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Abstract: 

Deep learning (DL) is branch of machine learning and imitates the neural activity of brain on to artificial neural 

networks. Meanwhile it can be trained to define characteristics of data such as image, voice or different complex 

patterns. DL is capable of to find solutions for complex and NP-hard problems. In literature, there are many DL 

frameworks, libraries and tools to develop solutions. In this study, the most commonly used DL frameworks such as 

Torch, Theano, Caffe, Caffe2, MXNet, Keras, TensorFlow and Computational Network Tool Kit (CNTK) are 

investigated and performance comparison of the frameworks is provided. . In addition, the GPU performances have 

been tested for the best frameworks which have been determined according to the literature: TensorFlow, Keras 

(TensorFlow Backend), Theano, Keras (Theano Backend), Torch. The GPU performance comparison of these 

frameworks has been made by the experimental results obtained through MNIST and GPDS signature datasets. 

According to experimental results TensorFlow was detected best one, while other researches in the literature claimed 

that Pytorch is better. The contributions of in this study is to eliminate the contradiction in the literature by revealing 

the cause. In this way, it is aimed to assist the researchers in choosing the most appropriate DL framework for their 

studies. 
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1. INTRODUCTION 

Technological developments have made a rapid increase in the amount of and variety of data used and 

produced. This production is occurred the big data. Big data can be grouped as structural, non-structural 

or semi-structural and it has five basic components as variety, velocity, volume, verification, and value. It 

includes volume, velocity, and variety of data. Data mining and artificial intelligence methods are used 

for processing and interpreting big data. Deep learning (DL) is a type of artificial intelligence with many 

layers used for the training of big data. DL is being used the state-of-the-art for tackling training 

problems that require processing big data like videos, images and signals. Big data is one of great 

importance in enhancement and use of DL frameworks. In Fig. 1 DL and big data relation is presented. 

As shown in Fig. 1 DL is used for processing big data like data mining and artificial intelligence. 
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Figure 1. Artificial intelligence, big data and DL relation. 

Additionally the hardware enhancements such as GPUs, developments of the DL frameworks that allow 

easily develop an efficient DL models are also quite common in widespread use of DL methods. Timeline 

showing the date of occurrence of the DL frameworks discussed in this study is given in Fig. 2. Therefore, 

in this study some of most widely used open source DL frameworks information briefly is provided. And 

highlighted the advantages and disadvantages of these frameworks by comparison with each other. 

These comparisons will be a very important guide for researchers studying on DL. 

 
Figure 2. Timeline showing the date of occurrence of the DL frameworks discussed. 

Our main motivation to carry out the study is to provide the performance information on the most used 

frameworks to guide researchers working in the field of deep learning. Especially, the performance 

results on GPU will be an important guide for researchers to choose the best frameworks. Therefore, in 

this study, detailed information about Torch, Theano, Caffe, Caffe2, MXNet, Keras, TensorFlow, 

Computational Network ToolKit (CNTK) frameworks are presented. An experimental evaluation study is 

performed by using MNIST and GPDS datasets for TensorFlow, Keras (TensorFlow Backend), Theano, 

Keras (Theano Backend), PyTorch frameworks, and performance comparisons of these frameworks are 

mentioned. 

In this study, properties of the frameworks which are introduced in section 2 are compared according to 

literature studies. Comparison results in this study will greatly contribute to the selection of a suitable 

platform for researchers to work in the field of DL. First the comparison of properties of all these 

frameworks are given in Table 1. 

 



Computers and Informatıcs 

3 

Table 1. Properties of the frameworks. Feature comparison. 

Software Caffe[1-3] Caffe2[4] 
Keras[5], 

[6] 

Microsoft 

Cognitive 

Toolkit[7-10] 

MXNet[2], 

[11] 

TensorFlow 

[2], [12]–[16] 

Theano [2], 

[17-19] 

Torch[1], [2], 

[20] 

Creator 

Berkeley 

Vision and 

Learning 

Center 

BVLC, 

NVIDIA, 

Facebook 

François 

Chollet 

Microsoft 

Research 

Apache 

Software 

Foundation 

Google 

Brain team 

Université 

de 

Montréal 

Ronan 

Collobert, 

Koray 

Kavukcuoglu, 

Clement 

Farabet 

Software 

license 
BSD license BSD license MIT license MIT license Apache 2.0 Apache 2.0 BSD license BSD license 

Platform 

Linux, 

macOS, 

Windows 

Linux, 

macOS, 

Windows 

Linux, 

macOS, 

Windows 

Windows, 

Linux 

(macOS via 

Docker on 

roadmap) 

