s

s

t y y dy y y dy

s t s t

 

   
   

 


  

   
 





+ + − + + +

+

− −= −

 
=  + −  + + 

 

− − 

 

(9) 

 

where (.,., )B t  is the incomplete beta function. The Bonferroni and Lorenz curves are two notable 

applications of incomplete moments. The PTL model's Lorenz and Bonferroni curves are given by: 
12 1 1

1

0

( , ,( ) 2) 2 ( 1, ,( ) 2)
( ) ,

1
( , 2)

2

q

t t
LZ t

q
q

        


 

−+ − −


−

=

  + −  + + 
=

− 
 + + 

 


 

and, 

1
( ) ( ).(2 )BF t t LZ tt   −

 =  −
 

 
3.2. Residual and Reversed Residual Life Functions  
 

The nth moment of the residual lifetime (MRL) is specified as follows: 

( )
1

( ) ( ) ( ) ( ) .n
n

t

t S t x t f x dx


−
= −  

(10) 

 

the nth MRL of PTL model is given by applying binomial expansion and pdf (Equation 4) in Equation (10),  
1

1

0

1( ) ( 1) (1 ) .
( ; , )

2
(2 )

n
n r n r r

n

r t

n
t t x x dx

rS t
x  

 

 − − + −

=

− 
= − − 

 
−   

(11) 

Let, y = ,x   then Equation (11) is as follows: 
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1 1

0

1( ) ( 1) (1 ) .
( ; , )

2
(2 )

rn
n r n r

n

r t

n
t t y y dy

rS t
y




 

 

 + −
− −

=

− 
= − − 

 
−   

After simplification, the nth MRL of the PTL distribution holds the form as follows: 

 

0 0

1
( ) ( 1) , 2,(1 ) ,

( ; , )

2 n
n r n r

n

r p

n r
t t p t

p rS t




 
  

 
− −

= =

−    
= −  + + −    

   
   

(12) 

where, B(.,.,x) denotes the incomplete beta function. When we put 1n = in (12), we get the mean residual 

life of the PTL distribution, which is important in a number of disciplines such as industrial dependability 

and biological science, among others. 

Furthermore, the nth moment of reversed residual life (RRL) may be calculated as follows: 

0

1
( ) ( ) ( ) .

( )

t
n

n t x t f x dx
F t

 = −  

Using binomial series and density (Equation 4), the nth moment of the RRL of the PTL distribution is 

generated as 

 

( ) ( ) ( )2

0

1
( ) 1 , , 2 1, , .

2 2( ; , )
2

n nn r n r
n

r

n
t tn nt t

rF t

      
  


+− −

=

   
−  + −  + +     

  
(13) 

 

The mean of RRL is given by setting 1n = in Equation (13). 

 

3.3. Rényi Entropy 

 

Measure of uncertainty of  T is called the entropy. The Rényi entropy of T for continuous random variable 

with range R is given by: 

 

 ( ) 1 (1 ) ln ( ) , 1, 0.R

R

T f t dt   
  

= −   
  
  

(14) 

 

The pdf;
 
( ( ; , )) ,f t    of the PTL distribution can be formed as follows: 

 

  ( ) ( 1)
( 1)

( ; , ) 1 .2 2f t t tt
     

 
   −

−
   = −   −  

(15) 

 

Substituting Equation (15) in Equation (14) and let, y =t , then Equation (14) will be as follows: 

 

   
( 1) 11 1

1 1

0

( 1)
( ) (1 ) ln ( 1 .2 ) 2R T y y dyy

 
    

  

− +
−

− − −
 
 

= − − 
  

−
 (16)

  

Using, z =1− y , and binomial expansion, then the Rényi entropy of the PTL is 

 

1 1

0

( 1) ( 1) 1
( ) (1 ) ln ( , 1 .2 )R

j

T j
j

 
   

   





− −

=

 −   − + 
= −  + +    

    


 
3.4. Quantile Measures 

 

