
Computers and Informatics

2757-8259 2021, Volume 1 Issue 1
Research Article

1

Performance comparison of deep learning frameworks

M. Mutlu Yapıcı

Ankara University, Computer Technologies Department, Ankara, 06100, Turkey

 Nurettin Topaloğlu

Gazi University, Technology Faculty, Computer Engineering Department, Ankara, 06500, Turkey

Submitted: 14.07.2020

Accepted: 23.09.2020

Published: 28.02.2021

Abstract:

Deep learning (DL) is branch of machine learning and imitates the neural activity of brain on to artificial neural

networks. Meanwhile it can be trained to define characteristics of data such as image, voice or different complex

patterns. DL is capable of to find solutions for complex and NP-hard problems. In literature, there are many DL

frameworks, libraries and tools to develop solutions. In this study, the most commonly used DL frameworks such as

Torch, Theano, Caffe, Caffe2, MXNet, Keras, TensorFlow and Computational Network Tool Kit (CNTK) are

investigated and performance comparison of the frameworks is provided. . In addition, the GPU performances have

been tested for the best frameworks which have been determined according to the literature: TensorFlow, Keras

(TensorFlow Backend), Theano, Keras (Theano Backend), Torch. The GPU performance comparison of these

frameworks has been made by the experimental results obtained through MNIST and GPDS signature datasets.

According to experimental results TensorFlow was detected best one, while other researches in the literature claimed

that Pytorch is better. The contributions of in this study is to eliminate the contradiction in the literature by revealing

the cause. In this way, it is aimed to assist the researchers in choosing the most appropriate DL framework for their

studies.

Keywords: Artificial neural network, Deep learning, Deep learning frameworks

© 2021 Published by peer-reviewed open access scientific journal, CI at DergiPark (https://dergipark.org.tr/tr/pub/ci)

Cite this paper as:
Yapıcı, M.M. & Topaloğlu, N., Performance comparison of deep learning frameworks,

Computers and Informatics, 2021, 1(1), 1-11.

https://dergipark.org.tr/tr/pub/ci
https://orcid.org/0000-0001-6171-1226
https://orcid.org/0000-0001-5836-7882
https://dergipark.org.tr/tr/pub/ci/issue/60236/769457

Computers and Informatıcs

2

1. INTRODUCTION

Technological developments have made a rapid increase in the amount of and variety of data used and

produced. This production is occurred the big data. Big data can be grouped as structural, non-structural

or semi-structural and it has five basic components as variety, velocity, volume, verification, and value. It

includes volume, velocity, and variety of data. Data mining and artificial intelligence methods are used

for processing and interpreting big data. Deep learning (DL) is a type of artificial intelligence with many

layers used for the training of big data. DL is being used the state-of-the-art for tackling training

problems that require processing big data like videos, images and signals. Big data is one of great

importance in enhancement and use of DL frameworks. In Fig. 1 DL and big data relation is presented.

As shown in Fig. 1 DL is used for processing big data like data mining and artificial intelligence.

D
a
ta

 M
in

in
g

A
rtific

ia
l In

tellig
e
n

ce

Big Data

Deep

Learning

Figure 1. Artificial intelligence, big data and DL relation.

Additionally the hardware enhancements such as GPUs, developments of the DL frameworks that allow

easily develop an efficient DL models are also quite common in widespread use of DL methods. Timeline

showing the date of occurrence of the DL frameworks discussed in this study is given in Fig. 2. Therefore,

in this study some of most widely used open source DL frameworks information briefly is provided. And

highlighted the advantages and disadvantages of these frameworks by comparison with each other.

These comparisons will be a very important guide for researchers studying on DL.

Figure 2. Timeline showing the date of occurrence of the DL frameworks discussed.

Our main motivation to carry out the study is to provide the performance information on the most used

frameworks to guide researchers working in the field of deep learning. Especially, the performance

results on GPU will be an important guide for researchers to choose the best frameworks. Therefore, in

this study, detailed information about Torch, Theano, Caffe, Caffe2, MXNet, Keras, TensorFlow,

Computational Network ToolKit (CNTK) frameworks are presented. An experimental evaluation study is

performed by using MNIST and GPDS datasets for TensorFlow, Keras (TensorFlow Backend), Theano,

Keras (Theano Backend), PyTorch frameworks, and performance comparisons of these frameworks are

mentioned.