Linux, 

macOS, 

Windows, 

AWS, 

Android, iOS, 

JavaScript 

Linux, 

macOS, 

Windows, 

Android 

Cross-

platform 

Linux, macOS, 

Windows, 

Android, iOS 

Core C++ C++ Python C++ 
Small C++ 

core library 

C++, 

Python, 

CUDA 

Python C, Lua 

Interface 

Python, 

MATLAB, 

C++ 

Python, 

MATLAB, 

C++ 

Python, R 

Python 

(Keras), C++, 

Command 

line, 

BrainScript 

(.NET on 

roadmap) 

C++, Python, 

Julia, Matlab, 

JavaScript, 

Go, R, Scala, 

Perl 

Python 

(Keras), 

C/C++, 

Java, Go, R, 

Julia 

Python 

(Keras) 

Lua, LuaJIT, C, 

utility library 

for 

C++/OpenCL 

Devices 

(Beyond CPU) 
GPU 

GPU, 

Mobile 

GPU, 

Mobile 
GPU GPU, Mobile GPU, Mobile GPU GPU/ FPGA 

Programming 

Style 
Declarative Declarative Declarative Declarative 

Imperative, 

Declarative 
Declarative Declarative Imperative 

Supported 

Architectures 
RNN, CNN RNN, CNN 

RNN, CNN, 

RBM, DBN 
RNN, CNN 

RNN, CNN, 

RBM, DBN 

RNN, CNN, 

RBM, DBN 

RNN, CNN, 

RBM, DBN 

RNN, CNN, 

RBM, DBN 

Parallel 

execution 

(multi node) 

No Yes Yes Yes Yes Yes Yes Yes 

All frameworks in Table 1 support CUDA. Features of these frameworks are not very different, but they 

can be found superior in different aspects depending on the project and equipment. For performance 

comparison of these frameworks, the studies in the literature have been investigated and compared 

according to these studies. So, there are not all the frameworks in each comparison tables and graphs. 

The Paper is organized as follows. In section 2 DL frameworks are presented. In section 3 datasets used 

in the study for comparison are mentioned. In section 4 experimental evaluation of DL frameworks are 

presented. In section 5 the study conclusion is mentioned. 

 

2. DL FRAMEWORKS 

DL frameworks in literature are Torch, Theano, Caffe, Caffe2, MXNet, Keras, TensorFlow and CNTK. These 

frameworks details are described below. 

2.1. Caffe and Caffe2 

Caffe is a framework developed in BSD-licensed C++ and uses Python and MATLAB interfaces [1], [3].  

Jia et al [3] claim that caffe can process over 40 million images a day on a single K40 or Titan GPU. In 

another study Chetlur et al [21] reported that integrating cuDNN into Caffe improves performance by 

36% on a standard model while reducing memory usage [22]. Although Caffe has some advantages such 

working well with CNN architecture, providing good performance for feedforward networks and 
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allowing fine tuning of training models without writing code precisely, it has poor documentation, and 

prove bad and bulky performance in RNN architecture and large neural networks. 

Caffe2 was developed by Yangqing Jia who is developer of Caffe. After Yangqing jia started working on 

Facebook they developed the Caffe2 framework based on caffe along with NVIDIA and Facebook. Caffe2 

improves some limitation of Caffe such as large-scale distributed training support, mobile deployment, 

new hardware support quantized computation. Caffe2 has great support from NVIDIA and has native 

Python and C++ APIs. This allows it to quickly prototype and optimize for projects easily [22]. 

2.2. Keras 

Keras is a fast growing high-level Neural Network API developed in Python language to quickly and 

easily implement DL applications. It capable of running TensorFlow, Theano or CNTK at backend [5]. The 

input data size assumed for each backend is different. Therefore, it is important to be careful when 

designing a system with keras. It is easy to find examples about the Keras coding. Keras has good 

documentation [23], [24]. 

2.3. Microsoft Computational Network ToolKit 

Computational Network Toolkit that formerly knows as known as CNTK [7] is an open-source DL 

framework which was developed by Microsoft. CNTK has a Python API over C++ code and it has not 

adopted one of the more conventional licenses, such as ASF 2.0, BSD or MIT. CNTK uses a graphical 

training method unlike other methods [10]. 