The quantile function of the PTL distribution, say Q(p)=F-1(p), of T is produced by inverting Equation (3) 
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as below: 
1

0.5
1

( ) 1 1 ,     Q p p



 
= − − 

 
 

 

where p is a uniform random variable defined on (0,1). The Bowley skewness (BO) and Moors kurtosis 

(MO), based on quantiles, are given by 

 

BO =[Q (0.75) – 2 Q (0.5) + Q (0.25)] [ Q (0.75) – Q (0.25)] – 1, 

and, 

MO =Q (78) – Q (58) – Q (38) + Q (18)[ Q (68) – Q (28)] -1, 

 

where Q(.) denotes the quantile function. The BO and MO plots for specific values of   as function of   

are represented in Figure 3.  

 

 
Figure 3. (a) BO Plots (b) MO plots of the PTL distribution for some values of   

 

3.5. Stochastic Ordering 
 

Let T and Z are independent random variables with cdfs FT and FZ respectively, T is said to be less than Z 

if the following conditions are met: 

▪ Stochastic order (T sr   Z), if FT (t).tfor all  )t( ZF     

▪ Likelihood ratio order (T.t is decreasing in ( ) ( )T Zf t f t if ), Z lr    

▪ Hazard rate order (T hr   Z), if hT(t).t for all )t( Zh     

▪ Mean residual life order (T.t for all )t( Zm  )t( Tmif ), Z mrl    

(see [22]).  

 

Theorem 1: Let T∼ PTL ( 1  1 ) and Z ∼ PTL ( 2  2 ). If 1 2 
 
 and 1 2 ,  = = then T lr  Z,

 
T

 
Z, hr   

T mrl   Z,
 
and T.Z sr  .   

Proof. 

It is adequate to verify ( ) ( )T Zf t f t  is a non-increasing function of t; the likelihood ratio is 

 

( )

( )

1 2 1 1

2 2

( )
1

2

1

1

(1 )
.

(1 )

(2 )

(2 )

T

Z

f t t t

f t t

t

t

    

 









− −

−

−
=

−

−

−
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Therefore, 

( )

( )

1 2 1 2

1 2 1 2

1 1 1 1
1 2 1 2 1 2log ( 1) 0.

2 2 1 1

T

Z

f t t t t td

dt f t t t t t t

   

   

     


− − − −   −
= − − + − −    

− − − −   

   

 

Thus, ( ) ( )T Zf t f t  is a non-increasing  in t and hence T
 lr Z. Likewise, we conclude for T hr   Z, T mrl   

Z, and T.Z sr  .   

 

3.6. Stress-Strength Model 

 

Here, the stress-strength reliability parameter, denoted by R, is obtained. Let T1 ~ PTL 1( , )  and T2 ~ PTL

2( , )  are independent. The reliability parameter R, of the PTL distribution is obtained as follows: 

 

1 12 2
1

1 1 1

0
2  (2 ) (1 ) .R t t t dt       

++ − −= − −  
(17) 

 

Let z (1 ),t = −  then Equation (17) is as follows: 

1 2 1 2 1
1

1 2
1 1 2

0

1
1

0
2

1
2 ( , 2).

(1 ) (1 )

j

j
j

R z z z dz   

 
  

+ + −



=

−

+ − 
 + + 

 

= − +

= 



 
 

3.7. Order Statistics 

 

Suppose T1, T2,…, Tn is a random sample that has cdf (3) and pdf (4). Let T (1), T(2),…, T(n) be the associated 

order statistics (OS). The pdf of the mth OS is defined as: 

 

     
( )

1 1

0

!
( ) ( ) 1 ( ) ( ) ( ) ( )

( 1)!( )!m

n m
m n m m p

T p

p

n
f t F t F t f t F t f t

m n m

−
− − + −

=

= − = 
− −

  

where 
!