In this study, properties of the frameworks which are introduced in section 2 are compared according to

literature studies. Comparison results in this study will greatly contribute to the selection of a suitable

platform for researchers to work in the field of DL. First the comparison of properties of all these

frameworks are given in Table 1.

Computers and Informatıcs

3

Table 1. Properties of the frameworks. Feature comparison.

Software Caffe[1-3] Caffe2[4]
Keras[5],

[6]

Microsoft

Cognitive

Toolkit[7-10]

MXNet[2],

[11]

TensorFlow

[2], [12]–[16]

Theano [2],

[17-19]

Torch[1], [2],

[20]

Creator

Berkeley

Vision and

Learning

Center

BVLC,

NVIDIA,

Facebook

François

Chollet

Microsoft

Research

Apache

Software

Foundation

Google

Brain team

Université

de

Montréal

Ronan

Collobert,

Koray

Kavukcuoglu,

Clement

Farabet

Software

license
BSD license BSD license MIT license MIT license Apache 2.0 Apache 2.0 BSD license BSD license

Platform

Linux,

macOS,

Windows

Linux,

macOS,

Windows

Linux,

macOS,

Windows

Windows,

Linux

(macOS via

Docker on

roadmap)

Linux,

macOS,

Windows,

AWS,

Android, iOS,

JavaScript

Linux,

macOS,

Windows,

Android

Cross-

platform

Linux, macOS,

Windows,

Android, iOS

Core C++ C++ Python C++
Small C++

core library

C++,

Python,

CUDA

Python C, Lua

Interface

Python,

MATLAB,

C++

Python,

MATLAB,

C++

Python, R

Python

(Keras), C++,

Command

line,

BrainScript

(.NET on

roadmap)

C++, Python,

Julia, Matlab,

JavaScript,

Go, R, Scala,

Perl

Python

(Keras),

C/C++,

Java, Go, R,

Julia

Python

(Keras)

Lua, LuaJIT, C,

utility library

for

C++/OpenCL

Devices

(Beyond CPU)
GPU

GPU,

Mobile

GPU,

Mobile
GPU GPU, Mobile GPU, Mobile GPU GPU/ FPGA

Programming

Style
Declarative Declarative Declarative Declarative

Imperative,

Declarative
Declarative Declarative Imperative

Supported

Architectures
RNN, CNN RNN, CNN

RNN, CNN,

RBM, DBN
RNN, CNN

RNN, CNN,

RBM, DBN

RNN, CNN,

RBM, DBN

RNN, CNN,

RBM, DBN

RNN, CNN,

RBM, DBN

Parallel

execution

(multi node)

No Yes Yes Yes Yes Yes Yes Yes

All frameworks in Table 1 support CUDA. Features of these frameworks are not very different, but they

can be found superior in different aspects depending on the project and equipment. For performance

comparison of these frameworks, the studies in the literature have been investigated and compared

according to these studies. So, there are not all the frameworks in each comparison tables and graphs.

The Paper is organized as follows. In section 2 DL frameworks are presented. In section 3 datasets used

in the study for comparison are mentioned. In section 4 experimental evaluation of DL frameworks are

presented. In section 5 the study conclusion is mentioned.

2. DL FRAMEWORKS

DL frameworks in literature are Torch, Theano, Caffe, Caffe2, MXNet, Keras, TensorFlow and CNTK. These

frameworks details are described below.

2.1. Caffe and Caffe2

Caffe is a framework developed in BSD-licensed C++ and uses Python and MATLAB interfaces [1], [3].

Jia et al [3] claim that caffe can process over 40 million images a day on a single K40 or Titan GPU. In

another study Chetlur et al [21] reported that integrating cuDNN into Caffe improves performance by

36% on a standard model while reducing memory usage [22]. Although Caffe has some advantages such

working well with CNN architecture, providing good performance for feedforward networks and

Computers and Informatıcs

4

allowing fine tuning of training models without writing code precisely, it has poor documentation, and

prove bad and bulky performance in RNN architecture and large neural networks.

Caffe2 was developed by Yangqing Jia who is developer of Caffe. After Yangqing jia started working on

Facebook they developed the Caffe2 framework based on caffe along with NVIDIA and Facebook. Caffe2

improves some limitation of Caffe such as large-scale distributed training support, mobile deployment,

new hardware support quantized computation. Caffe2 has great support from NVIDIA and has native

Python and C++ APIs. This allows it to quickly prototype and optimize for projects easily [22].