CNTK supports C# and BrainScript. They provide both high-level and low-level APIs for ease of use and 

flexibility. In a study conducted in December 2015 [8], it was tested with a system using multiple GPUs 

in a fully connected 4-layer neural network. They reported CNTK performance is much better than Caffe, 

TensorFlow, Theano and Torch [22]. 

2.4. MXNet 

MXNet is a multi-language ML library. İt combine symbolic expression with tensor process to maximize 

efficiency and flexibility. MXNet uses little memory spaces and has computationally efficiency. It runs on 

a variety of systems, from mobile devices to GPU systems [2]. MXNet provides optimized numerical 

computation via just a few lines of code in high-level languages such Python and R, for GPUs and 

distributed ecosystems. It supports two styles of programming: imperative and symbolic. Imperative 

programming uses the NDArray API and symbolic programming uses the Symbol API [11]. 

2.5. TensorFlow 

TensorFlow is a DL and ML framework which was written with a Python API over a C/C++ engine by 

Google Brain Team.  There are two main advantages: first-one is that it is continually supported by the 

developer team and second one is it works flexible via many architectures such as CNN, RNN [15], [22]. 

TensorFlow uses computational (data flow) graphs to perform operations such as computation and 

shared state [12], [16]. In 2016, Goldsborough [15] published a comprehensive article that introduces 

TensorFlow’s basic computation paradigms, distributed execution model, programming interface, and 

accompanying visualization tools. Another advantage of TensorFlow is that the tensor processing units 

(TPUs) specially designed for DL and ML projects by Google. TPU is a type of processor designed for 

helping to achieve larger amounts of low-level processing simultaneously [12], [25]. In 2017, Jouppi et 

al [25] introduced TPUs and compared the performance of TPUs with contemporary CPUs and GPUs. 
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2.6. Theano 

Theano is developed in the Python programming language by the Montreal Institute of Learning 

Algorithms (MILA). Many functional features of NumPy, Theano also offers GPU support and faster 

expression evaluation. It is a general mathematical tool, but it has been developed to facilitate research 

in DL. Theano is open source software, distributed under the BSD license [17], [26]. In 2012, Bergstra et 

al [18] introduced new features such Scan Op., R-operator for Hessian-Free optimization, lazy evaluation-

CVM, parallelism on CPU. 

Various software packages such as Pylearn2 [27], Blocks [28], Lasagne [29], and Keras [5] have been 

developed to improve the strengths of Theano so far. In 2016, Theano development team published a 

comprehensive article about the developments and talents of Theano [30]. Theano has been active and 

continuously developed since 2008, with a large number of superstructures built up and used in many 

modern machine learning models. However, Yoshua Bengio [31], one of Theono's developers, in 2017 

announced the development in Theano would end. 

2.7. Torch 

Torch is an API written in Lua and it is a computational framework. Torch uses array or Tensor to perform 

many operations. These operations include indexing, slicing, cloning, resizing, storage sharing. Torch's 

Python version is PyTorch, developed in 2017 by Facebook and using dynamic graphics which lets 

process variable-length inputs and outputs. This feature has provided the PyTorch to spread rapidly and 

be accepted by academic circles [16], [20]. 

 

3. DATASETS 

The datasets used for DL frameworks performance comparison in this study is detailed below. These 

datasets are MNIST and GPDS signature. 

3.1. MNIST 

The MNIST dataset of handwritten digits is a subset of a larger set available from NIST. It is composed 

of 70,000 handwritten digit images which have 28x28 pixel size.  It has a training set of 60,000 examples, 

and a test set of 10,000 examples. But in this study, it was used 50,000 for training, 10,000 for validation 

and 10,000 for test. 

3.2. GPDS signature 

The GPDS dataset is acquired from “Instituto Universitario para el Desarrollo Tecnológico y la Innovación 

en Comunicaciones (IDeTIC)”. It contains 4 different signature datasets: GPDS960signature, 

4NSigComp2010 Scenario 2, GPDS960GRAYsignature, GPDSsyntheticSignature. In the study 

GPDSsyntheticSignature [32] dataset was used for comparison. GPDSsyntheticSignature dataset consists 

of signatures of 4000 different individuals.  Every individual has 24 genuine signatures and 30 forged 

signatures. Every signatures were signed with different pens. The signatures are in 600 dpi "jpg" format. 

In the study, 3530 genuine and forged signatures were obtained by using data augmentation methods 

over 54 signature which belongs a person. 
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4. EXPERIMENTAL EVALUATION OF DL FRAMEWORKS 

In this study, performance comparison of the most widely used DL frameworks is performed. In order to 

guide the researchers, firstly the comparison of the DL frameworks in the literature are investigated and 

analyzed. After that, according to the results of literature analysis, the performance comparisons of the 

best DL frameworks are performed, and the experimental results are shared. According to the results of 

literature, TensorFlow, Theano, Keras and Torch frameworks have been chosen for performance 

comparison. 