( 1) .
( 1)!( )!

p
m

n mn

pm n m

− 
 = −  

− −  
 It follows from Equations (3) and (4) that 

 

   

( )( )

( )

1

0

,

0

1
( ) 1

; , ,

2 2
m

n m m pm p
T

p
n m

p m

p

f t t t

f t m p

t

W

  


 


− ++ −

=
−

=

−
   = −   

= +

−


 

where, 0 1,t  1
, ,( )p m mW m p −=  +  and ( ; ( ), )f t m p + is the pdf of the PTL ~ ( ( ), ).m p +  

Specifically, the pdf of first and largest OS are obtained for 1m = and m = n respectively. 

 

4. ESTIMATION OF PARAMETERS 

 

Here, we deal with the estimation for the PTL parameters using four frequentist estimation methods. 

 

4.1. ML Estimators 

 

Let T1,T2,…,Tn is a complete random sample from the PTL distribution. The log-likelihood function of the 

PTL distribution, say lnL, for the population parameters is given by: 
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1 1 1
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i i i
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= = =

   = + − + − − + −       

The partial derivatives of lnL for   and  are: 

( )
1 1

ln
ln ln(2 ) ,

n n

i i

i i

L
n t t  

 = =

 
= + + − 

  
   

( ) ( )
1 1

(1 ) 1ln
ln ln .

(2 )(1 )

n n
i

i i i

i i i i

tL
n t t t

t t




 


 

 = =

 − +
= + −  

 − − 
   

 

Solving the non-linear equations ln 0L   =
 
and ln 0L   =

 
numerically, so we get the ML estimators 

of parameters, i.e. ̂ ˆand .  

4.2. LS and WLS Estimators 

 

The LS technique is suggested for estimating distribution parameters by minimizing the sum of square 

errors between actual and anticipated data. That is to say; 

( ) ( )( )
2

( ) ( )

1

.
n

i i

i

F t FE t
=

 
 
  −
   

 

The WLS estimator of the population parameters ([23]), is yielded by minimizing the following  

 

( ) ( )( )
22

( ) ( )

1

( 1) ( 2)
,

( 1)

n

i i

i

E
n n

F t F t
i n i=

+ +  
 − +

−  

 

concerning the unknown parameters. Assume that T(1), T(2),…, T(n), are the ordered observations of the PTL 

associated with a random sample of size n, T1,T2,…,Tn. As a result,  the LS and WLS estimators of  and

  say, ,    and ,    are obtained, respectively, by minimizing the following  

( ) ( )( )

2

( )
1

( 1) ,2 i

n

i
i

t i nt 


=

− +−  

and, 

( ) ( )( )

22

( )
1

( 1) ( 2)
( 1) ,

( 1)
2 i

n

i
i

n n
t i n

i n i
t 



=

 + +
− + 

− + 
−  

owing to  and .   

 

4.3. CV Estimators 

 

This approach is classified as a sort of minimal distance estimator since it is based on the difference between 

the cdf estimate and the empirical distribution function. [24] said that the estimator's bias is lower than that 

of other minimal distance estimators. The aforementioned estimators are created by reducing 

( )( )

2

( )
1

1
CV( , ) ,

2

12

1

2
2 i

n

i
i

t
i

n n
t 


 

=

 
= +  −



− 
  


−  

owing to unkown parameters. 

 

5. SIMULATION STUDY 

 

To illustrate the behaviour of different estimates, a numerical demonstration is presented. The PTL 

distribution generates 1000 random samples of size n =50, 100 and 200. The parameter values are as 



740  Mohamed ELGARHY, Amal HASSAN, Heba NAGY/ GUJ Sci, 35(2): 731-746 (2022) 
 

 

follows, i= ( 0.5, 1), = =  ii= ( 1, 1), = =  iii= ( 1.5, 1), = =  iv= ( 0.5, 2), = =  v= ( 1, 2), = =  and 

vi= ( 1.5, 2). = = The ML estimate (MLE), LS estimate (LSE), WLS estimate (WLSE) and CV estimate 

(CVE) of   and   are computed. Then, all estimates and their mean squared errors (MSEs) are seated in 

Tables 2−7. 