2.2. Keras

Keras is a fast growing high-level Neural Network API developed in Python language to quickly and

easily implement DL applications. It capable of running TensorFlow, Theano or CNTK at backend [5]. The

input data size assumed for each backend is different. Therefore, it is important to be careful when

designing a system with keras. It is easy to find examples about the Keras coding. Keras has good

documentation [23], [24].

2.3. Microsoft Computational Network ToolKit

Computational Network Toolkit that formerly knows as known as CNTK [7] is an open-source DL

framework which was developed by Microsoft. CNTK has a Python API over C++ code and it has not

adopted one of the more conventional licenses, such as ASF 2.0, BSD or MIT. CNTK uses a graphical

training method unlike other methods [10].

CNTK supports C# and BrainScript. They provide both high-level and low-level APIs for ease of use and

flexibility. In a study conducted in December 2015 [8], it was tested with a system using multiple GPUs

in a fully connected 4-layer neural network. They reported CNTK performance is much better than Caffe,

TensorFlow, Theano and Torch [22].

2.4. MXNet

MXNet is a multi-language ML library. İt combine symbolic expression with tensor process to maximize

efficiency and flexibility. MXNet uses little memory spaces and has computationally efficiency. It runs on

a variety of systems, from mobile devices to GPU systems [2]. MXNet provides optimized numerical

computation via just a few lines of code in high-level languages such Python and R, for GPUs and

distributed ecosystems. It supports two styles of programming: imperative and symbolic. Imperative

programming uses the NDArray API and symbolic programming uses the Symbol API [11].

2.5. TensorFlow

TensorFlow is a DL and ML framework which was written with a Python API over a C/C++ engine by

Google Brain Team. There are two main advantages: first-one is that it is continually supported by the

developer team and second one is it works flexible via many architectures such as CNN, RNN [15], [22].

TensorFlow uses computational (data flow) graphs to perform operations such as computation and

shared state [12], [16]. In 2016, Goldsborough [15] published a comprehensive article that introduces

TensorFlow’s basic computation paradigms, distributed execution model, programming interface, and

accompanying visualization tools. Another advantage of TensorFlow is that the tensor processing units

(TPUs) specially designed for DL and ML projects by Google. TPU is a type of processor designed for

helping to achieve larger amounts of low-level processing simultaneously [12], [25]. In 2017, Jouppi et

al [25] introduced TPUs and compared the performance of TPUs with contemporary CPUs and GPUs.

Computers and Informatıcs

5

2.6. Theano

Theano is developed in the Python programming language by the Montreal Institute of Learning

Algorithms (MILA). Many functional features of NumPy, Theano also offers GPU support and faster

expression evaluation. It is a general mathematical tool, but it has been developed to facilitate research

in DL. Theano is open source software, distributed under the BSD license [17], [26]. In 2012, Bergstra et

al [18] introduced new features such Scan Op., R-operator for Hessian-Free optimization, lazy evaluation-

CVM, parallelism on CPU.

Various software packages such as Pylearn2 [27], Blocks [28], Lasagne [29], and Keras [5] have been

developed to improve the strengths of Theano so far. In 2016, Theano development team published a

comprehensive article about the developments and talents of Theano [30]. Theano has been active and

continuously developed since 2008, with a large number of superstructures built up and used in many

modern machine learning models. However, Yoshua Bengio [31], one of Theono's developers, in 2017

announced the development in Theano would end.

2.7. Torch

Torch is an API written in Lua and it is a computational framework. Torch uses array or Tensor to perform

many operations. These operations include indexing, slicing, cloning, resizing, storage sharing. Torch's

Python version is PyTorch, developed in 2017 by Facebook and using dynamic graphics which lets

process variable-length inputs and outputs. This feature has provided the PyTorch to spread rapidly and

be accepted by academic circles [16], [20].

3. DATASETS

The datasets used for DL frameworks performance comparison in this study is detailed below. These

datasets are MNIST and GPDS signature.

3.1. MNIST

The MNIST dataset of handwritten digits is a subset of a larger set available from NIST. It is composed

of 70,000 handwritten digit images which have 28x28 pixel size. It has a training set of 60,000 examples,

and a test set of 10,000 examples. But in this study, it was used 50,000 for training, 10,000 for validation

and 10,000 for test.