The performance comparison between the chosen frameworks are performed according to their batch 

time rates and epoch time rates on different batch numbers. Performance comparisons are performed 

on GPU with two different datasets: GPDS and MNIST. The work is supported by the NVIDIA company 

by graphic card donation. All experimental results are obtained on the NVIDIA TITAN XP graphics card 

which has 12 GB memory. The study is performed using python 3.6 on Cuda 9.0 and CuDNN 7.3.1 

versions. We think that some different results obtained in the literature are due to different Cuda and 

Python versions. For this reason, we considered it appropriate to write the versions of the software. 

ResNet50 CNN model is used on all frameworks. The hyperparameters of the model are used as 

include_top=False, weights=None. Stochastic gradient descent (SGD) optimizer is used for training and 

parameters of the optimizer are chosen for fine tuning as lr=1e-4, decay=1e-4, momentum=0.9, and 

nesterov=True. The parameter numbers of the model vary according to the dataset. When the GPDS 

dataset is used, model has total 24,183,554 parameters and 23,929,730 trainable parameters, but when 

the MNIST dataset is used, it has total 23,610,122 parameters and 23,552,906 trainable parameters. 

The first comparison results are obtained on the MNIST dataset of handwritten digits. The batch time 

and epoch time performances of the models on the GPU were compared using the MNIST dataset of 

handwritten digits. The results were obtained separately for 200, 100 and 50 batches for all frameworks. 

The experimental results are presented in Table 2. 

Table 2. MINST Hand Written Digit Dataset DL Frameworks Comparison. 

DL Frameworks 

MNIST Hand Written Digit Dataset 

200 Batch 100 Batch 50 Batch 

Batch Time 

(ms) 

Epoch Time 

(ms) 

Batch Time 

(ms) 

Epoch Time 

(ms) 

Batch Time 

(ms) 

Epoch Time 

(ms) 

TensorFlow 45 13938 32 18695 26 29942 

Keras (TensorFlow 

Backend) 
59 16650 52 27544 46 47467 

Theano 343 85387 204 107809 122 123236 

Keras (Theano 

Backend) 
314 81328 188 94118 115 121123 

PyTorch 78 21680 70 37856 37 40136 

Batch Time performances of all models on MNIST dataset are shown in Fig. 3. 



Computers and Informatıcs 

7 

 
Figure 3. DL Frameworks Batch Time Comparison on MNIST Hand Written Dataset. 

Epoch time performances are shown in Fig. 4. 

 
Figure 4. DL Frameworks Epoch Time Comparison on MNIST Hand Written Dataset. 

According to the obtained results on MNIST dataset, it was revealed that the most efficient framework 

is TensorFlow on both performances of batch time and epoch time. TensorFlow has been the fastest 

framework for all batch sizes as 200, 100and 50 batch. Although the TensorFlow is slightly slower when 

worked on Keras backend, it has been still achieved the second-best performance with 200 batch and 

100 batch. The biggest advantage of the Keras framework is to provide ease of use for all frameworks. 

Keras has been the easiest-to-use framework for both the installation phase and the model creation 

phase. The Pytorch framework showed the second-best performance for the 50 batch. It has been seen 

that the slowest epoch and batch time performances on MNIST dataset is obtained by Theano 

framework. 

The second comparison results are obtained on the GPDS signature dataset. In the comparison of the 

framework, total 3530 signature images were used as 3177 for training and 353 for test. Before the 

training phase, all images were resized to 224x224 size and cleared to noises by applying pre-processing 

phase. As in the MNIST dataset, the batch time and epoch time performances of the models on the GPU 

were compared using the GPDSsyntheticSignature dataset. The results were obtained separately for 100, 
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70, 50 and 20 batches for all models. The same batch sizes were not be able to use because the size of 

images used in the GPDSsyntheticSignature dataset were bigger than the images used in the MNIST 

dataset. The experimental results are given in Table 3 and, Batch Time performances of all models are 

shown in Fig. 5 and Epoch time performances are shown in Fig. 4. 

Table 3: GPDS Signature Dataset DL Frameworks Comparison. 