 

Table 2. Different Estimates and their MSEs at ( 0.5, 1) = =  

MSE CVE MSE WLSE MSE LSE MSE MLE Parameter n 

0.495 0.669 0.301 0.584 0.289 0.559 0.454 0.711   
50 

0.564 1.161 0.513 1.214 0.829 1.319 0.487 1.119   

0.292 0.546 0.059 0.512 0.086 0.509 0.096 0.56   
100 

0.236 1.11 0.17 1.123 0.296 1.183 0.229 1.112   

0.27 0.507 0.0 0.492 0.026 0.488 0.039 0.523   
200 

0.109 1.079 0.091 1.091 0.122 1.114 0.11 1.068   

 

Table 3. Different Estimates and their MSEs at ( 1, 1) = =  

MSE CVE MSE WLSE MSE LSE MSE MLE Parameter n 

1.191 1.054 0.681 0.934 0.599 0.862 1.27 1.275   
50 

0.779 1.391 0.738 1.424 0.959 1.524 0.598 1.222   

0.331 0.869 0.197 0.833 0.263 0.816 0.373 1.055   
100 

0.307 1.308 0.273 1.285 0.32 1.338 0.198 1.143   

0.146 0.749 0.071 0.811 0.144 0.721 0.152 0.965   
200 

0.183 1.309 0.11 1.206 0.211 1.344 0.106 1.121   

 

Table 4. Different Estimates and their MSEs at ( 1.5, 1) = =  

MSE CVE MSE WLSE MSE LSE MSE MLE Parameter n 

1.734 1.422 1.114 1.243 1.067 1.143 1.184 1.495   
50 

0.763 1.423 0.738 1.479 1.076 1.601 0.594 1.344   

0.516 1.158 0.433 1.101 0.517 1.037 0.482 1.29   
100 

0.357 1.377 0.346 1.385 0.484 1.472 0.253 1.271   

0.159 1.036 0.275 1.078 0.373 1.01 0.272 1.183   
200 

0.228 1.368 0.164 1.307 0.239 1.387 0.145 1.255   

 

Table 5. Different Estimates and their MSEs at ( 0.5, 2) = =  

MSE CVE MSE WLSE MSE LSE MSE MLE Parameter n 

1.998 0.712 0.284 0.65 0.257 0.615 0.414 0.759   
50 

1.827 2.124 1.399 2.135 2.791 2.417 1.144 2.006   

2.01 0.613 0.087 0.597 0.079 0.558 0.126 0.618   
100 

0.541 1.968 0.533 2.015 0.913 2.167 0.577 2.012   

2.096 0.565 0.049 0.559 0.038 0.551 0.052 0.573   
200 

0.298 1.98 0.348 2.032 0.279 2.009 0.286 1.964   

 

Table 6. Different Estimates and their MSEs at ( 1, 2) = =  

MSE CVE MSE WLSE MSE LSE MSE MLE Parameter n 

1.512 1.195 0.557 1.036 0.842 1.019 0.994 1.333   
50 

1.925 2.335 1.688 2.455 2.599 2.62 1.185 2.15   

1.203 1.02 0.172 0.968 0.179 0.947 0.363 1.11   
100 

0.662 2.226 0.615 2.281 0.889 2.349 0.673 2.177   
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1.141 0.963 0.09 0.971 0.071 0.929 0.153 1.047   
200 

0.291 2.168 0.375 2.193 0.299 2.21 0.308 2.096   

 

Table 7. Different Estimates and their MSEs at ( 1.5, 2) = =  

MSE CVE MSE WLSE MSE LSE MSE MLE Parameter n 

2.073 1.527 1.38 1.372 1.054 1.314 1.701 1.753   
50 

2.326 2.612 2.023 2.701 3.139 2.849 1.599 2.331   

0.879 1.277 0.371 1.156 0.541 1.216 0.464 1.527   
100 

1.017 2.508 0.919 2.61 1.455 2.665 0.683 2.243   

0.781 1.219 0.276 1.124 0.211 1.206 0.225 1.476   
200 

0.542 2.444 0.554 2.542 0.507 2.445 0.394 2.183   

 

From Tables 2−7 we reach to the following: 

▪ The MSE of   and   for all estimates decrease as n increases.  