3.2. GPDS signature

The GPDS dataset is acquired from “Instituto Universitario para el Desarrollo Tecnológico y la Innovación

en Comunicaciones (IDeTIC)”. It contains 4 different signature datasets: GPDS960signature,

4NSigComp2010 Scenario 2, GPDS960GRAYsignature, GPDSsyntheticSignature. In the study

GPDSsyntheticSignature [32] dataset was used for comparison. GPDSsyntheticSignature dataset consists

of signatures of 4000 different individuals. Every individual has 24 genuine signatures and 30 forged

signatures. Every signatures were signed with different pens. The signatures are in 600 dpi "jpg" format.

In the study, 3530 genuine and forged signatures were obtained by using data augmentation methods

over 54 signature which belongs a person.

Computers and Informatıcs

6

4. EXPERIMENTAL EVALUATION OF DL FRAMEWORKS

In this study, performance comparison of the most widely used DL frameworks is performed. In order to

guide the researchers, firstly the comparison of the DL frameworks in the literature are investigated and

analyzed. After that, according to the results of literature analysis, the performance comparisons of the

best DL frameworks are performed, and the experimental results are shared. According to the results of

literature, TensorFlow, Theano, Keras and Torch frameworks have been chosen for performance

comparison.

The performance comparison between the chosen frameworks are performed according to their batch

time rates and epoch time rates on different batch numbers. Performance comparisons are performed

on GPU with two different datasets: GPDS and MNIST. The work is supported by the NVIDIA company

by graphic card donation. All experimental results are obtained on the NVIDIA TITAN XP graphics card

which has 12 GB memory. The study is performed using python 3.6 on Cuda 9.0 and CuDNN 7.3.1

versions. We think that some different results obtained in the literature are due to different Cuda and

Python versions. For this reason, we considered it appropriate to write the versions of the software.

ResNet50 CNN model is used on all frameworks. The hyperparameters of the model are used as

include_top=False, weights=None. Stochastic gradient descent (SGD) optimizer is used for training and

parameters of the optimizer are chosen for fine tuning as lr=1e-4, decay=1e-4, momentum=0.9, and

nesterov=True. The parameter numbers of the model vary according to the dataset. When the GPDS

dataset is used, model has total 24,183,554 parameters and 23,929,730 trainable parameters, but when

the MNIST dataset is used, it has total 23,610,122 parameters and 23,552,906 trainable parameters.

The first comparison results are obtained on the MNIST dataset of handwritten digits. The batch time

and epoch time performances of the models on the GPU were compared using the MNIST dataset of

handwritten digits. The results were obtained separately for 200, 100 and 50 batches for all frameworks.

The experimental results are presented in Table 2.

Table 2. MINST Hand Written Digit Dataset DL Frameworks Comparison.

DL Frameworks

MNIST Hand Written Digit Dataset

200 Batch 100 Batch 50 Batch

Batch Time

(ms)

Epoch Time

(ms)

Batch Time

(ms)

Epoch Time

(ms)

Batch Time

(ms)

Epoch Time

(ms)

TensorFlow 45 13938 32 18695 26 29942

Keras (TensorFlow

Backend)
59 16650 52 27544 46 47467

Theano 343 85387 204 107809 122 123236

Keras (Theano

Backend)
314 81328 188 94118 115 121123

PyTorch 78 21680 70 37856 37 40136

Batch Time performances of all models on MNIST dataset are shown in Fig. 3.

Computers and Informatıcs

7

Figure 3. DL Frameworks Batch Time Comparison on MNIST Hand Written Dataset.

Epoch time performances are shown in Fig. 4.

Figure 4. DL Frameworks Epoch Time Comparison on MNIST Hand Written Dataset.

According to the obtained results on MNIST dataset, it was revealed that the most efficient framework

is TensorFlow on both performances of batch time and epoch time. TensorFlow has been the fastest

framework for all batch sizes as 200, 100and 50 batch. Although the TensorFlow is slightly slower when

worked on Keras backend, it has been still achieved the second-best performance with 200 batch and

100 batch. The biggest advantage of the Keras framework is to provide ease of use for all frameworks.

Keras has been the easiest-to-use framework for both the installation phase and the model creation

phase. The Pytorch framework showed the second-best performance for the 50 batch. It has been seen

that the slowest epoch and batch time performances on MNIST dataset is obtained by Theano

framework.