DL Framwork 

GPDS Signature Dataset 

100 Batch 70 Batch 50 Batch 20 Batch 

Batch 

Time 

(ms) 

Epoch 

Time 

(ms) 

Batch 

Time 

(ms) 

Epoch 

Time 

(ms) 

Batch 

Time 

(ms) 

Epoch 

Time 

(ms) 

Batch 

Time 

(ms) 

Epoch 

Time 

(ms) 

TensorFlow 488 15522 421 16144 249 16072 112 19956 

Keras 

(TensorFlow 

Backend) 

CEOOMEM* 433 20455 315 21330 142 23149 

Theano CEOOMEM* 1188 53909 862 55117 403 64438 

Keras (Theano 

Backend) 
CEOOMEM* 

CEOOMEM* (For 67 Batch) 
662 43671 299 49306 

858 41878 

PyTorch 438 14360 291 13857 224 14465 85 14117 

*Cuda_Error_Out_of_Memory 

 
Figure 5. DL Frameworks Epoch Time Comparison on GPDS Signature Dataset. 
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We would like to give an analysis of the results in the literature before explaining the results of our 

studies. It is clearly seen from all comparative studies that Torch consistently performs very well memory 

management for both CPU and GPU. Bahrampour et al [1] did not use TensorFlow in the RNN 

comparison because of it does not accept variable length inputs within a batch. However, Shi et al [22] 

used TensorFlow and they reported that it performed much better than Torch on RNNs. Al-Rfou et al 

[19] also reported the same as Shi et al [22] that, TensorFlow performed better than Theano and Torch 

with RNN architecture on GPU. But they also reported that Torch had the best performance with CNN 

architecture on GPU. As noticed, Bahrampour et al [1] had claimed Theano had better performance than 

TensorFlow on CPU and GPU, while both Shatnawi, Al-Rfou and their teams had claimed TensorFlow had 

better performance [30], [33]. These different opinions of the researchers are usage of different cuDNN 

versions to test TensorFlow. Acording to the result of studies in literature TensorFlow have better results 

together with the starting to support cuDNN v6. Bahrampour et al [1] and Al-Rfou et al [30] obtain 

parallel results for Theano on GPU. They reported that Theano had better performance than Torch for 

RNN (LSTM) architecture on GPU. 

The results obtained in the GPDSsyntheticSignature dataset have a great similarity with the results 

obtained from the MNIST dataset. However, we found that there is a very important difference between 

the two datasets. This important difference is that the best performing frameworks are different. We 

have seen that the best batch and epoch time performance on the GPDSsyntheticSignature dataset was 

not belong to TensorFlow but belongs to Pytorch framework. The second-best performance was 

achieved by the TensorFlow framework. These different results are also seen in previous studies in the 

literature. Shi et al [22] and Shatnawi [33] had claimed TensorFlow had better performance than Torch 

on GPU, while Al-Rfou et al [30] claimed Torch had the best performance. One of the most important 

aims of this study is to reveal the cause of this contradiction in the literature. This significant performance 

difference is thought to be the result of data size. The experimental results obtained from different sizes 

of datasets support this view. When the image size was increased, the Batch and Epoch time performance 

of the Pytorch framework was better than TensorFlow. When data size increases, TensorFlow is 

insufficient in memory management. It was seen that Pytorch has the best memory management and 

Theano had the worst memory management. Theano while works on Keras backend gave error of 

Cuda_Error_Of_Out_Memory (CEOOMEM) even at a size of 70 Batch on the GPDSsyntheticSignature 

dataset. In the tests that performed on the GPDSsyntheticSignature dataset, it was seen that Keras and 

Theano frameworks gave Cuda_Error_Of_Out_Memory for 100 batch. Theano was the slowest framework 

also on GPDSsyntheticSignature dataset, as in the MNIST dataset. 

 

5. CONCLUSION 

In literature there are some contradictions in the studies. Some researchers claimed that TensorFlow is 

the best, while others claimed that Torch is better. One of the significant contributions in this study is to 

eliminate this contradiction in the literature by revealing the cause. The experimental results showed 

that Pytorch has better memory management than TensorFlow.  For this reason, TensorFlow performs 

better in small image sizes, while it is getting to slow down when image size increases. Pytorch has 

performed the best success on large-sized images by good memory management. All these results have 

been showed that different results obtained in the literature are not only dependent on software 

versions, but also on the memory management performance of the frameworks. 

According to the results obtained in this study, the fastest framework for small size images is TensorFlow, 

while the fastest is Pytorch in large-size images. Keras is the most useful framework. Theano has the 

worst performance in terms of both speed and memory management. 
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