▪ Table 2 shows that  gets the smallest MSE while CVE of  takes the most MSE. Also, the WLSE 

has the least MSE of  while LSE has the most MSE at 0.5 =  and 1 = . 

▪ The MSE of ̂  decreases as   decreases for all values of   and  (see Figure 4 and Table 4). 

▪ The MSE of   decreases as   decreases for all values of   and  (see Figure 5 and Table 5). 

 

  

Figure 4. MSEs of MLE for   of the PTL 

distribution at all values of n,   and   

Figure 5. MSEs of LSE for   of the PTL 

distribution at all values of n,   and   

▪ The MSEs of the MLE, LSE, WLSE and CVE of   get the largest values for all n at 1.5 =  and 

2. =   

 





  

Figure 6. MSEs of WLE for  of the PTL 

distribution at all values of n,   and   

Figure 7. MSEs of CVE for   of the PTL 

distribution at all values of n,   and   
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▪ The MSEs of the MLE, LSE, WLSE and CVE of  get the smallest values for all n at 0.5 =  and 

1. =  

▪ The MSEs of the MLE, LSE, WLSE and CVE of   get the largest values for all n at 1.5 =  and 

2. =  While, the MSEs of the MLE, LSE, WLSE and CVE of   get the smallest values for all n 

at 0.5 =  and 1. =  

 

▪ The MSE of the WLE for  decreases as
 
  decreases for all values of 

 
  and   (see Figure 6). 

▪ The MSE of the LSE for   decreases as   decreases for all values of   and   (see Figure 7). 

6. REAL DATA ANALYSIS 

PTL model goodness-of-fit compared to several one-parameter rivals such as TL, Kumaraswamy (Ku) 

distribution, beta (B) distribution, and transmuted (TM) distribution [25]. 

To compare the competing models, the Anderson-Darling (M1) and Cramer-von Mises (M2) statistics are 

used. The model with the fewest measure values is considered sufficient for fitting the data. 

Data described in (0, 1) can be of several types, such as percentages or proportions. Based on positive 

evidence 1,..., nx x , one can suppose that a phenomena can be schemed by a random variable U, with 

1 ) ( ,..., nm sup x x=  or any reasonable bigger number indicating the upper limit of its theoretical support. 

Then we may consider the random variable X=U/m, which is specified on (0, 1). In all stages, we may 

reconstruct the distribution of U a posteriori by multiplying by m. This problem is taken into account for 

the suggested data sets. The preceding technique is used for the first data set, but the remaining two data 

sets contain proportions-like data that is originally conveyed with values in (0, 1). 

The reference [26] gave statistics on the number of times in months that renal dialysis patients were 

infected. In this data, we divide by 30 to get values between 0 and 1. As a result, the converted data is: 

 

0.08333333 0.08333333 0.11666667 0.11666667 0.11666667 0.15000000

 0.18333333 0.21666667 0.21666667 0.25000000 0.25000000 0.25000000

 0.25000000 0.28333333 0.31666667 0.35000000 0.38333333 0.41666667

 0.41666667 0.45000000 0.48333333 0.48333333 0.71666667 0.71666667

 0.75000000 0.75000000 0.85000000 0.91666667 

 

The second data set is made up of 48 rock samples taken from a petroleum reserve. The data are from 12 

core samples taken from petroleum reservoirs and analysed using four cross-sections. Permeability was 

evaluated in each core sample, and each cross-section contains the following variables: total area of pores, 

total perimeter of pores, and shape. We examine the shape perimeter using the squared (area) variable. The 

information is as follows: 