The second comparison results are obtained on the GPDS signature dataset. In the comparison of the

framework, total 3530 signature images were used as 3177 for training and 353 for test. Before the

training phase, all images were resized to 224x224 size and cleared to noises by applying pre-processing

phase. As in the MNIST dataset, the batch time and epoch time performances of the models on the GPU

were compared using the GPDSsyntheticSignature dataset. The results were obtained separately for 100,

45 32 26
59 52 46

343

204

122

314

188

115
78 70

37

0

50

100

150

200

250

300

350

400

200 Batch 100 Batch 50 Batch

T
im

e
M

il
is

ec
o

n
d

MNIST Dataset Batch Time Comparison

TensorFlow Keras(TensorFlow) Theano Keras (Theano) PyTorch

1
3

9
3

8

1
8

6
9

5

2
9

9
4

2

1
6

6
5

0

2
7

5
4

4 4
7

4
6

7

8
5

3
8

7 1
0

7
8

0
9

1
2

3
2

3
6

8
1

3
2

8

9
4

1
1

8 1
2

1
1

2
3

2
1

6
8

0

3
7

8
5

6

4
0

1
3

6

0

20000

40000

60000

80000

100000

120000

200 Batch 100 Batch 50 Batch

T
im

e
M

il
is

ec
o

n
d

MNIST Dataset Epoch Time Comparison

TensorFlow Keras(TensorFlow) Theano Keras (Theano) PyTorch

Computers and Informatıcs

8

70, 50 and 20 batches for all models. The same batch sizes were not be able to use because the size of

images used in the GPDSsyntheticSignature dataset were bigger than the images used in the MNIST

dataset. The experimental results are given in Table 3 and, Batch Time performances of all models are

shown in Fig. 5 and Epoch time performances are shown in Fig. 4.

Table 3: GPDS Signature Dataset DL Frameworks Comparison.

DL Framwork

GPDS Signature Dataset

100 Batch 70 Batch 50 Batch 20 Batch

Batch

Time

(ms)

Epoch

Time

(ms)

Batch

Time

(ms)

Epoch

Time

(ms)

Batch

Time

(ms)

Epoch

Time

(ms)

Batch

Time

(ms)

Epoch

Time

(ms)

TensorFlow 488 15522 421 16144 249 16072 112 19956

Keras

(TensorFlow

Backend)

CEOOMEM* 433 20455 315 21330 142 23149

Theano CEOOMEM* 1188 53909 862 55117 403 64438

Keras (Theano

Backend)
CEOOMEM*

CEOOMEM* (For 67 Batch)
662 43671 299 49306

858 41878

PyTorch 438 14360 291 13857 224 14465 85 14117

*Cuda_Error_Out_of_Memory

Figure 5. DL Frameworks Epoch Time Comparison on GPDS Signature Dataset.

Figure 6. DL Frameworks Epoch Time Comparison on GPDS Signature Dataset.

1
5

5
2

2

1
6

1
4

4

1
6

0
7

2

1
9

9
5

6

C
E

O
O

M
E

M

2
0

4
5

5

2
1

3
3

0

2
3

1
4

9

C
E

O
O

M
E

M

5
3

9
0

9

5
5

1
1

7

6
4

4
3

8

C
E

O
O

M
E

M

C
E

O
O

M
E

M

4
3

6
7

1

4
9

3
0

6

1
4

3
6

0

1
3

8
5

7

1
4

4
6

5

1
4

1
1

7

-10000

10000

30000

50000

70000

90000

100 Batch 70 Batch 50 Batch 20 Batch

T
im

e
M

il
is

ec
o

n
d

GPDS Signature Dataset Epoch Time Comparison

TensorFlow Keras (TensorFlow) Theano Keras (Theano) PyTorch

4
8

8

4
2

1

2
4

9

1
1

2

C
E

O
O

M
E

M

4
3

3

3
1

5

1
4

2

C
E

O
O

M
E

M

1
1

8
8

8
6

2

4
0

3

C
E

O
O

M
E

M

C
E

O
O

M
E

M

6
6

2

2
9

94
3

8

2
9

1

2
2

4

8
5

-30

300

630

960

1290

1620

100 Batch 70 Batch 50 Batch 20 Batch

T
im

e
M

il
is

ec
o

n
d

GPDS Signature Dataset Batch Time Comparison

TensorFlow Keras (TensorFlow) Theano Keras (Theano) PyTorch

Computers and Informatıcs

9

We would like to give an analysis of the results in the literature before explaining the results of our

studies. It is clearly seen from all comparative studies that Torch consistently performs very well memory

management for both CPU and GPU. Bahrampour et al [1] did not use TensorFlow in the RNN

comparison because of it does not accept variable length inputs within a batch. However, Shi et al [22]

used TensorFlow and they reported that it performed much better than Torch on RNNs. Al-Rfou et al