 

 0.0903296 0.2036540 0.2043140 0.2808870 0.1976530 0.3286410

 0.1486220 0.1623940 0.2627270 0.1794550 0.3266350 0.2300810

 0.1833120 0.1509440 0.2000710 0.1918020 0.1541920 0.4641250

 0.1170630 0.1481410 0.1448100 0.1330830 0.2760160 0.4204770

 0.1224170 0.2285950 0.1138520 0.2252140 0.1769690 0.2007440

 0.1670450 0.2316230 0.2910290 0.3412730 0.4387120 0.2626510

 0.1896510 0.1725670 0.2400770 0.3116460 0.1635860 0.1824530

 0.1641270 0.1534810 0.1618650 0.2760160 0.2538320 0.2004470 

The third data set comprises 20 observations of flood data and was studied in [27]. The data are scheduled 

as follows:  

 

 0.265 0.269 0.297 0.315 0.3235 0.338 0.379 0.379 0.392 0.402 0.412 0.416

 0.418 0.423 0.449 0.484 0.494 0.613 0.654 0.74. 
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The fitted pdf and cdf for the first data of PTL and other competitive models appear in Figure 8. 

 
Figure 8. Fitted pdfs and cdfs of different models for the first data 

 

Figure 8 showed that the PTL distribution is a more suitable model than the other competitive model based 

on the considered data. 

 

The MLEs and their standard errors (SEs) for of the all competitive distributions are given in Table 8. Also, 

statistic measures M1 and M2 are mentioned in the same table.  

 

Table 8. The MLEs, SEs M1 and M2 for the first data  

Model MLE & SEs M1 M2 

PTL ( , )   31.947 (130.166) 0.143 (0.323) 0.4905 0.0738 

TL ( )  1.3778 (0.2603)  0.6678 0.1066 

Ku ( )  1.6615 (0.3140)  0.6897 0.1109 

B ( )  1.3085 (0.2151)  0.6839 0.1097 

TM ( )  0.7936 (0.2721)  0.6172 0.0963 

 

The likelihood ratio (LR) test statistic to test the hypotheses H0: 1 =  versus H1: 1,   for the first data 

set 4.091, = 2
1,0.05 3.841, = so we reject the null hypothesis.  

 

Table 9. The MLE, LSE, WLSE, CVE, M1 and M2 for the second and third data sets 

 Method Estimators of  Estimators of  KS M1 M2 

Second Data ML 92.188 0.067 0.297 16.81512 1.06414 

LS 0.000188 2464 0.34557 80.68553 2.531433 

WLS 0.00043 1156 0.351 77.50397 2.488131 

CV 0.0001094 4237 0.34518 80.74911 2.53225 

Third Data ML 93.477 0.116 0.288 2.29932 0.14516 

LS 0.001199 694.971 0.331 15.0362 0.486853 

WLS 0.000321 2823 0.322 14.18765 0.47067 

CV 0.000154 5439 0.3298 15.02015 0.4861 
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Figure 9. Fitted pdfs and cdfs of PTL model under various estimation methods for the second data 

 

 
Figure 10. Fitted pdfs and cdfs of PTL model under various estimation methods for the third data 

 

In addition, it can be confirmed from Table 8 and Figure 8 that the PTL distribution is preferable than the 

competitive models for the first data since it has the minimum values of M1 and M2. Further, the second 

and third real data are used to estimate PTL parameters from different methods as provided in Table 9 and 

Figures 9 and 10. We deduce that ML estimation method is the best among the others in both real data. 

 

7. CONCLUDING REMARKS 

 

We provide a novel model, the power Topp-Leone distribution. The fundamental characteristics of the PTL 

distribution are studied. Four distinct estimating methods are used to estimate the PTL's population 

parameters. To demonstrate theoretical findings, simulation and application to real-world data are explored. 
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