[19] also reported the same as Shi et al [22] that, TensorFlow performed better than Theano and Torch

with RNN architecture on GPU. But they also reported that Torch had the best performance with CNN

architecture on GPU. As noticed, Bahrampour et al [1] had claimed Theano had better performance than

TensorFlow on CPU and GPU, while both Shatnawi, Al-Rfou and their teams had claimed TensorFlow had

better performance [30], [33]. These different opinions of the researchers are usage of different cuDNN

versions to test TensorFlow. Acording to the result of studies in literature TensorFlow have better results

together with the starting to support cuDNN v6. Bahrampour et al [1] and Al-Rfou et al [30] obtain

parallel results for Theano on GPU. They reported that Theano had better performance than Torch for

RNN (LSTM) architecture on GPU.

The results obtained in the GPDSsyntheticSignature dataset have a great similarity with the results

obtained from the MNIST dataset. However, we found that there is a very important difference between

the two datasets. This important difference is that the best performing frameworks are different. We

have seen that the best batch and epoch time performance on the GPDSsyntheticSignature dataset was

not belong to TensorFlow but belongs to Pytorch framework. The second-best performance was

achieved by the TensorFlow framework. These different results are also seen in previous studies in the

literature. Shi et al [22] and Shatnawi [33] had claimed TensorFlow had better performance than Torch

on GPU, while Al-Rfou et al [30] claimed Torch had the best performance. One of the most important

aims of this study is to reveal the cause of this contradiction in the literature. This significant performance

difference is thought to be the result of data size. The experimental results obtained from different sizes

of datasets support this view. When the image size was increased, the Batch and Epoch time performance

of the Pytorch framework was better than TensorFlow. When data size increases, TensorFlow is

insufficient in memory management. It was seen that Pytorch has the best memory management and

Theano had the worst memory management. Theano while works on Keras backend gave error of

Cuda_Error_Of_Out_Memory (CEOOMEM) even at a size of 70 Batch on the GPDSsyntheticSignature

dataset. In the tests that performed on the GPDSsyntheticSignature dataset, it was seen that Keras and

Theano frameworks gave Cuda_Error_Of_Out_Memory for 100 batch. Theano was the slowest framework

also on GPDSsyntheticSignature dataset, as in the MNIST dataset.

5. CONCLUSION

In literature there are some contradictions in the studies. Some researchers claimed that TensorFlow is

the best, while others claimed that Torch is better. One of the significant contributions in this study is to

eliminate this contradiction in the literature by revealing the cause. The experimental results showed

that Pytorch has better memory management than TensorFlow. For this reason, TensorFlow performs

better in small image sizes, while it is getting to slow down when image size increases. Pytorch has

performed the best success on large-sized images by good memory management. All these results have

been showed that different results obtained in the literature are not only dependent on software

versions, but also on the memory management performance of the frameworks.

According to the results obtained in this study, the fastest framework for small size images is TensorFlow,

while the fastest is Pytorch in large-size images. Keras is the most useful framework. Theano has the

worst performance in terms of both speed and memory management.

Computers and Informatıcs

10

Acknowledgment

This work has been supported by the NVIDIA Corporation. All experimental studies were carried out on

the TITAN XP graphics card donated by NVIDIA. We sincerely thank NVIDIA Corporation for their

supports.

REFERENCES

[1] Bahrampour, S., Ramakrishnan, N., Schott, L., & Shah M., Comparative study of caffe, neon, theano, and torch for

deep learning 2016, arXiv, abs/1511.06435.

[2] Chen T., et al. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems,

arXiv Prepr 2015. arXiv1512.01274.

[3] Jia Y. et al. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM

international conference on Multimedia 2014, 675–678.

[4] NVIDIA. Caffe2 Deep Learning Framework 2017. https://developer.nvidia.com/caffe2.

[5] Chollet F., et al. Keras: Deep learning library for theano and tensorflow 2015. URL https//keras. io/k, 7, 8.

[6] F.ois Chollet, Keras 2015, https://github.com/fchollet/keras.

[7] Microsoft. Computational Network Toolkit (CNTK) 2016. [Online]. Available: https://www.microsoft.com/en-

us/cognitive-toolkit/.

[8] Huang. X., Microsoft computational network toolkit offers most efficient distributed deep learning computational

performance 2015. https://goo.gl/9UUwVn.

[9] Microsoft. The Microsoft Cognitive Toolkit 2016. https://www.microsoft.com/en-us/cognitive-toolkit/.

[10] Banerjee, D.S., Hamidouche, K., & Panda, D.K., Re-Designing CNTK Deep Learning Framework on Modern GPU

Enabled Clusters, 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom),

2016, pp. 144–151, DOI: 10.1109/CloudCom.2016.0036.

[11] MXNet. MXNet 2017. https://mxnet.incubator.apache.org/.

[12] Google, TensorFlow. [Online]. Available: https://www.tensorflow.org/.

[13] NVIDIA. GPU-Accelerated TensorFlow 2018. https://www.nvidia.com/en-us/data-center/gpu-accelerated-

applications/tensorflow/.

[14] Abadi M., et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems 2016. arXiv

Prepr. arXiv1603.04467, 2016.

[15] Goldsborough. P., A tour of TensorFlow 2016. arXiv Prepr. arXiv1610.01178.

[16] Comparing Top Deep Learning Frameworks. https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch.

[17] Bergstra J., et al. Theano: A CPU and GPU math compiler in Python 2010. In Proc. 9th Python in Science Conf,

vol. 1.

[18] Bastien F. et al. Theano: new features and speed improvements 2012. arXiv Prepr. arXiv1211.5590.

[19] Al-Rfou R., et al. Theano: A Python framework for fast computation of mathematical expressions. arXiv Prepr.

arXiv1605.02688, 472: 473-2016.

[20] Torch. What is Torch? http://torch.ch/. [Online]. Available: http://torch.ch/.

[21] Chetlur S., et al. Cudnn: Efficient primitives for deep learning 2014. arXiv Prepr. arXiv1410.0759.

[22] Shi, S., Wang, Q., Xu, P., & Chu, X., Benchmarking state-of-the-art deep learning software tools 2016. In 7th

International Conference on Cloud Computing and Big Data (CCBD), 2016, 99–104. DOI: 10.1109/CCBD.2016.029.

[23] Chollet. F. Deep learning with python, 2017 Manning Publications Co.

[24] Erickson, B. J., Korfiatis, P., Akkus, Z., Kline, T., & Philbrick, K. Toolkits and libraries for deep learning. J. Digit.

Imaging, 2017, 30(4), 400–405.

[25] Jouppi N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th

Annual International Symposium on Computer Architecture, 2017, 1–12.

[26] Bergstra J., et al. Theano: Deep learning on gpus with Python 2011. In NIPS 2011, BigLearning Workshop,

Granada, Spain, vol. 3.

[27] Goodfellow I. J., et al. Pylearn2: a machine learning research library 2013. arXiv Prepr. arXiv1308.4214.

[28] Van Merriënboer B., et al. Blocks and fuel: Frameworks for deep learning 2015. arXiv Prepr. arXiv1506.00619.

[29] Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sønderby, Daniel Nouri, Daniel Maturana,

Martin Thoma, Eric Battenberg, Jack Kelly, Jeffrey De Fauw, Michael Heilman, diogo149, Brian McFee, Hendrik

Weideman, takacsg84, peterderivaz, Jon, instagibbs, Dr. Kashif Rasul, CongLiu, Britefury, and Jonas Degrave,

Lasagne: First Release. (Zenodo, 2015).

Computers and Informatıcs

11

[30] Team T. T. D., et al. Theano: A Python framework for fast computation of mathematical expressions 2016. arXiv

Prepr. arXiv1605.02688.

[31] Bengio. Y., MILA and the future of Theano 2017. [Online]. Available: goo.gl/gdmTjk.

[32] Ferrer, M. A., Diaz-Cabrera, M., & Morales, A. Synthetic off-line signature image generation 2013. In Biometrics

(ICB), 2013 International Conference, 1–7.

[33] Shatnawi, A., Al-Bdour, G., Al-Qurran, R., & Al-Ayyoub, M. A comparative study of open source deep learning

frameworks 2018. In 2018 9th International Conference on Information and Communication Systems (ICICS), 72-

77. DOI: 10.1109/IACS.2018.8355444.

